src/HOL/Library/Char_nat.thy
changeset 22799 ed7d53db2170
child 23394 474ff28210c0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Char_nat.thy	Thu Apr 26 13:32:59 2007 +0200
@@ -0,0 +1,202 @@
+(*  Title:      HOL/Library/Char_nat.thy
+    ID:         $Id$
+    Author:     Norbert Voelker, Florian Haftmann
+*)
+
+header {* Mapping between characters and natural numbers *}
+
+theory Char_nat
+imports List
+begin
+
+text {* Conversions between nibbles and natural numbers in [0..15]. *}
+
+fun
+  nat_of_nibble :: "nibble \<Rightarrow> nat" where
+  "nat_of_nibble Nibble0 = 0"
+  | "nat_of_nibble Nibble1 = 1"
+  | "nat_of_nibble Nibble2 = 2"
+  | "nat_of_nibble Nibble3 = 3"
+  | "nat_of_nibble Nibble4 = 4"
+  | "nat_of_nibble Nibble5 = 5"
+  | "nat_of_nibble Nibble6 = 6"
+  | "nat_of_nibble Nibble7 = 7"
+  | "nat_of_nibble Nibble8 = 8"
+  | "nat_of_nibble Nibble9 = 9"
+  | "nat_of_nibble NibbleA = 10"
+  | "nat_of_nibble NibbleB = 11"
+  | "nat_of_nibble NibbleC = 12"
+  | "nat_of_nibble NibbleD = 13"
+  | "nat_of_nibble NibbleE = 14"
+  | "nat_of_nibble NibbleF = 15"
+
+definition
+  nibble_of_nat :: "nat \<Rightarrow> nibble" where
+  "nibble_of_nat x = (let y = x mod 16 in
+    if y = 0 then Nibble0 else
+    if y = 1 then Nibble1 else
+    if y = 2 then Nibble2 else
+    if y = 3 then Nibble3 else
+    if y = 4 then Nibble4 else
+    if y = 5 then Nibble5 else
+    if y = 6 then Nibble6 else
+    if y = 7 then Nibble7 else
+    if y = 8 then Nibble8 else
+    if y = 9 then Nibble9 else
+    if y = 10 then NibbleA else
+    if y = 11 then NibbleB else
+    if y = 12 then NibbleC else
+    if y = 13 then NibbleD else
+    if y = 14 then NibbleE else
+    NibbleF)"
+
+lemma nibble_of_nat_norm:
+  "nibble_of_nat (n mod 16) = nibble_of_nat n"
+  unfolding nibble_of_nat_def Let_def by auto
+
+lemmas [code func] = nibble_of_nat_norm [symmetric]
+
+lemma nibble_of_nat_simps [simp]:
+  "nibble_of_nat  0 = Nibble0"
+  "nibble_of_nat  1 = Nibble1"
+  "nibble_of_nat  2 = Nibble2"
+  "nibble_of_nat  3 = Nibble3"
+  "nibble_of_nat  4 = Nibble4"
+  "nibble_of_nat  5 = Nibble5"
+  "nibble_of_nat  6 = Nibble6"
+  "nibble_of_nat  7 = Nibble7"
+  "nibble_of_nat  8 = Nibble8"
+  "nibble_of_nat  9 = Nibble9"
+  "nibble_of_nat 10 = NibbleA"
+  "nibble_of_nat 11 = NibbleB"
+  "nibble_of_nat 12 = NibbleC"
+  "nibble_of_nat 13 = NibbleD"
+  "nibble_of_nat 14 = NibbleE"
+  "nibble_of_nat 15 = NibbleF"
+  unfolding nibble_of_nat_def Let_def by auto
+
+lemmas nibble_of_nat_code [code func] = nibble_of_nat_simps
+  [simplified nat_number Let_def not_neg_number_of_Pls neg_number_of_BIT if_False add_0 add_Suc]
+
+lemma nibble_of_nat_of_nibble: "nibble_of_nat (nat_of_nibble n) = n"
+  by (cases n) (simp_all only: nat_of_nibble.simps nibble_of_nat_simps)
+
+lemma nat_of_nibble_of_nat: "nat_of_nibble (nibble_of_nat n) = n mod 16"
+proof -
+  have nibble_nat_enum: "n mod 16 \<in> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}"
+  proof -
+    have set_unfold: "\<And>n. {0..Suc n} = insert (Suc n) {0..n}" by auto
+    have "(n\<Colon>nat) mod 16 \<in> {0..Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc
+      (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))))))}" by simp
+    from this [simplified set_unfold atLeastAtMost_singleton]
+    show ?thesis by auto
+  qed
+  then show ?thesis unfolding nibble_of_nat_def Let_def
+  by auto
+qed
+
+lemma inj_nat_of_nibble: "inj nat_of_nibble"
+  by (rule inj_on_inverseI) (rule nibble_of_nat_of_nibble)
+
+lemma nat_of_nibble_eq: "nat_of_nibble n = nat_of_nibble m \<longleftrightarrow> n = m"
+  by (rule inj_eq) (rule inj_nat_of_nibble)
+
+lemma nat_of_nibble_less_16: "nat_of_nibble n < 16"
+  by (cases n) auto
+
+lemma nat_of_nibble_div_16: "nat_of_nibble n div 16 = 0"
+  by (cases n) auto
+
+
+text {* Conversion between chars and nats. *}
+
+definition
+  nibble_pair_of_nat :: "nat \<Rightarrow> nibble \<times> nibble"
+where
+  "nibble_pair_of_nat n = (nibble_of_nat (n div 16), nibble_of_nat (n mod 16))"
+
+lemma nibble_of_pair [code func]:
+  "nibble_pair_of_nat n = (nibble_of_nat (n div 16), nibble_of_nat n)"
+  unfolding nibble_of_nat_norm [of n, symmetric] nibble_pair_of_nat_def ..
