--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/Projective_Family.thy Wed Nov 07 11:33:27 2012 +0100
@@ -0,0 +1,113 @@
+theory Projective_Family
+imports Finite_Product_Measure Probability_Measure
+begin
+
+definition
+ PiP :: "'i set \<Rightarrow> ('i \<Rightarrow> 'a measure) \<Rightarrow> ('i set \<Rightarrow> ('i \<Rightarrow> 'a) measure) \<Rightarrow> ('i \<Rightarrow> 'a) measure" where
+ "PiP I M P = extend_measure (\<Pi>\<^isub>E i\<in>I. space (M i))
+ {(J, X). (J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))}
+ (\<lambda>(J, X). prod_emb I M J (\<Pi>\<^isub>E j\<in>J. X j))
+ (\<lambda>(J, X). emeasure (P J) (Pi\<^isub>E J X))"
+
+lemma space_PiP[simp]: "space (PiP I M P) = space (PiM I M)"
+ by (auto simp add: PiP_def space_PiM prod_emb_def intro!: space_extend_measure)
+
+lemma sets_PiP[simp]: "sets (PiP I M P) = sets (PiM I M)"
+ by (auto simp add: PiP_def sets_PiM prod_algebra_def prod_emb_def intro!: sets_extend_measure)
+
+lemma measurable_PiP1[simp]: "measurable (PiP I M P) M' = measurable (\<Pi>\<^isub>M i\<in>I. M i) M'"
+ unfolding measurable_def by auto
+
+lemma measurable_PiP2[simp]: "measurable M' (PiP I M P) = measurable M' (\<Pi>\<^isub>M i\<in>I. M i)"
+ unfolding measurable_def by auto
+
+locale projective_family =
+ fixes I::"'i set" and P::"'i set \<Rightarrow> ('i \<Rightarrow> 'a) measure" and M::"('i \<Rightarrow> 'a measure)"
+ assumes projective: "\<And>J H X. J \<noteq> {} \<Longrightarrow> J \<subseteq> H \<Longrightarrow> H \<subseteq> I \<Longrightarrow> finite H \<Longrightarrow> X \<in> sets (PiM J M) \<Longrightarrow>
+ (P H) (prod_emb H M J X) = (P J) X"
+ assumes proj_space: "\<And>J. finite J \<Longrightarrow> space (P J) = space (PiM J M)"
+ assumes proj_sets: "\<And>J. finite J \<Longrightarrow> sets (P J) = sets (PiM J M)"
+ assumes proj_finite_measure: "\<And>J. finite J \<Longrightarrow> emeasure (P J) (space (PiM J M)) \<noteq> \<infinity>"
+ assumes prob_space: "\<And>i. prob_space (M i)"
+begin
+
+lemma emeasure_PiP:
+ assumes "J \<noteq> {}"
+ assumes "finite J"
+ assumes "J \<subseteq> I"
+ assumes A: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> sets (M i)"
+ shows "emeasure (PiP J M P) (Pi\<^isub>E J A) = emeasure (P J) (Pi\<^isub>E J A)"
+proof -
+ have "Pi\<^isub>E J (restrict A J) \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))"
+ proof safe
+ fix x j assume "x \<in> Pi J (restrict A J)" "j \<in> J"
+ hence "x j \<in> restrict A J j" by (auto simp: Pi_def)
+ also have "\<dots> \<subseteq> space (M j)" using sets_into_space A `j \<in> J` by auto
+ finally show "x j \<in> space (M j)" .
