src/HOL/Word/Misc_Typedef.thy
changeset 72515 c7038c397ae3
parent 72514 d8661799afb2
child 72516 17dc99589a91
child 72528 c435a4750636
--- a/src/HOL/Word/Misc_Typedef.thy	Thu Oct 29 09:59:40 2020 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,356 +0,0 @@
-(*
-  Author:     Jeremy Dawson and Gerwin Klein, NICTA
-
-  Consequences of type definition theorems, and of extended type definition.
-*)
-
-section \<open>Type Definition Theorems\<close>
-
-theory Misc_Typedef
-  imports Main Word Bit_Comprehension Bits_Int
-begin
-
-subsection "More lemmas about normal type definitions"
-
-lemma tdD1: "type_definition Rep Abs A \<Longrightarrow> \<forall>x. Rep x \<in> A"
-  and tdD2: "type_definition Rep Abs A \<Longrightarrow> \<forall>x. Abs (Rep x) = x"
-  and tdD3: "type_definition Rep Abs A \<Longrightarrow> \<forall>y. y \<in> A \<longrightarrow> Rep (Abs y) = y"
-  by (auto simp: type_definition_def)
-
-lemma td_nat_int: "type_definition int nat (Collect ((\<le>) 0))"
-  unfolding type_definition_def by auto
-
-context type_definition
-begin
-
-declare Rep [iff] Rep_inverse [simp] Rep_inject [simp]
-
-lemma Abs_eqD: "Abs x = Abs y \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x = y"
-  by (simp add: Abs_inject)
-
-lemma Abs_inverse': "r \<in> A \<Longrightarrow> Abs r = a \<Longrightarrow> Rep a = r"
-  by (safe elim!: Abs_inverse)
-
-lemma Rep_comp_inverse: "Rep \<circ> f = g \<Longrightarrow> Abs \<circ> g = f"
-  using Rep_inverse by auto
-
-lemma Rep_eqD [elim!]: "Rep x = Rep y \<Longrightarrow> x = y"
-  by simp
-
-lemma Rep_inverse': "Rep a = r \<Longrightarrow> Abs r = a"
-  by (safe intro!: Rep_inverse)
-
-lemma comp_Abs_inverse: "f \<circ> Abs = g \<Longrightarrow> g \<circ> Rep = f"
-  using Rep_inverse by auto
-
-lemma set_Rep: "A = range Rep"
-proof (rule set_eqI)
-  show "x \<in> A \<longleftrightarrow> x \<in> range Rep" for x
-    by (auto dest: Abs_inverse [of x, symmetric])
-qed
-
-lemma set_Rep_Abs: "A = range (Rep \<circ> Abs)"
-proof (rule set_eqI)
-  show "x \<in> A \<longleftrightarrow> x \<in> range (Rep \<circ> Abs)" for x
-    by (auto dest: Abs_inverse [of x, symmetric])
-qed
-
-lemma Abs_inj_on: "inj_on Abs A"
-  unfolding inj_on_def
-  by (auto dest: Abs_inject [THEN iffD1])
-
-lemma image: "Abs ` A = UNIV"
-  by (fact Abs_image)
-
-lemmas td_thm = type_definition_axioms
-
-lemma fns1: "Rep \<circ> fa = fr \<circ> Rep \<or> fa \<circ> Abs = Abs \<circ> fr \<Longrightarrow> Abs \<circ> fr \<circ> Rep = fa"
-  by (auto dest: Rep_comp_inverse elim: comp_Abs_inverse simp: o_assoc)
-
-lemmas fns1a = disjI1 [THEN fns1]
-lemmas fns1b = disjI2 [THEN fns1]
-
-lemma fns4: "Rep \<circ> fa \<circ> Abs = fr \<Longrightarrow> Rep \<circ> fa = fr \<circ> Rep \<and> fa \<circ> Abs = Abs \<circ> fr"
-  by auto
-
-end
-
-interpretation nat_int: type_definition int nat "Collect ((\<le>) 0)"
-  by (rule td_nat_int)
-
-declare
-  nat_int.Rep_cases [cases del]
-  nat_int.Abs_cases [cases del]
-  nat_int.Rep_induct [induct del]
-  nat_int.Abs_induct [induct del]
