--- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Fri Jul 04 20:07:08 2014 +0200
+++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Fri Jul 04 20:18:47 2014 +0200
@@ -183,13 +183,13 @@
subsection {* Some frequently useful arithmetic lemmas over vectors. *}
instance vec :: (semigroup_mult, finite) semigroup_mult
- by default (vector mult_assoc)
+ by default (vector mult.assoc)
instance vec :: (monoid_mult, finite) monoid_mult
by default vector+
instance vec :: (ab_semigroup_mult, finite) ab_semigroup_mult
- by default (vector mult_commute)
+ by default (vector mult.commute)
instance vec :: (comm_monoid_mult, finite) comm_monoid_mult
by default vector
@@ -254,7 +254,7 @@
instance vec :: (ring_char_0, finite) ring_char_0 ..
lemma vector_smult_assoc: "a *s (b *s x) = ((a::'a::semigroup_mult) * b) *s x"
- by (vector mult_assoc)
+ by (vector mult.assoc)
lemma vector_sadd_rdistrib: "((a::'a::semiring) + b) *s x = a *s x + b *s x"
by (vector field_simps)
lemma vector_add_ldistrib: "(c::'a::semiring) *s (x + y) = c *s x + c *s y"
@@ -380,14 +380,14 @@
done
lemma matrix_mul_assoc: "A ** (B ** C) = (A ** B) ** C"
- apply (vector matrix_matrix_mult_def setsum_right_distrib setsum_left_distrib mult_assoc)
+ apply (vector matrix_matrix_mult_def setsum_right_distrib setsum_left_distrib mult.assoc)
apply (subst setsum.commute)
apply simp
done
lemma matrix_vector_mul_assoc: "A *v (B *v x) = (A ** B) *v x"
apply (vector matrix_matrix_mult_def matrix_vector_mult_def
- setsum_right_distrib setsum_left_distrib mult_assoc)
+ setsum_right_distrib setsum_left_distrib mult.assoc)
apply (subst setsum.commute)
apply simp
done
@@ -399,7 +399,7 @@
lemma matrix_transpose_mul:
"transpose(A ** B) = transpose B ** transpose (A::'a::comm_semiring_1^_^_)"
- by (simp add: matrix_matrix_mult_def transpose_def vec_eq_iff mult_commute)
+ by (simp add: matrix_matrix_mult_def transpose_def vec_eq_iff mult.commute)
lemma matrix_eq:
fixes A B :: "'a::semiring_1 ^ 'n ^ 'm"
@@ -452,7 +452,7 @@
lemma matrix_mult_vsum:
"(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\<lambda>i. (x$i) *s column i A) (UNIV:: 'n set)"
- by (simp add: matrix_vector_mult_def vec_eq_iff column_def mult_commute)
+ by (simp add: matrix_vector_mult_def vec_eq_iff column_def mult.commute)
lemma vector_componentwise:
"(x::'a::ring_1^'n) = (\<chi> j. \<Sum>i\<in>UNIV. (x$i) * (axis i 1 :: 'a^'n) $ j)"
@@ -498,7 +498,7 @@
lemma matrix_works:
assumes lf: "linear f"
shows "matrix f *v x = f (x::real ^ 'n)"
- apply (simp add: matrix_def matrix_vector_mult_def vec_eq_iff mult_commute)
+ apply (simp add: matrix_def matrix_vector_mult_def vec_eq_iff mult.commute)
apply clarify
apply (rule linear_componentwise[OF lf, symmetric])
done
@@ -518,7 +518,7 @@
lemma matrix_vector_column:
"(A::'a::comm_semiring_1^'n^_) *v x = setsum (\<lambda>i. (x$i) *s ((transpose A)$i)) (UNIV:: 'n set)"
- by (simp add: matrix_vector_mult_def transpose_def vec_eq_iff mult_commute)
+ by (simp add: matrix_vector_mult_def transpose_def vec_eq_iff mult.commute)
lemma adjoint_matrix: "adjoint(\<lambda>x. (A::real^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
apply (rule adjoint_unique)