--- a/src/HOL/Library/While_Combinator.thy Tue Oct 23 22:57:52 2001 +0200
+++ b/src/HOL/Library/While_Combinator.thy Tue Oct 23 22:58:15 2001 +0200
@@ -135,14 +135,13 @@
theory.}
*}
-theorem "P (lfp (\<lambda>N::int set. {Numeral0} \<union> {(n + 2) mod 6 | n. n \<in> N})) =
- P {Numeral0, 4, 2}"
+theorem "P (lfp (\<lambda>N::int set. {0} \<union> {(n + 2) mod 6 | n. n \<in> N})) = P {0, 4, 2}"
proof -
have aux: "!!f A B. {f n | n. A n \<or> B n} = {f n | n. A n} \<union> {f n | n. B n}"
apply blast
done
show ?thesis
- apply (subst lfp_conv_while [where ?U = "{Numeral0, Numeral1, 2, 3, 4, 5}"])
+ apply (subst lfp_conv_while [where ?U = "{0, 1, 2, 3, 4, 5}"])
apply (rule monoI)
apply blast
apply simp