-
-
-subsection "Extended form of type definition predicate"
-
-lemma td_conds:
-  "norm \<circ> norm = norm \<Longrightarrow>
-    fr \<circ> norm = norm \<circ> fr \<longleftrightarrow> norm \<circ> fr \<circ> norm = fr \<circ> norm \<and> norm \<circ> fr \<circ> norm = norm \<circ> fr"
-  apply safe
-    apply (simp_all add: comp_assoc)
-   apply (simp_all add: o_assoc)
-  done
-
-lemma fn_comm_power: "fa \<circ> tr = tr \<circ> fr \<Longrightarrow> fa ^^ n \<circ> tr = tr \<circ> fr ^^ n"
-  apply (rule ext)
-  apply (induct n)
-   apply (auto dest: fun_cong)
-  done
-
-lemmas fn_comm_power' =
-  ext [THEN fn_comm_power, THEN fun_cong, unfolded o_def]
-
-
-locale td_ext = type_definition +
-  fixes norm
-  assumes eq_norm: "\<And>x. Rep (Abs x) = norm x"
-begin
-
-lemma Abs_norm [simp]: "Abs (norm x) = Abs x"
-  using eq_norm [of x] by (auto elim: Rep_inverse')
-
-lemma td_th: "g \<circ> Abs = f \<Longrightarrow> f (Rep x) = g x"
-  by (drule comp_Abs_inverse [symmetric]) simp
-
-lemma eq_norm': "Rep \<circ> Abs = norm"
-  by (auto simp: eq_norm)
-
-lemma norm_Rep [simp]: "norm (Rep x) = Rep x"
-  by (auto simp: eq_norm' intro: td_th)
-
-lemmas td = td_thm
-
-lemma set_iff_norm: "w \<in> A \<longleftrightarrow> w = norm w"
-  by (auto simp: set_Rep_Abs eq_norm' eq_norm [symmetric])
-
-lemma inverse_norm: "Abs n = w \<longleftrightarrow> Rep w = norm n"
-  apply (rule iffI)
-   apply (clarsimp simp add: eq_norm)
-  apply (simp add: eq_norm' [symmetric])
-  done
-
-lemma norm_eq_iff: "norm x = norm y \<longleftrightarrow> Abs x = Abs y"
-  by (simp add: eq_norm' [symmetric])
-
-lemma norm_comps:
-  "Abs \<circ> norm = Abs"
-  "norm \<circ> Rep = Rep"
-  "norm \<circ> norm = norm"
-  by (auto simp: eq_norm' [symmetric] o_def)
-
-lemmas norm_norm [simp] = norm_comps
-
-lemma fns5: "Rep \<circ> fa \<circ> Abs = fr \<Longrightarrow> fr \<circ> norm = fr \<and> norm \<circ> fr = fr"
-  by (fold eq_norm') auto
-
-text \<open>
-  following give conditions for converses to \<open>td_fns1\<close>
-  \<^item> the condition \<open>norm \<circ> fr \<circ> norm = fr \<circ> norm\<close> says that
-    \<open>fr\<close> takes normalised arguments to normalised results
-  \<^item> \<open>norm \<circ> fr \<circ> norm = norm \<circ> fr\<close> says that \<open>fr\<close>
-    takes norm-equivalent arguments to norm-equivalent results
-  \<^item> \<open>fr \<circ> norm = fr\<close> says that \<open>fr\<close>
-    takes norm-equivalent arguments to the same result
-  \<^item> \<open>norm \<circ> fr = fr\<close> says that \<open>fr\<close> takes any argument to a normalised result
-\<close>
-lemma fns2: "Abs \<circ> fr \<circ> Rep = fa \<Longrightarrow> norm \<circ> fr \<circ> norm = fr \<circ> norm \<longleftrightarrow> Rep \<circ> fa = fr \<circ> Rep"
-  apply (fold eq_norm')
-  apply safe
-   prefer 2
-   apply (simp add: o_assoc)
-  apply (rule ext)
-  apply (drule_tac x="Rep x" in fun_cong)
-  apply auto
-  done
-
