--- a/src/HOL/Hyperreal/HyperNat.thy Thu Jan 29 16:51:17 2004 +0100
+++ b/src/HOL/Hyperreal/HyperNat.thy Mon Feb 02 12:23:46 2004 +0100
@@ -1,83 +1,1070 @@
(* Title : HyperNat.thy
Author : Jacques D. Fleuriot
Copyright : 1998 University of Cambridge
- Description : Explicit construction of hypernaturals using
- ultrafilters
-*)
+*)
-HyperNat = Star +
+header{*Construction of Hypernaturals using Ultrafilters*}
+
+theory HyperNat = Star:
constdefs
hypnatrel :: "((nat=>nat)*(nat=>nat)) set"
- "hypnatrel == {p. EX X Y. p = ((X::nat=>nat),Y) &
- {n::nat. X(n) = Y(n)} : FreeUltrafilterNat}"
+ "hypnatrel == {p. \<exists>X Y. p = ((X::nat=>nat),Y) &
+ {n::nat. X(n) = Y(n)} \<in> FreeUltrafilterNat}"
-typedef hypnat = "UNIV//hypnatrel" (quotient_def)
+typedef hypnat = "UNIV//hypnatrel"
+ by (auto simp add: quotient_def)
-instance
- hypnat :: {ord, zero, one, plus, times, minus}
+instance hypnat :: ord ..
+instance hypnat :: zero ..
+instance hypnat :: one ..
+instance hypnat :: plus ..
+instance hypnat :: times ..
+instance hypnat :: minus ..
-consts
- whn :: hypnat
+consts whn :: hypnat
constdefs
(* embedding the naturals in the hypernaturals *)
- hypnat_of_nat :: nat => hypnat
+ hypnat_of_nat :: "nat => hypnat"
"hypnat_of_nat m == Abs_hypnat(hypnatrel``{%n::nat. m})"
(* hypernaturals as members of the hyperreals; the set is defined as *)
(* the nonstandard extension of set of naturals embedded in the reals *)
HNat :: "hypreal set"
- "HNat == *s* {n. EX no::nat. n = real no}"
+ "HNat == *s* {n. \<exists>no::nat. n = real no}"
(* the set of infinite hypernatural numbers *)
HNatInfinite :: "hypnat set"
- "HNatInfinite == {n. n ~: Nats}"
+ "HNatInfinite == {n. n \<notin> Nats}"
- (* explicit embedding of the hypernaturals in the hyperreals *)
- hypreal_of_hypnat :: hypnat => hypreal
- "hypreal_of_hypnat N == Abs_hypreal(UN X: Rep_hypnat(N).
+ (* explicit embedding of the hypernaturals in the hyperreals *)
+ hypreal_of_hypnat :: "hypnat => hypreal"
+ "hypreal_of_hypnat N == Abs_hypreal(\<Union>X \<in> Rep_hypnat(N).
hyprel``{%n::nat. real (X n)})"
-
-defs
+
+defs (overloaded)
(** the overloaded constant "Nats" **)
-
+
(* set of naturals embedded in the hyperreals*)
- SNat_def "Nats == {n. EX N. n = hypreal_of_nat N}"
+ SNat_def: "Nats == {n. \<exists>N. n = hypreal_of_nat N}"
(* set of naturals embedded in the hypernaturals*)
- SHNat_def "Nats == {n. EX N. n = hypnat_of_nat N}"
+ SHNat_def: "Nats == {n. \<exists>N. n = hypnat_of_nat N}"
(** hypernatural arithmetic **)
-
- hypnat_zero_def "0 == Abs_hypnat(hypnatrel``{%n::nat. 0})"
- hypnat_one_def "1 == Abs_hypnat(hypnatrel``{%n::nat. 1})"
+
+ hypnat_zero_def: "0 == Abs_hypnat(hypnatrel``{%n::nat. 0})"
+ hypnat_one_def: "1 == Abs_hypnat(hypnatrel``{%n::nat. 1})"
(* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *)
- hypnat_omega_def "whn == Abs_hypnat(hypnatrel``{%n::nat. n})"
-
- hypnat_add_def
- "P + Q == Abs_hypnat(UN X:Rep_hypnat(P). UN Y:Rep_hypnat(Q).
+ hypnat_omega_def: "whn == Abs_hypnat(hypnatrel``{%n::nat. n})"
+
+ hypnat_add_def:
+ "P + Q == Abs_hypnat(\<Union>X \<in> Rep_hypnat(P). \<Union>Y \<in> Rep_hypnat(Q).
hypnatrel``{%n::nat. X n + Y n})"
- hypnat_mult_def
- "P * Q == Abs_hypnat(UN X:Rep_hypnat(P). UN Y:Rep_hypnat(Q).
+ hypnat_mult_def:
+ "P * Q == Abs_hypnat(\<Union>X \<in> Rep_hypnat(P). \<Union>Y \<in> Rep_hypnat(Q).
hypnatrel``{%n::nat. X n * Y n})"
- hypnat_minus_def
- "P - Q == Abs_hypnat(UN X:Rep_hypnat(P). UN Y:Rep_hypnat(Q).
+ hypnat_minus_def:
+ "P - Q == Abs_hypnat(\<Union>X \<in> Rep_hypnat(P). \<Union>Y \<in> Rep_hypnat(Q).
