src/HOL/Number_Theory/Euclidean_Algorithm.thy
changeset 63040 eb4ddd18d635
parent 62457 a3c7bd201da7
child 63167 0909deb8059b
--- a/src/HOL/Number_Theory/Euclidean_Algorithm.thy	Sun Apr 24 21:31:14 2016 +0200
+++ b/src/HOL/Number_Theory/Euclidean_Algorithm.thy	Mon Apr 25 16:09:26 2016 +0200
@@ -159,8 +159,8 @@
   next
     case True
     then obtain l\<^sub>0 where l\<^sub>0_props: "l\<^sub>0 \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l\<^sub>0)" by blast
-    def n \<equiv> "LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n"
-    def l \<equiv> "SOME l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n"
+    define n where "n = (LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n)"
+    define l where "l = (SOME l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n)"
     have "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n"
       apply (subst n_def)
       apply (rule LeastI[of _ "euclidean_size l\<^sub>0"])