-lemma fns3: "Abs \<circ> fr \<circ> Rep = fa \<Longrightarrow> norm \<circ> fr \<circ> norm = norm \<circ> fr \<longleftrightarrow> fa \<circ> Abs = Abs \<circ> fr"
-  apply (fold eq_norm')
-  apply safe
-   prefer 2
-   apply (simp add: comp_assoc)
-  apply (rule ext)
-  apply (drule_tac f="a \<circ> b" for a b in fun_cong)
-  apply simp
-  done
-
-lemma fns: "fr \<circ> norm = norm \<circ> fr \<Longrightarrow> fa \<circ> Abs = Abs \<circ> fr \<longleftrightarrow> Rep \<circ> fa = fr \<circ> Rep"
-  apply safe
-   apply (frule fns1b)
-   prefer 2
-   apply (frule fns1a)
-   apply (rule fns3 [THEN iffD1])
-     prefer 3
-     apply (rule fns2 [THEN iffD1])
-       apply (simp_all add: comp_assoc)
-   apply (simp_all add: o_assoc)
-  done
-
-lemma range_norm: "range (Rep \<circ> Abs) = A"
-  by (simp add: set_Rep_Abs)
-
-end
-
-lemmas td_ext_def' =
-  td_ext_def [unfolded type_definition_def td_ext_axioms_def]
-
-
-subsection \<open>Type-definition locale instantiations\<close>
-
-definition uints :: "nat \<Rightarrow> int set"
-  \<comment> \<open>the sets of integers representing the words\<close>
-  where "uints n = range (take_bit n)"
-
-definition sints :: "nat \<Rightarrow> int set"
-  where "sints n = range (signed_take_bit (n - 1))"
-
-lemma uints_num: "uints n = {i. 0 \<le> i \<and> i < 2 ^ n}"
-  by (simp add: uints_def range_bintrunc)
-
-lemma sints_num: "sints n = {i. - (2 ^ (n - 1)) \<le> i \<and> i < 2 ^ (n - 1)}"
-  by (simp add: sints_def range_sbintrunc)
-
-definition unats :: "nat \<Rightarrow> nat set"
-  where "unats n = {i. i < 2 ^ n}"
-
-\<comment> \<open>naturals\<close>
-lemma uints_unats: "uints n = int ` unats n"
-  apply (unfold unats_def uints_num)
-  apply safe
-    apply (rule_tac image_eqI)
-     apply (erule_tac nat_0_le [symmetric])
-  by auto
-
-lemma unats_uints: "unats n = nat ` uints n"
-  by (auto simp: uints_unats image_iff)
-
-lemma td_ext_uint:
-  "td_ext (uint :: 'a word \<Rightarrow> int) word_of_int (uints (LENGTH('a::len)))
-    (\<lambda>w::int. w mod 2 ^ LENGTH('a))"
-  apply (unfold td_ext_def')
-  apply transfer
-  apply (simp add: uints_num take_bit_eq_mod)
-  done
-
-interpretation word_uint:
-  td_ext
-    "uint::'a::len word \<Rightarrow> int"
-    word_of_int
-    "uints (LENGTH('a::len))"
-    "\<lambda>w. w mod 2 ^ LENGTH('a::len)"
-  by (fact td_ext_uint)
-
-lemmas td_uint = word_uint.td_thm
-lemmas int_word_uint = word_uint.eq_norm
-
-lemma td_ext_ubin:
-  "td_ext (uint :: 'a word \<Rightarrow> int) word_of_int (uints (LENGTH('a::len)))
-    (take_bit (LENGTH('a)))"
-  apply standard
-  apply transfer
-  apply simp
-  done
-
-interpretation word_ubin:
-  td_ext
-    "uint::'a::len word \<Rightarrow> int"
-    word_of_int
-    "uints (LENGTH('a::len))"
-    "take_bit (LENGTH('a::len))"
-  by (fact td_ext_ubin)
-
-lemma td_ext_unat [OF refl]:
-  "n = LENGTH('a::len) \<Longrightarrow>
-    td_ext (unat :: 'a word \<Rightarrow> nat) of_nat (unats n) (\<lambda>i. i mod 2 ^ n)"
-  apply (standard; transfer)
-     apply (simp_all add: unats_def take_bit_of_nat take_bit_nat_eq_self_iff