hypnatrel``{%n::nat. X n - Y n})"
- hypnat_less_def
- "P < (Q::hypnat) == EX X Y. X: Rep_hypnat(P) &
- Y: Rep_hypnat(Q) &
- {n::nat. X n < Y n} : FreeUltrafilterNat"
- hypnat_le_def
- "P <= (Q::hypnat) == ~(Q < P)"
+ hypnat_le_def:
+ "P \<le> (Q::hypnat) == \<exists>X Y. X \<in> Rep_hypnat(P) &
+ Y \<in> Rep_hypnat(Q) &
+ {n::nat. X n \<le> Y n} \<in> FreeUltrafilterNat"
-end
+ hypnat_less_def: "(x < (y::hypnat)) == (x \<le> y & x \<noteq> y)"
+subsection{*Properties of @{term hypnatrel}*}
+
+text{*Proving that @{term hypnatrel} is an equivalence relation*}
+
+lemma hypnatrel_iff:
+ "((X,Y) \<in> hypnatrel) = ({n. X n = Y n}: FreeUltrafilterNat)"
+apply (unfold hypnatrel_def, fast)
+done
+
+lemma hypnatrel_refl: "(x,x) \<in> hypnatrel"
+by (unfold hypnatrel_def, auto)
+
+lemma hypnatrel_sym: "(x,y) \<in> hypnatrel ==> (y,x) \<in> hypnatrel"
+by (auto simp add: hypnatrel_def eq_commute)
+
+lemma hypnatrel_trans [rule_format (no_asm)]:
+ "(x,y) \<in> hypnatrel --> (y,z) \<in> hypnatrel --> (x,z) \<in> hypnatrel"
+apply (unfold hypnatrel_def, auto, ultra)
+done
+
+lemma equiv_hypnatrel:
+ "equiv UNIV hypnatrel"
+apply (simp add: equiv_def refl_def sym_def trans_def hypnatrel_refl)
+apply (blast intro: hypnatrel_sym hypnatrel_trans)
+done
+
+(* (hypnatrel `` {x} = hypnatrel `` {y}) = ((x,y) \<in> hypnatrel) *)
+lemmas equiv_hypnatrel_iff =
+ eq_equiv_class_iff [OF equiv_hypnatrel UNIV_I UNIV_I, simp]
+
+lemma hypnatrel_in_hypnat [simp]: "hypnatrel``{x}:hypnat"
+by (unfold hypnat_def hypnatrel_def quotient_def, blast)
+
+lemma inj_on_Abs_hypnat: "inj_on Abs_hypnat hypnat"
+apply (rule inj_on_inverseI)
+apply (erule Abs_hypnat_inverse)
+done
+
+declare inj_on_Abs_hypnat [THEN inj_on_iff, simp]
+ Abs_hypnat_inverse [simp]
+
+declare equiv_hypnatrel [THEN eq_equiv_class_iff, simp]
+
+declare hypnatrel_iff [iff]
+
+
+lemma inj_Rep_hypnat: "inj(Rep_hypnat)"
+apply (rule inj_on_inverseI)
+apply (rule Rep_hypnat_inverse)
+done
+
+lemma lemma_hypnatrel_refl: "x \<in> hypnatrel `` {x}"
+by (simp add: hypnatrel_def)
+
+declare lemma_hypnatrel_refl [simp]
+
+lemma hypnat_empty_not_mem: "{} \<notin> hypnat"
+apply (unfold hypnat_def)
+apply (auto elim!: quotientE equalityCE)
+done
+
+declare hypnat_empty_not_mem [simp]
+
+lemma Rep_hypnat_nonempty: "Rep_hypnat x \<noteq> {}"
+by (cut_tac x = x in Rep_hypnat, auto)
+
+declare Rep_hypnat_nonempty [simp]
+
+subsection{*@{term hypnat_of_nat}:
+ the Injection from @{typ nat} to @{typ hypnat}*}
+
+lemma inj_hypnat_of_nat: "inj(hypnat_of_nat)"
+apply (rule inj_onI)
+apply (unfold hypnat_of_nat_def)
+apply (drule inj_on_Abs_hypnat [THEN inj_onD])
+apply (rule hypnatrel_in_hypnat)+
+apply (drule eq_equiv_class)
+apply (rule equiv_hypnatrel)
+apply (simp_all split: split_if_asm)
+done
+
+lemma eq_Abs_hypnat:
+ "(!!x. z = Abs_hypnat(hypnatrel``{x}) ==> P) ==> P"
+apply (rule_tac x1=z in Rep_hypnat [unfolded hypnat_def, THEN quotientE])
+apply (drule_tac f = Abs_hypnat in arg_cong)
+apply (force simp add: Rep_hypnat_inverse)
+done
+
+subsection{*Hypernat Addition*}
+
+lemma hypnat_add_congruent2:
+ "congruent2 hypnatrel (%X Y. hypnatrel``{%n. X n + Y n})"
+apply (unfold congruent2_def, auto, ultra)
+done
+
+lemma hypnat_add:
+ "Abs_hypnat(hypnatrel``{%n. X n}) + Abs_hypnat(hypnatrel``{%n. Y n}) =
+ Abs_hypnat(hypnatrel``{%n. X n + Y n})"
+by (simp add: hypnat_add_def UN_equiv_class2 [OF equiv_hypnatrel hypnat_add_congruent2])
+
+lemma hypnat_add_commute: "(z::hypnat) + w = w + z"
+apply (rule eq_Abs_hypnat [of z])
+apply (rule eq_Abs_hypnat [of w])
+apply (simp add: add_ac hypnat_add)
+done
+
+lemma hypnat_add_assoc: "((z1::hypnat) + z2) + z3 = z1 + (z2 + z3)"
+apply (rule eq_Abs_hypnat [of z1])
+apply (rule eq_Abs_hypnat [of z2])
+apply (rule eq_Abs_hypnat [of z3])
+apply (simp add: hypnat_add nat_add_assoc)
+done
+
+lemma hypnat_add_zero_left: "(0::hypnat) + z = z"
+apply (rule eq_Abs_hypnat [of z])
+apply (simp add: hypnat_zero_def hypnat_add)
+done
+
+instance hypnat :: plus_ac0
+ by (intro_classes,
+ (assumption |
+ rule hypnat_add_commute hypnat_add_assoc hypnat_add_zero_left)+)
+
+
+subsection{*Subtraction inverse on @{typ hypreal}*}
+
+
+lemma hypnat_minus_congruent2:
+ "congruent2 hypnatrel (%X Y. hypnatrel``{%n. X n - Y n})"
+apply (unfold congruent2_def, auto, ultra)
+done
+
+lemma hypnat_minus:
+ "Abs_hypnat(hypnatrel``{%n. X n}) - Abs_hypnat(hypnatrel``{%n. Y n}) =
+ Abs_hypnat(hypnatrel``{%n. X n - Y n})"
+by (simp add: hypnat_minus_def UN_equiv_class2 [OF equiv_hypnatrel hypnat_minus_congruent2])
+
+lemma hypnat_minus_zero: "z - z = (0::hypnat)"
+apply (rule eq_Abs_hypnat [of z])
+apply (simp add: hypnat_zero_def hypnat_minus)
+done
+
+lemma hypnat_diff_0_eq_0: "(0::hypnat) - n = 0"
+apply (rule eq_Abs_hypnat [of n])
+apply (simp add: hypnat_minus hypnat_zero_def)
+done
+
+declare hypnat_minus_zero [simp] hypnat_diff_0_eq_0 [simp]
+
+lemma hypnat_add_is_0: "(m+n = (0::hypnat)) = (m=0 & n=0)"
+apply (rule eq_Abs_hypnat [of m])
+apply (rule eq_Abs_hypnat [of n])
+apply (auto intro: FreeUltrafilterNat_subset dest: FreeUltrafilterNat_Int simp add: hypnat_zero_def hypnat_add)
+done
+
