--- a/src/HOL/Library/Executable_Set.thy Mon Mar 17 22:34:25 2008 +0100
+++ b/src/HOL/Library/Executable_Set.thy Mon Mar 17 22:34:26 2008 +0100
@@ -99,7 +99,7 @@
by pat_completeness auto
termination by lexicographic_order
-lemmas unionl_def = unionl.simps(2)
+lemmas unionl_eq = unionl.simps(2)
function intersect :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
where
@@ -109,7 +109,7 @@
by pat_completeness auto
termination by lexicographic_order
-lemmas intersect_def = intersect.simps(3)
+lemmas intersect_eq = intersect.simps(3)
function subtract :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
where
@@ -119,7 +119,7 @@
by pat_completeness auto
termination by lexicographic_order
-lemmas subtract_def = subtract.simps(3)
+lemmas subtract_eq = subtract.simps(3)
function map_distinct :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list"
where
@@ -128,7 +128,7 @@
by pat_completeness auto
termination by lexicographic_order
-lemmas map_distinct_def = map_distinct.simps(2)
+lemmas map_distinct_eq = map_distinct.simps(2)
function unions :: "'a list list \<Rightarrow> 'a list"
where
@@ -137,7 +137,7 @@
by pat_completeness auto
termination by lexicographic_order
-lemmas unions_def = unions.simps(2)
+lemmas unions_eq = unions.simps(2)
consts intersects :: "'a list list \<Rightarrow> 'a list"
primrec
@@ -169,12 +169,12 @@
lemma iso_union:
"set (unionl xs ys) = set xs \<union> set ys"
- unfolding unionl_def
+ unfolding unionl_eq
by (induct xs arbitrary: ys) (simp_all add: iso_insert)
lemma iso_intersect:
"set (intersect xs ys) = set xs \<inter> set ys"
- unfolding intersect_def Int_def by (simp add: Int_def iso_member) auto
+ unfolding intersect_eq Int_def by (simp add: Int_def iso_member) auto
definition
subtract' :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
@@ -185,16 +185,16 @@
assumes distnct: "distinct ys"
shows "set (subtract' ys xs) = set ys - set xs"
and "distinct (subtract' ys xs)"
- unfolding subtract'_def flip_def subtract_def
+ unfolding subtract'_def flip_def subtract_eq
using distnct by (induct xs arbitrary: ys) auto
lemma iso_map_distinct:
"set (map_distinct f xs) = image f (set xs)"
- unfolding map_distinct_def by (induct xs) (simp_all add: iso_insert)
+ unfolding map_distinct_eq by (induct xs) (simp_all add: iso_insert)
lemma iso_unions:
"set (unions xss) = \<Union> set (map set xss)"
- unfolding unions_def
+ unfolding unions_eq
proof (induct xss)
case Nil show ?case by simp
next