-      flip: take_bit_eq_mod)
-  done
-
-lemmas unat_of_nat = td_ext_unat [THEN td_ext.eq_norm]
-
-interpretation word_unat:
-  td_ext
-    "unat::'a::len word \<Rightarrow> nat"
-    of_nat
-    "unats (LENGTH('a::len))"
-    "\<lambda>i. i mod 2 ^ LENGTH('a::len)"
-  by (rule td_ext_unat)
-
-lemmas td_unat = word_unat.td_thm
-
-lemmas unat_lt2p [iff] = word_unat.Rep [unfolded unats_def mem_Collect_eq]
-
-lemma unat_le: "y \<le> unat z \<Longrightarrow> y \<in> unats (LENGTH('a))"
-  for z :: "'a::len word"
-  apply (unfold unats_def)
-  apply clarsimp
-  apply (rule xtrans, rule unat_lt2p, assumption)
-  done
-
-lemma td_ext_sbin:
-  "td_ext (sint :: 'a word \<Rightarrow> int) word_of_int (sints (LENGTH('a::len)))
-    (signed_take_bit (LENGTH('a) - 1))"
-  by (standard; transfer) (auto simp add: sints_def)
-
-lemma td_ext_sint:
-  "td_ext (sint :: 'a word \<Rightarrow> int) word_of_int (sints (LENGTH('a::len)))
-     (\<lambda>w. (w + 2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) -
-         2 ^ (LENGTH('a) - 1))"
-  using td_ext_sbin [where ?'a = 'a] by (simp add: no_sbintr_alt2)
-
-text \<open>
-  We do \<open>sint\<close> before \<open>sbin\<close>, before \<open>sint\<close> is the user version
-  and interpretations do not produce thm duplicates. I.e.
-  we get the name \<open>word_sint.Rep_eqD\<close>, but not \<open>word_sbin.Req_eqD\<close>,
-  because the latter is the same thm as the former.
-\<close>
-interpretation word_sint:
-  td_ext
-    "sint ::'a::len word \<Rightarrow> int"
-    word_of_int
-    "sints (LENGTH('a::len))"
-    "\<lambda>w. (w + 2^(LENGTH('a::len) - 1)) mod 2^LENGTH('a::len) -
-      2 ^ (LENGTH('a::len) - 1)"
-  by (rule td_ext_sint)
-
-interpretation word_sbin:
-  td_ext
-    "sint ::'a::len word \<Rightarrow> int"
-    word_of_int
-    "sints (LENGTH('a::len))"
-    "signed_take_bit (LENGTH('a::len) - 1)"
-  by (rule td_ext_sbin)
-
-lemmas int_word_sint = td_ext_sint [THEN td_ext.eq_norm]
-
-lemmas td_sint = word_sint.td
-
-lemma uints_mod: "uints n = range (\<lambda>w. w mod 2 ^ n)"
-  by (fact uints_def [unfolded no_bintr_alt1])
-
-lemmas uint_range' = word_uint.Rep [unfolded uints_num mem_Collect_eq]
-lemmas sint_range' = word_sint.Rep [unfolded One_nat_def sints_num mem_Collect_eq]
-
-lemmas bintr_num =
-  word_ubin.norm_eq_iff [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b
-lemmas sbintr_num =
-  word_sbin.norm_eq_iff [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b
-
-lemmas uint_div_alt = word_div_def [THEN trans [OF uint_cong int_word_uint]]
-lemmas uint_mod_alt = word_mod_def [THEN trans [OF uint_cong int_word_uint]]
-
-interpretation test_bit:
-  td_ext
-    "(!!) :: 'a::len word \<Rightarrow> nat \<Rightarrow> bool"
-    set_bits
-    "{f. \<forall>i. f i \<longrightarrow> i < LENGTH('a::len)}"
-    "(\<lambda>h i. h i \<and> i < LENGTH('a::len))"
-  by standard (auto simp add: test_bit_word_eq bit_imp_le_length bit_set_bits_word_iff set_bits_bit_eq)
-
-lemmas td_nth = test_bit.td_thm
-
-end