+declare hypnat_add_is_0 [iff]
+
+lemma hypnat_diff_diff_left: "(i::hypnat) - j - k = i - (j+k)"
+apply (rule eq_Abs_hypnat [of i])
+apply (rule eq_Abs_hypnat [of j])
+apply (rule eq_Abs_hypnat [of k])
+apply (simp add: hypnat_minus hypnat_add diff_diff_left)
+done
+
+lemma hypnat_diff_commute: "(i::hypnat) - j - k = i-k-j"
+by (simp add: hypnat_diff_diff_left hypnat_add_commute)
+
+lemma hypnat_diff_add_inverse: "((n::hypnat) + m) - n = m"
+apply (rule eq_Abs_hypnat [of m])
+apply (rule eq_Abs_hypnat [of n])
+apply (simp add: hypnat_minus hypnat_add)
+done
+declare hypnat_diff_add_inverse [simp]
+
+lemma hypnat_diff_add_inverse2: "((m::hypnat) + n) - n = m"
+apply (rule eq_Abs_hypnat [of m])
+apply (rule eq_Abs_hypnat [of n])
+apply (simp add: hypnat_minus hypnat_add)
+done
+declare hypnat_diff_add_inverse2 [simp]
+
+lemma hypnat_diff_cancel: "((k::hypnat) + m) - (k+n) = m - n"
+apply (rule eq_Abs_hypnat [of k])
+apply (rule eq_Abs_hypnat [of m])
+apply (rule eq_Abs_hypnat [of n])
+apply (simp add: hypnat_minus hypnat_add)
+done
+declare hypnat_diff_cancel [simp]
+
+lemma hypnat_diff_cancel2: "((m::hypnat) + k) - (n+k) = m - n"
+by (simp add: hypnat_add_commute [of _ k])
+declare hypnat_diff_cancel2 [simp]
+
+lemma hypnat_diff_add_0: "(n::hypnat) - (n+m) = (0::hypnat)"
+apply (rule eq_Abs_hypnat [of m])
+apply (rule eq_Abs_hypnat [of n])
+apply (simp add: hypnat_zero_def hypnat_minus hypnat_add)
+done
+declare hypnat_diff_add_0 [simp]
+
+
+subsection{*Hyperreal Multiplication*}
+
+lemma hypnat_mult_congruent2:
+ "congruent2 hypnatrel (%X Y. hypnatrel``{%n. X n * Y n})"
+by (unfold congruent2_def, auto, ultra)
+
+lemma hypnat_mult:
+ "Abs_hypnat(hypnatrel``{%n. X n}) * Abs_hypnat(hypnatrel``{%n. Y n}) =
+ Abs_hypnat(hypnatrel``{%n. X n * Y n})"
+by (simp add: hypnat_mult_def UN_equiv_class2 [OF equiv_hypnatrel hypnat_mult_congruent2])
+
+lemma hypnat_mult_commute: "(z::hypnat) * w = w * z"
+apply (rule eq_Abs_hypnat [of z])
+apply (rule eq_Abs_hypnat [of w])
+apply (simp add: hypnat_mult mult_ac)
+done
+
+lemma hypnat_mult_assoc: "((z1::hypnat) * z2) * z3 = z1 * (z2 * z3)"
+apply (rule eq_Abs_hypnat [of z1])
+apply (rule eq_Abs_hypnat [of z2])
+apply (rule eq_Abs_hypnat [of z3])
+apply (simp add: hypnat_mult mult_assoc)
+done
+
+lemma hypnat_mult_1: "(1::hypnat) * z = z"
+apply (rule eq_Abs_hypnat [of z])
+apply (simp add: hypnat_mult hypnat_one_def)
+done
+
+lemma hypnat_diff_mult_distrib: "((m::hypnat) - n) * k = (m * k) - (n * k)"
+apply (rule eq_Abs_hypnat [of k])
+apply (rule eq_Abs_hypnat [of m])
+apply (rule eq_Abs_hypnat [of n])
+apply (simp add: hypnat_mult hypnat_minus diff_mult_distrib)
+done
+
+lemma hypnat_diff_mult_distrib2: "(k::hypnat) * (m - n) = (k * m) - (k * n)"
+by (simp add: hypnat_diff_mult_distrib hypnat_mult_commute [of k])
+
+lemma hypnat_add_mult_distrib: "((z1::hypnat) + z2) * w = (z1 * w) + (z2 * w)"
+apply (rule eq_Abs_hypnat [of z1])
+apply (rule eq_Abs_hypnat [of z2])
+apply (rule eq_Abs_hypnat [of w])
+apply (simp add: hypnat_mult hypnat_add add_mult_distrib)
+done
+
+lemma hypnat_add_mult_distrib2: "(w::hypnat) * (z1 + z2) = (w * z1) + (w * z2)"
+by (simp add: hypnat_mult_commute [of w] hypnat_add_mult_distrib)
+
+text{*one and zero are distinct*}
+lemma hypnat_zero_not_eq_one: "(0::hypnat) \<noteq> (1::hypnat)"
+by (auto simp add: hypnat_zero_def hypnat_one_def)
+declare hypnat_zero_not_eq_one [THEN not_sym, simp]
+
+
+text{*The Hypernaturals Form A Semiring*}
+instance hypnat :: semiring
+proof
+ fix i j k :: hypnat
+ show "(i + j) + k = i + (j + k)" by (rule hypnat_add_assoc)
+ show "i + j = j + i" by (rule hypnat_add_commute)
+ show "0 + i = i" by simp
+ show "(i * j) * k = i * (j * k)" by (rule hypnat_mult_assoc)
+ show "i * j = j * i" by (rule hypnat_mult_commute)
+ show "1 * i = i" by (rule hypnat_mult_1)
+ show "(i + j) * k = i * k + j * k" by (simp add: hypnat_add_mult_distrib)
+ show "0 \<noteq> (1::hypnat)" by (rule hypnat_zero_not_eq_one)
+ assume "k+i = k+j"
+ hence "(k+i) - k = (k+j) - k" by simp
+ thus "i=j" by simp
+qed
+
+
+subsection{*Properties of The @{text "\<le>"} Relation*}
+
+lemma hypnat_le:
+ "(Abs_hypnat(hypnatrel``{%n. X n}) \<le> Abs_hypnat(hypnatrel``{%n. Y n})) =
+ ({n. X n \<le> Y n} \<in> FreeUltrafilterNat)"
+apply (unfold hypnat_le_def)
+apply (auto intro!: lemma_hypnatrel_refl, ultra)
+done
+
+lemma hypnat_le_refl: "w \<le> (w::hypnat)"
+apply (rule eq_Abs_hypnat [of w])
+apply (simp add: hypnat_le)
+done
+
+lemma hypnat_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::hypnat)"
+apply (rule eq_Abs_hypnat [of i])
+apply (rule eq_Abs_hypnat [of j])
+apply (rule eq_Abs_hypnat [of k])
+apply (simp add: hypnat_le, ultra)
+done
+
+lemma hypnat_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::hypnat)"
+apply (rule eq_Abs_hypnat [of z])
+apply (rule eq_Abs_hypnat [of w])
+apply (simp add: hypnat_le, ultra)
+done
+
+(* Axiom 'order_less_le' of class 'order': *)
+lemma hypnat_less_le: "((w::hypnat) < z) = (w \<le> z & w \<noteq> z)"
+by (simp add: hypnat_less_def)
+
+instance hypnat :: order
+proof qed
+ (assumption |
+ rule hypnat_le_refl hypnat_le_trans hypnat_le_anti_sym hypnat_less_le)+