+ qed
+ hence "emeasure (PiP J M P) (Pi\<^isub>E J A) =
+ emeasure (PiP J M P) (prod_emb J M J (Pi\<^isub>E J A))"
+ using assms(1-3) sets_into_space by (auto simp add: prod_emb_id Pi_def)
+ also have "\<dots> = emeasure (P J) (Pi\<^isub>E J A)"
+ proof (rule emeasure_extend_measure[OF PiP_def, where i="(J, A)", simplified,
+ of J M "P J" P])
+ show "positive (sets (PiM J M)) (P J)" unfolding positive_def by auto
+ show "countably_additive (sets (PiM J M)) (P J)" unfolding countably_additive_def
+ by (auto simp: suminf_emeasure proj_sets[OF `finite J`])
+ show "(\<lambda>(Ja, X). prod_emb J M Ja (Pi\<^isub>E Ja X)) ` {(Ja, X). (Ja = {} \<longrightarrow> J = {}) \<and>
+ finite Ja \<and> Ja \<subseteq> J \<and> X \<in> (\<Pi> j\<in>Ja. sets (M j))} \<subseteq> Pow (\<Pi> i\<in>J. space (M i)) \<and>
+ (\<lambda>(Ja, X). prod_emb J M Ja (Pi\<^isub>E Ja X)) `
+ {(Ja, X). (Ja = {} \<longrightarrow> J = {}) \<and> finite Ja \<and> Ja \<subseteq> J \<and> X \<in> (\<Pi> j\<in>Ja. sets (M j))} \<subseteq>
+ Pow (extensional J)" by (auto simp: prod_emb_def)
+ show "(J = {} \<longrightarrow> J = {}) \<and> finite J \<and> J \<subseteq> J \<and> A \<in> (\<Pi> j\<in>J. sets (M j))"
+ using assms by auto
+ fix i
+ assume
+ "case i of (Ja, X) \<Rightarrow> (Ja = {} \<longrightarrow> J = {}) \<and> finite Ja \<and> Ja \<subseteq> J \<and> X \<in> (\<Pi> j\<in>Ja. sets (M j))"
+ thus "emeasure (P J) (case i of (Ja, X) \<Rightarrow> prod_emb J M Ja (Pi\<^isub>E Ja X)) =
+ (case i of (J, X) \<Rightarrow> emeasure (P J) (Pi\<^isub>E J X))" using assms
+ by (cases i) (auto simp add: intro!: projective sets_PiM_I_finite)
+ qed
+ finally show ?thesis .
+qed
+
+lemma PiP_finite:
+ assumes "J \<noteq> {}"
+ assumes "finite J"
+ assumes "J \<subseteq> I"
+ shows "PiP J M P = P J" (is "?P = _")
+proof (rule measure_eqI_generator_eq)
+ let ?J = "{Pi\<^isub>E J E | E. \<forall>i\<in>J. E i \<in> sets (M i)}"
+ let ?F = "\<lambda>i. \<Pi>\<^isub>E k\<in>J. space (M k)"
+ let ?\<Omega> = "(\<Pi>\<^isub>E k\<in>J. space (M k))"
+ show "Int_stable ?J"
+ by (rule Int_stable_PiE)
+ interpret finite_measure "P J" using proj_finite_measure `finite J`
+ by (intro finite_measureI) (simp add: proj_space)
+ show "emeasure ?P (?F _) \<noteq> \<infinity>" using assms `finite J` by (auto simp: emeasure_PiP)
+ show "?J \<subseteq> Pow ?\<Omega>" by (auto simp: Pi_iff dest: sets_into_space)
+ show "sets (PiP J M P) = sigma_sets ?\<Omega> ?J" "sets (P J) = sigma_sets ?\<Omega> ?J"
+ using `finite J` proj_sets by (simp_all add: sets_PiM prod_algebra_eq_finite Pi_iff)
+ fix X assume "X \<in> ?J"
+ then obtain E where X: "X = Pi\<^isub>E J E" and E: "\<forall>i\<in>J. E i \<in> sets (M i)" by auto
+ with `finite J` have "X \<in> sets (PiP J M P)" by simp
+ have emb_self: "prod_emb J M J (Pi\<^isub>E J E) = Pi\<^isub>E J E"
+ using E sets_into_space
+ by (auto intro!: prod_emb_PiE_same_index)
+ show "emeasure (PiP J M P) X = emeasure (P J) X"
+ unfolding X using E
+ by (intro emeasure_PiP assms) simp
+qed (insert `finite J`, auto intro!: prod_algebraI_finite)
+
+lemma emeasure_fun_emb[simp]:
+ assumes L: "J \<noteq> {}" "J \<subseteq> L" "finite L" "L \<subseteq> I" and X: "X \<in> sets (PiM J M)"
+ shows "emeasure (PiP L M P) (prod_emb L M J X) = emeasure (PiP J M P) X"
+ using assms
+ by (subst PiP_finite) (auto simp: PiP_finite finite_subset projective)
+
+end
+
+sublocale projective_family \<subseteq> M: prob_space "M i" for i
+ by (rule prob_space)
+
+end