--- a/src/HOL/Isar_examples/W_correct.thy Tue Oct 30 17:33:56 2001 +0100
+++ b/src/HOL/Isar_examples/W_correct.thy Tue Oct 30 17:37:25 2001 +0100
@@ -46,8 +46,8 @@
proof -
assume "a |- e :: t"
thus ?thesis (is "?P a e t")
- proof (induct (open) a e t)
- case Var
+ proof induct
+ case (Var a n)
hence "n < length (map ($ s) a)" by simp
hence "map ($ s) a |- Var n :: map ($ s) a ! n"
by (rule has_type.Var)
@@ -57,7 +57,7 @@
by (simp only: app_subst_list)
finally show "?P a (Var n) (a ! n)" .
next
- case Abs
+ case (Abs a e t1 t2)
hence "$ s t1 # map ($ s) a |- e :: $ s t2"
by (simp add: app_subst_list)
hence "map ($ s) a |- Abs e :: $ s t1 -> $ s t2"
@@ -66,7 +66,7 @@
by (simp add: app_subst_list)
next
case App
- thus "?P a (App e1 e2) t1" by (simp add: has_type.App)
+ thus ?case by (simp add: has_type.App)
qed
qed