+
+(* Axiom 'linorder_linear' of class 'linorder': *)
+lemma hypnat_le_linear: "(z::hypnat) \<le> w | w \<le> z"
+apply (rule eq_Abs_hypnat [of z])
+apply (rule eq_Abs_hypnat [of w])
+apply (auto simp add: hypnat_le, ultra)
+done
+
+instance hypnat :: linorder
+ by (intro_classes, rule hypnat_le_linear)
+
+lemma hypnat_add_left_mono: "x \<le> y ==> z + x \<le> z + (y::hypnat)"
+apply (rule eq_Abs_hypnat [of x])
+apply (rule eq_Abs_hypnat [of y])
+apply (rule eq_Abs_hypnat [of z])
+apply (auto simp add: hypnat_le hypnat_add)
+done
+
+lemma hypnat_mult_less_mono2: "[| (0::hypnat)<z; x<y |] ==> z*x<z*y"
+apply (rule eq_Abs_hypnat [of x])
+apply (rule eq_Abs_hypnat [of y])
+apply (rule eq_Abs_hypnat [of z])
+apply (simp add: hypnat_zero_def hypnat_mult linorder_not_le [symmetric])
+apply (auto simp add: hypnat_le, ultra)
+done
+
+
+subsection{*The Hypernaturals Form an Ordered Semiring*}
+
+instance hypnat :: ordered_semiring
+proof
+ fix x y z :: hypnat
+ show "0 < (1::hypnat)"
+ by (simp add: hypnat_zero_def hypnat_one_def linorder_not_le [symmetric],
+ simp add: hypnat_le)
+ show "x \<le> y ==> z + x \<le> z + y"
+ by (rule hypnat_add_left_mono)
+ show "x < y ==> 0 < z ==> z * x < z * y"
+ by (simp add: hypnat_mult_less_mono2)
+qed
+
+lemma hypnat_mult_is_0 [simp]: "(m*n = (0::hypnat)) = (m=0 | n=0)"
+apply (rule eq_Abs_hypnat [of m])
+apply (rule eq_Abs_hypnat [of n])
+apply (auto simp add: hypnat_zero_def hypnat_mult, ultra+)
+done
+
+
+subsection{*Theorems for Ordering*}
+
+lemma hypnat_less:
+ "(Abs_hypnat(hypnatrel``{%n. X n}) < Abs_hypnat(hypnatrel``{%n. Y n})) =
+ ({n. X n < Y n} \<in> FreeUltrafilterNat)"
+apply (auto simp add: hypnat_le linorder_not_le [symmetric])
+apply (ultra+)
+done
+
+lemma hypnat_not_less0 [iff]: "~ n < (0::hypnat)"
+apply (rule eq_Abs_hypnat [of n])
+apply (auto simp add: hypnat_zero_def hypnat_less)
+done
+
+lemma hypnat_less_one [iff]:
+ "(n < (1::hypnat)) = (n=0)"
+apply (rule eq_Abs_hypnat [of n])
+apply (auto simp add: hypnat_zero_def hypnat_one_def hypnat_less)
+done
+
+lemma hypnat_add_diff_inverse: "~ m<n ==> n+(m-n) = (m::hypnat)"
+apply (rule eq_Abs_hypnat [of m])
+apply (rule eq_Abs_hypnat [of n])
+apply (simp add: hypnat_minus hypnat_add hypnat_less split: nat_diff_split, ultra)
+done
+
+lemma hypnat_le_add_diff_inverse [simp]: "n \<le> m ==> n+(m-n) = (m::hypnat)"
+by (simp add: hypnat_add_diff_inverse linorder_not_less [symmetric])
+
+lemma hypnat_le_add_diff_inverse2 [simp]: "n\<le>m ==> (m-n)+n = (m::hypnat)"
+by (simp add: hypnat_le_add_diff_inverse hypnat_add_commute)
+
+declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le]
+
+lemma hypnat_le0 [iff]: "(0::hypnat) \<le> n"
+by (simp add: linorder_not_less [symmetric])
+
+lemma hypnat_add_self_le [simp]: "(x::hypnat) \<le> n + x"
+by (insert add_right_mono [of 0 n x], simp)
+
+lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)"
+by (insert add_strict_left_mono [OF zero_less_one], auto)
+
+lemma hypnat_neq0_conv [iff]: "(n \<noteq> 0) = (0 < (n::hypnat))"
+by (simp add: order_less_le)
+
+lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \<le> n)"
+by (auto simp add: linorder_not_less [symmetric])
+
+lemma hypnat_gt_zero_iff2: "(0 < n) = (\<exists>m. n = m + (1::hypnat))"
+apply safe
+ apply (rule_tac x = "n - (1::hypnat) " in exI)
+ apply (simp add: hypnat_gt_zero_iff)
+apply (insert add_le_less_mono [OF _ zero_less_one, of 0], auto)
+done
+
+subsection{*The Embedding @{term hypnat_of_nat} Preserves Ring and
+ Order Properties*}
+
+lemma hypnat_of_nat_add:
+ "hypnat_of_nat ((z::nat) + w) = hypnat_of_nat z + hypnat_of_nat w"
+by (simp add: hypnat_of_nat_def hypnat_add)
+
+lemma hypnat_of_nat_minus:
+ "hypnat_of_nat ((z::nat) - w) = hypnat_of_nat z - hypnat_of_nat w"
+by (simp add: hypnat_of_nat_def hypnat_minus)
+
+lemma hypnat_of_nat_mult:
+ "hypnat_of_nat (z * w) = hypnat_of_nat z * hypnat_of_nat w"
+by (simp add: hypnat_of_nat_def hypnat_mult)
+
+lemma hypnat_of_nat_less_iff [simp]:
+ "(hypnat_of_nat z < hypnat_of_nat w) = (z < w)"
+by (simp add: hypnat_less hypnat_of_nat_def)
+
+lemma hypnat_of_nat_le_iff [simp]:
+ "(hypnat_of_nat z \<le> hypnat_of_nat w) = (z \<le> w)"
+by (simp add: linorder_not_less [symmetric])
+
+lemma hypnat_of_nat_one: "hypnat_of_nat (Suc 0) = (1::hypnat)"
+by (simp add: hypnat_of_nat_def hypnat_one_def)
+
+lemma hypnat_of_nat_zero: "hypnat_of_nat 0 = 0"
+by (simp add: hypnat_of_nat_def hypnat_zero_def)
+
+lemma hypnat_of_nat_zero_iff: "(hypnat_of_nat n = 0) = (n = 0)"
+by (auto intro: FreeUltrafilterNat_P
+ simp add: hypnat_of_nat_def hypnat_zero_def)
+
+lemma hypnat_of_nat_Suc:
+ "hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)"
+by (auto simp add: hypnat_add hypnat_of_nat_def hypnat_one_def)
+
+
+subsection{*Existence of an Infinite Hypernatural Number*}
+
+lemma hypnat_omega: "hypnatrel``{%n::nat. n} \<in> hypnat"
+by auto
+
+lemma Rep_hypnat_omega: "Rep_hypnat(whn) \<in> hypnat"
+by (simp add: hypnat_omega_def)
+
+text{*Existence of infinite number not corresponding to any natural number
+follows because member @{term FreeUltrafilterNat} is not finite.
