--- a/src/HOL/Hyperreal/Integration.ML Sat Feb 14 02:06:12 2004 +0100
+++ b/src/HOL/Hyperreal/Integration.ML Sun Feb 15 10:46:37 2004 +0100
@@ -4,6 +4,9 @@
Description : Theory of integration (c.f. Harison's HOL development)
*)
+val mult_2 = thm"mult_2";
+val mult_2_right = thm"mult_2_right";
+
Goalw [psize_def] "a = b ==> psize (%n. if n = 0 then a else b) = 0";
by Auto_tac;
qed "partition_zero";
@@ -358,7 +361,7 @@
by (dtac add_strict_mono 1 THEN assume_tac 1);
by (auto_tac (claset(),
HOL_ss addsimps [left_distrib RS sym,
- real_mult_2_right RS sym, mult_less_cancel_right]));
+ mult_2_right RS sym, mult_less_cancel_right]));
by (ALLGOALS(arith_tac));
qed "Integral_unique";
@@ -956,7 +959,7 @@
("c","abs (rsum (D, p) g - k2) * 2")]
add_strict_mono 1 THEN assume_tac 1);
by (auto_tac (claset(),HOL_ss addsimps [rsum_add,left_distrib RS sym,
- real_mult_2_right RS sym,real_mult_less_iff1,CLAIM "(0::real) < 2"]));
+ mult_2_right RS sym,real_mult_less_iff1,CLAIM "(0::real) < 2"]));
by (arith_tac 1);
qed "Integral_add_fun";
@@ -1015,7 +1018,7 @@
by (arith_tac 1);
by (dtac add_strict_mono 1 THEN assume_tac 1);
by (auto_tac (claset(),HOL_ss addsimps [left_distrib RS sym,
- real_mult_2_right RS sym,real_mult_less_iff1,CLAIM "(0::real) < 2"]));
+ mult_2_right RS sym,real_mult_less_iff1,CLAIM "(0::real) < 2"]));
by (arith_tac 1);
qed "Integral_le";
@@ -1037,7 +1040,7 @@
by (thin_tac "0 < e" 1);
by (dtac add_strict_mono 1 THEN assume_tac 1);
by (auto_tac (claset(),HOL_ss addsimps [left_distrib RS sym,
- real_mult_2_right RS sym,real_mult_less_iff1,CLAIM "(0::real) < 2"]));
+ mult_2_right RS sym,real_mult_less_iff1,CLAIM "(0::real) < 2"]));
by (arith_tac 1);
qed "Integral_imp_Cauchy";