--- a/src/HOL/HOLCF/Library/Stream.thy Tue Aug 02 07:36:58 2011 -0700
+++ b/src/HOL/HOLCF/Library/Stream.thy Tue Aug 02 08:28:34 2011 -0700
@@ -329,10 +329,10 @@
lemma slen_empty [simp]: "#\<bottom> = 0"
by (simp add: slen_def stream.finite_def zero_enat_def Least_equality)
-lemma slen_scons [simp]: "x ~= \<bottom> ==> #(x&&xs) = iSuc (#xs)"
+lemma slen_scons [simp]: "x ~= \<bottom> ==> #(x&&xs) = eSuc (#xs)"
apply (case_tac "stream_finite (x && xs)")
apply (simp add: slen_def, auto)
-apply (simp add: stream.finite_def, auto simp add: iSuc_enat)
+apply (simp add: stream.finite_def, auto simp add: eSuc_enat)
apply (rule Least_Suc2, auto)
(*apply (drule sym)*)
(*apply (drule sym scons_eq_UU [THEN iffD1],simp)*)
@@ -341,7 +341,7 @@
by (drule stream_finite_lemma1,auto)
lemma slen_less_1_eq: "(#x < enat (Suc 0)) = (x = \<bottom>)"
-by (cases x, auto simp add: enat_0 iSuc_enat[THEN sym])
+by (cases x, auto simp add: enat_0 eSuc_enat[THEN sym])
lemma slen_empty_eq: "(#x = 0) = (x = \<bottom>)"
by (cases x, auto)
@@ -353,7 +353,7 @@
apply (case_tac "#y") apply simp_all
done
-lemma slen_iSuc: "#x = iSuc n --> (? a y. x = a&&y & a ~= \<bottom> & #y = n)"
+lemma slen_eSuc: "#x = eSuc n --> (? a y. x = a&&y & a ~= \<bottom> & #y = n)"
by (cases x, auto)
lemma slen_stream_take_finite [simp]: "#(stream_take n$s) ~= \<infinity>"
@@ -362,15 +362,15 @@
lemma slen_scons_eq_rev: "(#x < enat (Suc (Suc n))) = (!a y. x ~= a && y | a = \<bottom> | #y < enat (Suc n))"
apply (cases x, auto)
apply (simp add: zero_enat_def)
- apply (case_tac "#stream") apply (simp_all add: iSuc_enat)
- apply (case_tac "#stream") apply (simp_all add: iSuc_enat)
+ apply (case_tac "#stream") apply (simp_all add: eSuc_enat)
+ apply (case_tac "#stream") apply (simp_all add: eSuc_enat)
done
lemma slen_take_lemma4 [rule_format]:
"!s. stream_take n$s ~= s --> #(stream_take n$s) = enat n"
apply (induct n, auto simp add: enat_0)
apply (case_tac "s=UU", simp)
-by (drule stream_exhaust_eq [THEN iffD1], auto simp add: iSuc_enat)
+by (drule stream_exhaust_eq [THEN iffD1], auto simp add: eSuc_enat)
(*
lemma stream_take_idempotent [simp]:
@@ -398,7 +398,7 @@
apply (case_tac "x=UU", simp)
apply (drule stream_exhaust_eq [THEN iffD1], clarsimp)
apply (erule_tac x="y" in allE, auto)
-apply (simp_all add: not_less iSuc_enat)
+apply (simp_all add: not_less eSuc_enat)
apply (case_tac "#y") apply simp_all
apply (case_tac "x=UU", simp)
apply (drule stream_exhaust_eq [THEN iffD1], clarsimp)
@@ -448,7 +448,7 @@
apply (case_tac "x=UU", auto simp add: zero_enat_def)
apply (drule stream_exhaust_eq [THEN iffD1], auto)
apply (erule_tac x="y" in allE, auto)
-apply (simp add: not_le) apply (case_tac "#y") apply (simp_all add: iSuc_enat)
+apply (simp add: not_le) apply (case_tac "#y") apply (simp_all add: eSuc_enat)
by (simp add: iterate_lemma)
lemma slen_take_lemma3 [rule_format]:
@@ -478,7 +478,7 @@
apply (subgoal_tac "stream_take n$s ~=s")
apply (insert slen_take_lemma4 [of n s],auto)
apply (cases s, simp)
-by (simp add: slen_take_lemma4 iSuc_enat)
+by (simp add: slen_take_lemma4 eSuc_enat)
(* ----------------------------------------------------------------------- *)
(* theorems about smap *)
@@ -593,12 +593,12 @@
apply (erule_tac x="k" in allE)
apply (erule_tac x="y" in allE,auto)
apply (erule_tac x="THE p. Suc p = t" in allE,auto)
- apply (simp add: iSuc_def split: enat.splits)
- apply (simp add: iSuc_def split: enat.splits)
+ apply (simp add: eSuc_def split: enat.splits)
+ apply (simp add: eSuc_def split: enat.splits)
apply (simp only: the_equality)
- apply (simp add: iSuc_def split: enat.splits)
+ apply (simp add: eSuc_def split: enat.splits)
apply force
-apply (simp add: iSuc_def split: enat.splits)
+apply (simp add: eSuc_def split: enat.splits)
done
lemma take_i_rt_len:
@@ -696,7 +696,7 @@
by auto
lemma singleton_sconc [rule_format, simp]: "x~=UU --> (x && UU) ooo y = x && y"
-apply (simp add: sconc_def zero_enat_def iSuc_def split: enat.splits, auto)
+apply (simp add: sconc_def zero_enat_def eSuc_def split: enat.splits, auto)
apply (rule someI2_ex,auto)
apply (rule_tac x="x && y" in exI,auto)
apply (simp add: i_rt_Suc_forw)
@@ -709,7 +709,7 @@
apply (rule stream_finite_ind [of x],auto)
apply (simp add: stream.finite_def)
apply (drule slen_take_lemma1,blast)
- apply (simp_all add: zero_enat_def iSuc_def split: enat.splits)
+ apply (simp_all add: zero_enat_def eSuc_def split: enat.splits)
apply (erule_tac x="y" in allE,auto)
by (rule_tac x="a && w" in exI,auto)
@@ -743,7 +743,7 @@
lemma scons_sconc [rule_format,simp]: "a~=UU --> (a && x) ooo y = a && x ooo y"
apply (cases "#x",auto)
- apply (simp add: sconc_def iSuc_enat)
+ apply (simp add: sconc_def eSuc_enat)
apply (rule someI2_ex)
apply (drule ex_sconc, simp)
apply (rule someI2_ex, auto)
@@ -870,9 +870,9 @@
lemma sconc_finite: "(#x~=\<infinity> & #y~=\<infinity>) = (#(x ooo y)~=\<infinity>)"
apply auto
- apply (metis not_Infty_eq slen_sconc_finite1)
- apply (metis not_Infty_eq slen_sconc_infinite1)
-apply (metis not_Infty_eq slen_sconc_infinite2)
+ apply (metis not_infinity_eq slen_sconc_finite1)
+ apply (metis not_infinity_eq slen_sconc_infinite1)
+apply (metis not_infinity_eq slen_sconc_infinite2)
done
(* ----------------------------------------------------------------------- *)
@@ -956,7 +956,7 @@
defer 1
apply (simp add: constr_sconc_def del: scons_sconc)
apply (case_tac "#s")
- apply (simp add: iSuc_enat)
+ apply (simp add: eSuc_enat)
apply (case_tac "a=UU",auto simp del: scons_sconc)
apply (simp)
apply (simp add: sconc_def)