src/HOL/Computational_Algebra/Polynomial.thy
changeset 70113 c8deb8ba6d05
parent 70097 4005298550a6
child 71398 e0237f2eb49d
--- a/src/HOL/Computational_Algebra/Polynomial.thy	Wed Apr 10 13:34:55 2019 +0100
+++ b/src/HOL/Computational_Algebra/Polynomial.thy	Wed Apr 10 21:29:32 2019 +0100
@@ -523,7 +523,7 @@
     also have "a + x * (\<Sum>i\<le>degree p. coeff p i * x ^ i) =
         coeff ?p' 0 * x^0 + (\<Sum>i\<le>degree p. coeff ?p' (Suc i) * x^Suc i)"
       by (simp add: field_simps sum_distrib_left coeff_pCons)
-    also note sum_atMost_Suc_shift[symmetric]
+    also note sum.atMost_Suc_shift[symmetric]
     also note degree_pCons_eq[OF \<open>p \<noteq> 0\<close>, of a, symmetric]
     finally show ?thesis .
   qed
@@ -1000,7 +1000,7 @@
 next
   case (pCons a p n)
   then show ?case
-    by (cases n) (simp_all add: sum_atMost_Suc_shift del: sum.atMost_Suc)
+    by (cases n) (simp_all add: sum.atMost_Suc_shift del: sum.atMost_Suc)
 qed
 
 lemma degree_mult_le: "degree (p * q) \<le> degree p + degree q"