+See @{text HyperDef.thy} for similar argument.*}
+
+lemma not_ex_hypnat_of_nat_eq_omega:
+ "~ (\<exists>x. hypnat_of_nat x = whn)"
+apply (simp add: hypnat_omega_def hypnat_of_nat_def)
+apply (auto dest: FreeUltrafilterNat_not_finite)
+done
+
+lemma hypnat_of_nat_not_eq_omega: "hypnat_of_nat x \<noteq> whn"
+by (cut_tac not_ex_hypnat_of_nat_eq_omega, auto)
+declare hypnat_of_nat_not_eq_omega [THEN not_sym, simp]
+
+
+subsection{*Properties of the set @{term Nats} of Embedded Natural Numbers*}
+
+(* Infinite hypernatural not in embedded Nats *)
+lemma SHNAT_omega_not_mem [simp]: "whn \<notin> Nats"
+by (simp add: SHNat_def)
+
+(*-----------------------------------------------------------------------
+ Closure laws for members of (embedded) set standard naturals Nats
+ -----------------------------------------------------------------------*)
+lemma SHNat_add:
+ "!!x::hypnat. [| x \<in> Nats; y \<in> Nats |] ==> x + y \<in> Nats"
+apply (simp add: SHNat_def, safe)
+apply (rule_tac x = "N + Na" in exI)
+apply (simp add: hypnat_of_nat_add)
+done
+
+lemma SHNat_minus:
+ "!!x::hypnat. [| x \<in> Nats; y \<in> Nats |] ==> x - y \<in> Nats"
+apply (simp add: SHNat_def, safe)
+apply (rule_tac x = "N - Na" in exI)
+apply (simp add: hypnat_of_nat_minus)
+done
+
+lemma SHNat_mult:
+ "!!x::hypnat. [| x \<in> Nats; y \<in> Nats |] ==> x * y \<in> Nats"
+apply (simp add: SHNat_def, safe)
+apply (rule_tac x = "N * Na" in exI)
+apply (simp (no_asm) add: hypnat_of_nat_mult)
+done
+
+lemma SHNat_add_cancel: "!!x::hypnat. [| x + y \<in> Nats; y \<in> Nats |] ==> x \<in> Nats"
+by (drule_tac x = "x+y" in SHNat_minus, auto)
+
+lemma SHNat_hypnat_of_nat [simp]: "hypnat_of_nat x \<in> Nats"
+by (simp add: SHNat_def, blast)
+
+lemma SHNat_hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) \<in> Nats"
+by simp
+
+lemma SHNat_hypnat_of_nat_zero [simp]: "hypnat_of_nat 0 \<in> Nats"
+by simp
+
+lemma SHNat_one [simp]: "(1::hypnat) \<in> Nats"
+by (simp add: hypnat_of_nat_one [symmetric])
+
+lemma SHNat_zero [simp]: "(0::hypnat) \<in> Nats"
+by (simp add: hypnat_of_nat_zero [symmetric])
+
+lemma SHNat_iff: "(x \<in> Nats) = (\<exists>y. x = hypnat_of_nat y)"
+by (simp add: SHNat_def)
+
+lemma SHNat_hypnat_of_nat_iff:
+ "Nats = hypnat_of_nat ` (UNIV::nat set)"
+by (auto simp add: SHNat_def)
+
+lemma leSuc_Un_eq: "{n. n \<le> Suc m} = {n. n \<le> m} Un {n. n = Suc m}"
+by (auto simp add: le_Suc_eq)
+
+lemma finite_nat_le_segment: "finite {n::nat. n \<le> m}"
+apply (induct_tac "m")
+apply (auto simp add: leSuc_Un_eq)
+done
+
+lemma lemma_unbounded_set [simp]: "{n::nat. m < n} \<in> FreeUltrafilterNat"
+by (insert finite_nat_le_segment
+ [THEN FreeUltrafilterNat_finite,
+ THEN FreeUltrafilterNat_Compl_mem, of m], ultra)
+
+(*????hyperdef*)
+lemma cofinite_mem_FreeUltrafilterNat: "finite (-X) ==> X \<in> FreeUltrafilterNat"
+apply (drule FreeUltrafilterNat_finite)
+apply (simp add: FreeUltrafilterNat_Compl_iff2 [symmetric])
+done
+
+lemma Compl_Collect_le: "- {n::nat. N \<le> n} = {n. n < N}"
+by (simp add: Collect_neg_eq [symmetric] linorder_not_le)
+
+lemma hypnat_omega_gt_SHNat:
+ "n \<in> Nats ==> n < whn"
+apply (auto simp add: SHNat_def hypnat_of_nat_def hypnat_less_def
+ hypnat_le_def hypnat_omega_def)
+ prefer 2 apply (force dest: FreeUltrafilterNat_not_finite)
+apply (auto intro!: exI)
+apply (rule cofinite_mem_FreeUltrafilterNat)
+apply (simp add: Compl_Collect_le finite_nat_segment)
+done
+
+lemma hypnat_of_nat_less_whn: "hypnat_of_nat n < whn"
+by (insert hypnat_omega_gt_SHNat [of "hypnat_of_nat n"], auto)
+declare hypnat_of_nat_less_whn [simp]
+
+lemma hypnat_of_nat_le_whn: "hypnat_of_nat n \<le> whn"
+by (rule hypnat_of_nat_less_whn [THEN order_less_imp_le])
+declare hypnat_of_nat_le_whn [simp]
+
+lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn"
+by (simp add: hypnat_omega_gt_SHNat)
+
+lemma hypnat_one_less_hypnat_omega [simp]: "(1::hypnat) < whn"
+by (simp add: hypnat_omega_gt_SHNat)
+
+
+subsection{*Infinite Hypernatural Numbers -- @{term HNatInfinite}*}
+
+lemma HNatInfinite_whn: "whn \<in> HNatInfinite"
+by (simp add: HNatInfinite_def SHNat_def)
+declare HNatInfinite_whn [simp]
+
+lemma SHNat_not_HNatInfinite: "x \<in> Nats ==> x \<notin> HNatInfinite"
+by (simp add: HNatInfinite_def)
+
+lemma not_HNatInfinite_SHNat: "x \<notin> HNatInfinite ==> x \<in> Nats"
+by (simp add: HNatInfinite_def)
+
+lemma not_SHNat_HNatInfinite: "x \<notin> Nats ==> x \<in> HNatInfinite"
+by (simp add: HNatInfinite_def)
+
+lemma HNatInfinite_not_SHNat: "x \<in> HNatInfinite ==> x \<notin> Nats"
+by (simp add: HNatInfinite_def)
+
+lemma SHNat_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)"
+by (blast intro!: SHNat_not_HNatInfinite not_HNatInfinite_SHNat)
+
+lemma not_SHNat_HNatInfinite_iff: "(x \<notin> Nats) = (x \<in> HNatInfinite)"
+by (blast intro!: not_SHNat_HNatInfinite HNatInfinite_not_SHNat)
+
+lemma SHNat_HNatInfinite_disj: "x \<in> Nats | x \<in> HNatInfinite"
+by (simp add: SHNat_not_HNatInfinite_iff)
+
+
+subsection{*Alternative Characterization of the Set of Infinite Hypernaturals:
+@{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}*}
+
+(*??delete? similar reasoning in hypnat_omega_gt_SHNat above*)
+lemma HNatInfinite_FreeUltrafilterNat_lemma: "\<forall>N::nat. {n. f n \<noteq> N} \<in> FreeUltrafilterNat
+ ==> {n. N < f n} \<in> FreeUltrafilterNat"
+apply (induct_tac "N")
+apply (drule_tac x = 0 in spec)
