--- a/src/HOL/Old_Number_Theory/Euler.thy Sat Jul 05 10:09:01 2014 +0200
+++ b/src/HOL/Old_Number_Theory/Euler.thy Sat Jul 05 11:01:53 2014 +0200
@@ -67,7 +67,7 @@
then have "[j * j = (a * MultInv p j) * j] (mod p)"
by (auto simp add: zcong_scalar)
then have a:"[j * j = a * (MultInv p j * j)] (mod p)"
- by (auto simp add: mult_ac)
+ by (auto simp add: ac_simps)
have "[j * j = a] (mod p)"
proof -
from assms(1,2,4) have "[MultInv p j * j = 1] (mod p)"
@@ -149,7 +149,7 @@
c = "a * (x * MultInv p x)" in zcong_trans, force)
apply (frule_tac p = p and x = x in MultInv_prop2, auto)
apply (metis StandardRes_SRStar_prop3 mult_1_right mult.commute zcong_sym zcong_zmult_prop1)
- apply (auto simp add: mult_ac)
+ apply (auto simp add: ac_simps)
done
lemma aux1: "[| 0 < x; (x::int) < a; x \<noteq> (a - 1) |] ==> x < a - 1"