+
+fun
+  nat_of_char :: "char \<Rightarrow> nat" where
+  "nat_of_char (Char n m) = nat_of_nibble n * 16 + nat_of_nibble m"
+
+lemmas [simp del] = nat_of_char.simps
+
+definition
+  char_of_nat :: "nat \<Rightarrow> char" where
+  char_of_nat_def: "char_of_nat n = split Char (nibble_pair_of_nat n)"
+
+lemma Char_char_of_nat:
+  "Char n m = char_of_nat (nat_of_nibble n * 16 + nat_of_nibble m)"
+  unfolding char_of_nat_def Let_def nibble_pair_of_nat_def
+  by (auto simp add: div_add1_eq mod_add1_eq nat_of_nibble_div_16 nibble_of_nat_norm nibble_of_nat_of_nibble)
+
+lemma char_of_nat_of_char:
+  "char_of_nat (nat_of_char c) = c"
+  by (cases c) (simp add: nat_of_char.simps, simp add: Char_char_of_nat)
+
+lemma nat_of_char_of_nat:
+  "nat_of_char (char_of_nat n) = n mod 256"
+proof -
+  from mod_div_equality [of n, symmetric, of 16]
+  have mod_mult_self3: "\<And>m k n \<Colon> nat. (k * n + m) mod n = m mod n"
+  proof -
+    fix m k n :: nat
+    show "(k * n + m) mod n = m mod n"
+    by (simp only: mod_mult_self1 [symmetric, of m n k] add_commute)
+  qed
+  from mod_div_decomp [of n 256] obtain k l where n: "n = k * 256 + l"
+    and k: "k = n div 256" and l: "l = n mod 256" by blast
+  have 16: "(0::nat) < 16" by auto
+  have 256: "(256 :: nat) = 16 * 16" by auto
+  have l_256: "l mod 256 = l" using l by auto
+  have l_div_256: "l div 16 * 16 mod 256 = l div 16 * 16"
+    using l by auto
+  have aux2: "(k * 256 mod 16 + l mod 16) div 16 = 0"
+    unfolding 256 mult_assoc [symmetric] mod_mult_self_is_0 by simp
+  have aux3: "(k * 256 + l) div 16 = k * 16 + l div 16"
+    unfolding div_add1_eq [of "k * 256" l 16] aux2 256
+      mult_assoc [symmetric] div_mult_self_is_m [OF 16] by simp
+  have aux4: "(k * 256 + l) mod 16 = l mod 16"
+    unfolding 256 mult_assoc [symmetric] mod_mult_self3 ..
+  show ?thesis
+  by (simp add: nat_of_char.simps char_of_nat_def nibble_of_pair nat_of_nibble_of_nat mod_mult_distrib
+    n aux3 mod_mult_self3 l_256 aux4 mod_add1_eq [of "256 * k"] l_div_256)
+qed
+
+lemma nibble_pair_of_nat_char:
+  "nibble_pair_of_nat (nat_of_char (Char n m)) = (n, m)"
+proof -
+  have nat_of_nibble_256:
+    "\<And>n m. (nat_of_nibble n * 16 + nat_of_nibble m) mod 256 = nat_of_nibble n * 16 + nat_of_nibble m"
+  proof -
+    fix n m
+    have nat_of_nibble_less_eq_15: "\<And>n. nat_of_nibble n \<le> 15"
+    using Suc_leI [OF nat_of_nibble_less_16] by (auto simp add: nat_number)
+    have less_eq_240: "nat_of_nibble n * 16 \<le> 240" using nat_of_nibble_less_eq_15 by auto
+    have "nat_of_nibble n * 16 + nat_of_nibble m \<le> 240 + 15"
+    by (rule add_le_mono [of _ 240 _ 15]) (auto intro: nat_of_nibble_less_eq_15 less_eq_240)
+    then have "nat_of_nibble n * 16 + nat_of_nibble m < 256" (is "?rhs < _") by auto
+    then show "?rhs mod 256 = ?rhs" by auto
+  qed
+  show ?thesis
+  unfolding nibble_pair_of_nat_def Char_char_of_nat nat_of_char_of_nat nat_of_nibble_256
+  by (simp add: add_commute nat_of_nibble_div_16 nibble_of_nat_norm nibble_of_nat_of_nibble)
+qed
+
+
+text {* Code generator setup *}
+
+code_modulename SML
+  Char_nat List
+
+code_modulename OCaml
+  Char_nat List
+
+code_modulename Haskell
+  Char_nat List
+
+end
\ No newline at end of file