+apply (rule ccontr, drule FreeUltrafilterNat_Compl_mem, drule FreeUltrafilterNat_Int, assumption, simp)
+apply (drule_tac x = "Suc n" in spec, ultra)
+done
+
+lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
+apply (unfold HNatInfinite_def SHNat_def hypnat_of_nat_def, safe)
+apply (drule_tac [2] x = "Abs_hypnat (hypnatrel `` {%n. N}) " in bspec)
+apply (rule_tac z = x in eq_Abs_hypnat)
+apply (rule_tac z = n in eq_Abs_hypnat)
+apply (auto simp add: hypnat_less)
+apply (auto elim: HNatInfinite_FreeUltrafilterNat_lemma
+ simp add: FreeUltrafilterNat_Compl_iff1 Collect_neg_eq [symmetric])
+done
+
+subsection{*Alternative Characterization of @{term HNatInfinite} using
+Free Ultrafilter*}
+
+lemma HNatInfinite_FreeUltrafilterNat:
+ "x \<in> HNatInfinite
+ ==> \<exists>X \<in> Rep_hypnat x. \<forall>u. {n. u < X n}: FreeUltrafilterNat"
+apply (rule eq_Abs_hypnat [of x])
+apply (auto simp add: HNatInfinite_iff SHNat_iff hypnat_of_nat_def)
+apply (rule bexI [OF _ lemma_hypnatrel_refl], clarify)
+apply (drule_tac x = "hypnat_of_nat u" in bspec, simp)
+apply (auto simp add: hypnat_of_nat_def hypnat_less)
+done
+
+lemma FreeUltrafilterNat_HNatInfinite:
+ "\<exists>X \<in> Rep_hypnat x. \<forall>u. {n. u < X n}: FreeUltrafilterNat
+ ==> x \<in> HNatInfinite"
+apply (rule eq_Abs_hypnat [of x])
+apply (auto simp add: hypnat_less HNatInfinite_iff SHNat_iff hypnat_of_nat_def)
+apply (drule spec, ultra, auto)
+done
+
+lemma HNatInfinite_FreeUltrafilterNat_iff:
+ "(x \<in> HNatInfinite) =
+ (\<exists>X \<in> Rep_hypnat x. \<forall>u. {n. u < X n}: FreeUltrafilterNat)"
+apply (blast intro: HNatInfinite_FreeUltrafilterNat FreeUltrafilterNat_HNatInfinite)
+done
+
+lemma HNatInfinite_gt_one: "x \<in> HNatInfinite ==> (1::hypnat) < x"
+by (auto simp add: HNatInfinite_iff)
+declare HNatInfinite_gt_one [simp]
+
+lemma zero_not_mem_HNatInfinite: "0 \<notin> HNatInfinite"
+apply (auto simp add: HNatInfinite_iff)
+apply (drule_tac a = " (1::hypnat) " in equals0D)
+apply simp
+done
+declare zero_not_mem_HNatInfinite [simp]
+
+lemma HNatInfinite_not_eq_zero: "x \<in> HNatInfinite ==> 0 < x"
+apply (drule HNatInfinite_gt_one)
+apply (auto simp add: order_less_trans [OF zero_less_one])
+done
+
+lemma HNatInfinite_ge_one [simp]: "x \<in> HNatInfinite ==> (1::hypnat) \<le> x"
+by (blast intro: order_less_imp_le HNatInfinite_gt_one)
+
+
+subsection{*Closure Rules*}
+
+lemma HNatInfinite_add: "[| x \<in> HNatInfinite; y \<in> HNatInfinite |]
+ ==> x + y \<in> HNatInfinite"
+apply (auto simp add: HNatInfinite_iff)
+apply (drule bspec, assumption)
+apply (drule bspec [OF _ SHNat_zero])
+apply (drule add_strict_mono, assumption, simp)
+done
+
+lemma HNatInfinite_SHNat_add: "[| x \<in> HNatInfinite; y \<in> Nats |] ==> x + y \<in> HNatInfinite"
+apply (rule ccontr, drule not_HNatInfinite_SHNat)
+apply (drule_tac x = "x + y" in SHNat_minus)
+apply (auto simp add: SHNat_not_HNatInfinite_iff)
+done
+
+lemma HNatInfinite_SHNat_diff: "[| x \<in> HNatInfinite; y \<in> Nats |] ==> x - y \<in> HNatInfinite"
+apply (rule ccontr, drule not_HNatInfinite_SHNat)
+apply (drule_tac x = "x - y" in SHNat_add)
+apply (subgoal_tac [2] "y \<le> x")
+apply (auto dest!: hypnat_le_add_diff_inverse2 simp add: not_SHNat_HNatInfinite_iff [symmetric])
+apply (auto intro!: order_less_imp_le simp add: not_SHNat_HNatInfinite_iff HNatInfinite_iff)
+done
+
+lemma HNatInfinite_add_one: "x \<in> HNatInfinite ==> x + (1::hypnat) \<in> HNatInfinite"
+by (auto intro: HNatInfinite_SHNat_add)
+
+lemma HNatInfinite_minus_one: "x \<in> HNatInfinite ==> x - (1::hypnat) \<in> HNatInfinite"
+apply (rule ccontr, drule not_HNatInfinite_SHNat)
+apply (drule_tac x = "x - (1::hypnat) " and y = " (1::hypnat) " in SHNat_add)
+apply (auto simp add: not_SHNat_HNatInfinite_iff [symmetric])
+done
+
+lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite ==> \<exists>y. x = y + (1::hypnat)"
+apply (rule_tac x = "x - (1::hypnat) " in exI)
+apply auto
+done
+
+
+subsection{*@{term HNat}: the Hypernaturals Embedded in the Hyperreals*}
+
+text{*Obtained using the nonstandard extension of the naturals*}
+
+lemma HNat_hypreal_of_nat: "hypreal_of_nat N \<in> HNat"
+apply (simp add: HNat_def starset_def hypreal_of_nat_def hypreal_of_real_def, auto, ultra)
+apply (rule_tac x = N in exI, auto)
+done
+declare HNat_hypreal_of_nat [simp]
+
+lemma HNat_add: "[| x \<in> HNat; y \<in> HNat |] ==> x + y \<in> HNat"
+apply (simp add: HNat_def starset_def)
+apply (rule_tac z = x in eq_Abs_hypreal)
+apply (rule_tac z = y in eq_Abs_hypreal)
+apply (auto dest!: bspec intro: lemma_hyprel_refl simp add: hypreal_add, ultra)
+apply (rule_tac x = "no+noa" in exI, auto)
+done
+
+lemma HNat_mult:
+ "[| x \<in> HNat; y \<in> HNat |] ==> x * y \<in> HNat"
+apply (simp add: HNat_def starset_def)
+apply (rule_tac z = x in eq_Abs_hypreal)
+apply (rule_tac z = y in eq_Abs_hypreal)
+apply (auto dest!: bspec intro: lemma_hyprel_refl simp add: hypreal_mult, ultra)
+apply (rule_tac x = "no*noa" in exI, auto)
+done
+
+
+subsection{*Embedding of the Hypernaturals into the Hyperreals*}
+
+(*WARNING: FRAGILE!*)
+lemma lemma_hyprel_FUFN: "(Ya \<in> hyprel ``{%n. f(n)}) =
+ ({n. f n = Ya n} \<in> FreeUltrafilterNat)"
+apply auto
+done
+
+lemma hypreal_of_hypnat:
+ "hypreal_of_hypnat (Abs_hypnat(hypnatrel``{%n. X n})) =
+ Abs_hypreal(hyprel `` {%n. real (X n)})"
+apply (simp add: hypreal_of_hypnat_def)
+apply (rule_tac f = Abs_hypreal in arg_cong)
