--- a/src/HOL/Divides.thy Sat Dec 02 16:50:53 2017 +0000
+++ b/src/HOL/Divides.thy Sat Dec 02 16:50:53 2017 +0000
@@ -384,7 +384,7 @@
by (cases l rule: int_cases3)
(auto simp del: of_nat_mult of_nat_add
simp add: mod_greater_zero_iff_not_dvd of_nat_mult [symmetric] of_nat_add [symmetric] algebra_simps
- eucl_rel_int_iff divide_int_def modulo_int_def int_dvd_iff)
+ eucl_rel_int_iff divide_int_def modulo_int_def)
next
case (neg n)
then show ?thesis
@@ -392,7 +392,7 @@
by (cases l rule: int_cases3)
(auto simp del: of_nat_mult of_nat_add
simp add: mod_greater_zero_iff_not_dvd of_nat_mult [symmetric] of_nat_add [symmetric] algebra_simps
- eucl_rel_int_iff divide_int_def modulo_int_def int_dvd_iff)
+ eucl_rel_int_iff divide_int_def modulo_int_def)
qed
lemma divmod_int_unique:
@@ -1155,7 +1155,7 @@
with that have "int (m mod q) = int (n mod q) \<longleftrightarrow> int q dvd int (m - n)"
by (simp only: of_nat_mod of_nat_diff)
then show ?thesis
- by (simp add: zdvd_int)
+ by simp
qed
lemma mod_eq_nat1E: