src/Doc/Isar_Ref/First_Order_Logic.thy
changeset 61580 c49a8ebd30cc
parent 61493 0debd22f0c0e
child 61656 cfabbc083977
--- a/src/Doc/Isar_Ref/First_Order_Logic.thy	Thu Nov 05 00:02:30 2015 +0100
+++ b/src/Doc/Isar_Ref/First_Order_Logic.thy	Thu Nov 05 00:17:13 2015 +0100
@@ -357,10 +357,10 @@
 theorem
   assumes "\<exists>x. \<forall>y. R x y"
   shows "\<forall>y. \<exists>x. R x y"
-proof    -- \<open>\<open>\<forall>\<close> introduction\<close>
-  obtain x where "\<forall>y. R x y" using \<open>\<exists>x. \<forall>y. R x y\<close> ..    -- \<open>\<open>\<exists>\<close> elimination\<close>
-  fix y have "R x y" using \<open>\<forall>y. R x y\<close> ..    -- \<open>\<open>\<forall>\<close> destruction\<close>
-  then show "\<exists>x. R x y" ..    -- \<open>\<open>\<exists>\<close> introduction\<close>
+proof    \<comment> \<open>\<open>\<forall>\<close> introduction\<close>
+  obtain x where "\<forall>y. R x y" using \<open>\<exists>x. \<forall>y. R x y\<close> ..    \<comment> \<open>\<open>\<exists>\<close> elimination\<close>
+  fix y have "R x y" using \<open>\<forall>y. R x y\<close> ..    \<comment> \<open>\<open>\<forall>\<close> destruction\<close>
+  then show "\<exists>x. R x y" ..    \<comment> \<open>\<open>\<exists>\<close> introduction\<close>
 qed