+apply (auto elim: FreeUltrafilterNat_Int [THEN FreeUltrafilterNat_subset]
+ simp add: lemma_hyprel_FUFN)
+done
+
+lemma inj_hypreal_of_hypnat: "inj(hypreal_of_hypnat)"
+apply (rule inj_onI)
+apply (rule_tac z = x in eq_Abs_hypnat)
+apply (rule_tac z = y in eq_Abs_hypnat)
+apply (auto simp add: hypreal_of_hypnat)
+done
+
+declare inj_hypreal_of_hypnat [THEN inj_eq, simp]
+declare inj_hypnat_of_nat [THEN inj_eq, simp]
+
+lemma hypreal_of_hypnat_zero: "hypreal_of_hypnat 0 = 0"
+by (simp add: hypnat_zero_def hypreal_zero_def hypreal_of_hypnat)
+
+lemma hypreal_of_hypnat_one: "hypreal_of_hypnat (1::hypnat) = 1"
+by (simp add: hypnat_one_def hypreal_one_def hypreal_of_hypnat)
+
+lemma hypreal_of_hypnat_add [simp]:
+ "hypreal_of_hypnat (m + n) = hypreal_of_hypnat m + hypreal_of_hypnat n"
+apply (rule eq_Abs_hypnat [of m])
+apply (rule eq_Abs_hypnat [of n])
+apply (simp add: hypreal_of_hypnat hypreal_add hypnat_add real_of_nat_add)
+done
+
+lemma hypreal_of_hypnat_mult [simp]:
+ "hypreal_of_hypnat (m * n) = hypreal_of_hypnat m * hypreal_of_hypnat n"
+apply (rule eq_Abs_hypnat [of m])
+apply (rule eq_Abs_hypnat [of n])
+apply (simp add: hypreal_of_hypnat hypreal_mult hypnat_mult real_of_nat_mult)
+done
+
+lemma hypreal_of_hypnat_less_iff [simp]:
+ "(hypreal_of_hypnat n < hypreal_of_hypnat m) = (n < m)"
+apply (rule eq_Abs_hypnat [of m])
+apply (rule eq_Abs_hypnat [of n])
+apply (simp add: hypreal_of_hypnat hypreal_less hypnat_less)
+done
+
+lemma hypreal_of_hypnat_eq_zero_iff: "(hypreal_of_hypnat N = 0) = (N = 0)"
+by (simp add: hypreal_of_hypnat_zero [symmetric])
+declare hypreal_of_hypnat_eq_zero_iff [simp]
+
+lemma hypreal_of_hypnat_ge_zero [simp]: "0 \<le> hypreal_of_hypnat n"
+apply (rule eq_Abs_hypnat [of n])
+apply (simp add: hypreal_of_hypnat hypreal_zero_num hypreal_le)
+done
+
+(*????DELETE??*)
+lemma hypnat_eq_zero: "\<forall>n. N \<le> n ==> N = (0::hypnat)"
+apply (drule_tac x = 0 in spec)
+apply (rule_tac z = N in eq_Abs_hypnat)
+apply (auto simp add: hypnat_le hypnat_zero_def)
+done
+
+(*????DELETE??*)
+lemma hypnat_not_all_eq_zero: "~ (\<forall>n. n = (0::hypnat))"
+by auto
+
+(*????DELETE??*)
+lemma hypnat_le_one_eq_one: "n \<noteq> 0 ==> (n \<le> (1::hypnat)) = (n = (1::hypnat))"
+by (auto simp add: order_le_less)
+
+(*WHERE DO THESE BELONG???*)
+lemma HNatInfinite_inverse_Infinitesimal: "n \<in> HNatInfinite ==> inverse (hypreal_of_hypnat n) \<in> Infinitesimal"
+apply (rule eq_Abs_hypnat [of n])
+apply (auto simp add: hypreal_of_hypnat hypreal_inverse HNatInfinite_FreeUltrafilterNat_iff Infinitesimal_FreeUltrafilterNat_iff2)
+apply (rule bexI, rule_tac [2] lemma_hyprel_refl, auto)
+apply (drule_tac x = "m + 1" in spec, ultra)
+done
+declare HNatInfinite_inverse_Infinitesimal [simp]
+
+lemma HNatInfinite_inverse_not_zero: "n \<in> HNatInfinite ==> hypreal_of_hypnat n \<noteq> 0"
+by (simp add: HNatInfinite_not_eq_zero)
+
+
+
+ML
+{*
+val hypnat_of_nat_def = thm"hypnat_of_nat_def";
+val HNat_def = thm"HNat_def";
+val HNatInfinite_def = thm"HNatInfinite_def";
+val hypreal_of_hypnat_def = thm"hypreal_of_hypnat_def";
+val SNat_def = thm"SNat_def";
+val SHNat_def = thm"SHNat_def";
+val hypnat_zero_def = thm"hypnat_zero_def";
+val hypnat_one_def = thm"hypnat_one_def";
+val hypnat_omega_def = thm"hypnat_omega_def";
+
+val hypnatrel_iff = thm "hypnatrel_iff";
+val hypnatrel_refl = thm "hypnatrel_refl";
+val hypnatrel_sym = thm "hypnatrel_sym";
+val hypnatrel_trans = thm "hypnatrel_trans";
+val equiv_hypnatrel = thm "equiv_hypnatrel";
+val equiv_hypnatrel_iff = thms "equiv_hypnatrel_iff";
+val hypnatrel_in_hypnat = thm "hypnatrel_in_hypnat";
+val inj_on_Abs_hypnat = thm "inj_on_Abs_hypnat";
+val inj_Rep_hypnat = thm "inj_Rep_hypnat";
+val lemma_hypnatrel_refl = thm "lemma_hypnatrel_refl";
+val hypnat_empty_not_mem = thm "hypnat_empty_not_mem";
+val Rep_hypnat_nonempty = thm "Rep_hypnat_nonempty";
+val inj_hypnat_of_nat = thm "inj_hypnat_of_nat";
+val eq_Abs_hypnat = thm "eq_Abs_hypnat";
+val hypnat_add_congruent2 = thm "hypnat_add_congruent2";
+val hypnat_add = thm "hypnat_add";
+val hypnat_add_commute = thm "hypnat_add_commute";
+val hypnat_add_assoc = thm "hypnat_add_assoc";
+val hypnat_add_zero_left = thm "hypnat_add_zero_left";
+val hypnat_minus_congruent2 = thm "hypnat_minus_congruent2";
+val hypnat_minus = thm "hypnat_minus";
+val hypnat_minus_zero = thm "hypnat_minus_zero";
+val hypnat_diff_0_eq_0 = thm "hypnat_diff_0_eq_0";
+val hypnat_add_is_0 = thm "hypnat_add_is_0";
+val hypnat_diff_diff_left = thm "hypnat_diff_diff_left";
+val hypnat_diff_commute = thm "hypnat_diff_commute";
+val hypnat_diff_add_inverse = thm "hypnat_diff_add_inverse";
+val hypnat_diff_add_inverse2 = thm "hypnat_diff_add_inverse2";
+val hypnat_diff_cancel = thm "hypnat_diff_cancel";
+val hypnat_diff_cancel2 = thm "hypnat_diff_cancel2";
+val hypnat_diff_add_0 = thm "hypnat_diff_add_0";
+val hypnat_mult_congruent2 = thm "hypnat_mult_congruent2";
+val hypnat_mult = thm "hypnat_mult";
+val hypnat_mult_commute = thm "hypnat_mult_commute";
+val hypnat_mult_assoc = thm "hypnat_mult_assoc";
+val hypnat_mult_1 = thm "hypnat_mult_1";
+val hypnat_diff_mult_distrib = thm "hypnat_diff_mult_distrib";
+val hypnat_diff_mult_distrib2 = thm "hypnat_diff_mult_distrib2";
+val hypnat_add_mult_distrib = thm "hypnat_add_mult_distrib";
+val hypnat_add_mult_distrib2 = thm "hypnat_add_mult_distrib2";
+val hypnat_zero_not_eq_one = thm "hypnat_zero_not_eq_one";
+val hypnat_le = thm "hypnat_le";
+val hypnat_le_refl = thm "hypnat_le_refl";
+val hypnat_le_trans = thm "hypnat_le_trans";
+val hypnat_le_anti_sym = thm "hypnat_le_anti_sym";
+val hypnat_less_le = thm "hypnat_less_le";
+val hypnat_le_linear = thm "hypnat_le_linear";
+val hypnat_add_left_mono = thm "hypnat_add_left_mono";
+val hypnat_mult_less_mono2 = thm "hypnat_mult_less_mono2";
+val hypnat_mult_is_0 = thm "hypnat_mult_is_0";
+val hypnat_less = thm "hypnat_less";
+val hypnat_not_less0 = thm "hypnat_not_less0";
+val hypnat_less_one = thm "hypnat_less_one";
+val hypnat_add_diff_inverse = thm "hypnat_add_diff_inverse";
+val hypnat_le_add_diff_inverse = thm "hypnat_le_add_diff_inverse";
+val hypnat_le_add_diff_inverse2 = thm "hypnat_le_add_diff_inverse2";
+val hypnat_le0 = thm "hypnat_le0";
+val hypnat_add_self_le = thm "hypnat_add_self_le";
+val hypnat_add_one_self_less = thm "hypnat_add_one_self_less";
+val hypnat_neq0_conv = thm "hypnat_neq0_conv";
+val hypnat_gt_zero_iff = thm "hypnat_gt_zero_iff";
+val hypnat_gt_zero_iff2 = thm "hypnat_gt_zero_iff2";
+val hypnat_of_nat_add = thm "hypnat_of_nat_add";
+val hypnat_of_nat_minus = thm "hypnat_of_nat_minus";
+val hypnat_of_nat_mult = thm "hypnat_of_nat_mult";
+val hypnat_of_nat_less_iff = thm "hypnat_of_nat_less_iff";
+val hypnat_of_nat_le_iff = thm "hypnat_of_nat_le_iff";
+val hypnat_of_nat_one = thm "hypnat_of_nat_one";
+val hypnat_of_nat_zero = thm "hypnat_of_nat_zero";
+val hypnat_of_nat_zero_iff = thm "hypnat_of_nat_zero_iff";
+val hypnat_of_nat_Suc = thm "hypnat_of_nat_Suc";
+val hypnat_omega = thm "hypnat_omega";
+val Rep_hypnat_omega = thm "Rep_hypnat_omega";
+val not_ex_hypnat_of_nat_eq_omega = thm "not_ex_hypnat_of_nat_eq_omega";
+val hypnat_of_nat_not_eq_omega = thm "hypnat_of_nat_not_eq_omega";
+val SHNAT_omega_not_mem = thm "SHNAT_omega_not_mem";
+val SHNat_add = thm "SHNat_add";
+val SHNat_minus = thm "SHNat_minus";
+val SHNat_mult = thm "SHNat_mult";
+val SHNat_add_cancel = thm "SHNat_add_cancel";
+val SHNat_hypnat_of_nat = thm "SHNat_hypnat_of_nat";
+val SHNat_hypnat_of_nat_one = thm "SHNat_hypnat_of_nat_one";
+val SHNat_hypnat_of_nat_zero = thm "SHNat_hypnat_of_nat_zero";
+val SHNat_one = thm "SHNat_one";
+val SHNat_zero = thm "SHNat_zero";
+val SHNat_iff = thm "SHNat_iff";
+val SHNat_hypnat_of_nat_iff = thm "SHNat_hypnat_of_nat_iff";
+val leSuc_Un_eq = thm "leSuc_Un_eq";
+val finite_nat_le_segment = thm "finite_nat_le_segment";
+val lemma_unbounded_set = thm "lemma_unbounded_set";
+val cofinite_mem_FreeUltrafilterNat = thm "cofinite_mem_FreeUltrafilterNat";
+val Compl_Collect_le = thm "Compl_Collect_le";
+val hypnat_omega_gt_SHNat = thm "hypnat_omega_gt_SHNat";
+val hypnat_of_nat_less_whn = thm "hypnat_of_nat_less_whn";
+val hypnat_of_nat_le_whn = thm "hypnat_of_nat_le_whn";
+val hypnat_zero_less_hypnat_omega = thm "hypnat_zero_less_hypnat_omega";
+val hypnat_one_less_hypnat_omega = thm "hypnat_one_less_hypnat_omega";
+val HNatInfinite_whn = thm "HNatInfinite_whn";
+val SHNat_not_HNatInfinite = thm "SHNat_not_HNatInfinite";
+val not_HNatInfinite_SHNat = thm "not_HNatInfinite_SHNat";
+val not_SHNat_HNatInfinite = thm "not_SHNat_HNatInfinite";
+val HNatInfinite_not_SHNat = thm "HNatInfinite_not_SHNat";
+val SHNat_not_HNatInfinite_iff = thm "SHNat_not_HNatInfinite_iff";
+val not_SHNat_HNatInfinite_iff = thm "not_SHNat_HNatInfinite_iff";
+val SHNat_HNatInfinite_disj = thm "SHNat_HNatInfinite_disj";
+val HNatInfinite_FreeUltrafilterNat_lemma = thm "HNatInfinite_FreeUltrafilterNat_lemma";
+val HNatInfinite_iff = thm "HNatInfinite_iff";
+val HNatInfinite_FreeUltrafilterNat = thm "HNatInfinite_FreeUltrafilterNat";
+val FreeUltrafilterNat_HNatInfinite = thm "FreeUltrafilterNat_HNatInfinite";
+val HNatInfinite_FreeUltrafilterNat_iff = thm "HNatInfinite_FreeUltrafilterNat_iff";
+val HNatInfinite_gt_one = thm "HNatInfinite_gt_one";
+val zero_not_mem_HNatInfinite = thm "zero_not_mem_HNatInfinite";
+val HNatInfinite_not_eq_zero = thm "HNatInfinite_not_eq_zero";
+val HNatInfinite_ge_one = thm "HNatInfinite_ge_one";
+val HNatInfinite_add = thm "HNatInfinite_add";
+val HNatInfinite_SHNat_add = thm "HNatInfinite_SHNat_add";
+val HNatInfinite_SHNat_diff = thm "HNatInfinite_SHNat_diff";
+val HNatInfinite_add_one = thm "HNatInfinite_add_one";
+val HNatInfinite_minus_one = thm "HNatInfinite_minus_one";
+val HNatInfinite_is_Suc = thm "HNatInfinite_is_Suc";
+val HNat_hypreal_of_nat = thm "HNat_hypreal_of_nat";
+val HNat_add = thm "HNat_add";
+val HNat_mult = thm "HNat_mult";
+val lemma_hyprel_FUFN = thm "lemma_hyprel_FUFN";
+val hypreal_of_hypnat = thm "hypreal_of_hypnat";
+val inj_hypreal_of_hypnat = thm "inj_hypreal_of_hypnat";
+val hypreal_of_hypnat_zero = thm "hypreal_of_hypnat_zero";
+val hypreal_of_hypnat_one = thm "hypreal_of_hypnat_one";
+val hypreal_of_hypnat_add = thm "hypreal_of_hypnat_add";
+val hypreal_of_hypnat_mult = thm "hypreal_of_hypnat_mult";
+val hypreal_of_hypnat_less_iff = thm "hypreal_of_hypnat_less_iff";
+val hypreal_of_hypnat_eq_zero_iff = thm "hypreal_of_hypnat_eq_zero_iff";
+val hypreal_of_hypnat_ge_zero = thm "hypreal_of_hypnat_ge_zero";
+val hypnat_eq_zero = thm "hypnat_eq_zero";
+val hypnat_not_all_eq_zero = thm "hypnat_not_all_eq_zero";
+val hypnat_le_one_eq_one = thm "hypnat_le_one_eq_one";
+val HNatInfinite_inverse_Infinitesimal = thm "HNatInfinite_inverse_Infinitesimal";
+val HNatInfinite_inverse_not_zero = thm "HNatInfinite_inverse_not_zero";
+*}
+
+end