src/HOL/ex/Quickcheck_Examples.thy
changeset 46585 f462e49eaf11
parent 46584 a935175fe6b6
child 46586 abbec6fa25c8
--- a/src/HOL/ex/Quickcheck_Examples.thy	Tue Feb 21 23:25:36 2012 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,541 +0,0 @@
-(*  Title:      HOL/ex/Quickcheck_Examples.thy
-    Author:     Stefan Berghofer, Lukas Bulwahn
-    Copyright   2004 - 2010 TU Muenchen
-*)
-
-header {* Examples for the 'quickcheck' command *}
-
-theory Quickcheck_Examples
-imports Complex_Main "~~/src/HOL/Library/Dlist" "~~/src/HOL/Library/Multiset"
-begin
-
-text {*
-The 'quickcheck' command allows to find counterexamples by evaluating
-formulae.
-Currently, there are two different exploration schemes:
-- random testing: this is incomplete, but explores the search space faster.
-- exhaustive testing: this is complete, but increasing the depth leads to
-  exponentially many assignments.
-
-quickcheck can handle quantifiers on finite universes.
-
-*}
-
-declare [[quickcheck_timeout = 3600]]
-
-subsection {* Lists *}
-
-theorem "map g (map f xs) = map (g o f) xs"
-  quickcheck[random, expect = no_counterexample]
-  quickcheck[exhaustive, size = 3, expect = no_counterexample]
-  oops
-
-theorem "map g (map f xs) = map (f o g) xs"
-  quickcheck[random, expect = counterexample]
-  quickcheck[exhaustive, expect = counterexample]
-  oops
-
-theorem "rev (xs @ ys) = rev ys @ rev xs"
-  quickcheck[random, expect = no_counterexample]
-  quickcheck[exhaustive, expect = no_counterexample]
-  quickcheck[exhaustive, size = 1000, timeout = 0.1]
-  oops
-
-theorem "rev (xs @ ys) = rev xs @ rev ys"
-  quickcheck[random, expect = counterexample]
-  quickcheck[exhaustive, expect = counterexample]
-  oops
-
-theorem "rev (rev xs) = xs"
-  quickcheck[random, expect = no_counterexample]
-  quickcheck[exhaustive, expect = no_counterexample]
-  oops
-
-theorem "rev xs = xs"
-  quickcheck[tester = random, finite_types = true, report = false, expect = counterexample]
-  quickcheck[tester = random, finite_types = false, report = false, expect = counterexample]
-  quickcheck[tester = random, finite_types = true, report = true, expect = counterexample]
-  quickcheck[tester = random, finite_types = false, report = true, expect = counterexample]
-  quickcheck[tester = exhaustive, finite_types = true, expect = counterexample]
-  quickcheck[tester = exhaustive, finite_types = false, expect = counterexample]
-oops
-
-
-text {* An example involving functions inside other data structures *}
-
-primrec app :: "('a \<Rightarrow> 'a) list \<Rightarrow> 'a \<Rightarrow> 'a" where
-  "app [] x = x"
-  | "app (f # fs) x = app fs (f x)"
-
-lemma "app (fs @ gs) x = app gs (app fs x)"
-  quickcheck[random, expect = no_counterexample]
-  quickcheck[exhaustive, size = 4, expect = no_counterexample]
-  by (induct fs arbitrary: x) simp_all
-
-lemma "app (fs @ gs) x = app fs (app gs x)"
-  quickcheck[random, expect = counterexample]
-  quickcheck[exhaustive, expect = counterexample]
-  oops
-
-primrec occurs :: "'a \<Rightarrow> 'a list \<Rightarrow> nat" where
-  "occurs a [] = 0"
-  | "occurs a (x#xs) = (if (x=a) then Suc(occurs a xs) else occurs a xs)"
-
-primrec del1 :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
-  "del1 a [] = []"
-  | "del1 a (x#xs) = (if (x=a) then xs else (x#del1 a xs))"
-
-text {* A lemma, you'd think to be true from our experience with delAll *}
-lemma "Suc (occurs a (del1 a xs)) = occurs a xs"
-  -- {* Wrong. Precondition needed.*}
-  quickcheck[random, expect = counterexample]
-  quickcheck[exhaustive, expect = counterexample]
-  oops
-
-lemma "xs ~= [] \<longrightarrow> Suc (occurs a (del1 a xs)) = occurs a xs"
-  quickcheck[random, expect = counterexample]
-  quickcheck[exhaustive, expect = counterexample]
-    -- {* Also wrong.*}
-  oops
-
-lemma "0 < occurs a xs \<longrightarrow> Suc (occurs a (del1 a xs)) = occurs a xs"
-  quickcheck[random, expect = no_counterexample]
-  quickcheck[exhaustive, expect = no_counterexample]
-  by (induct xs) auto
-
-primrec replace :: "'a \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
-  "replace a b [] = []"
-  | "replace a b (x#xs) = (if (x=a) then (b#(replace a b xs)) 
-                            else (x#(replace a b xs)))"
-
-lemma "occurs a xs = occurs b (replace a b xs)"
-  quickcheck[random, expect = counterexample]
-  quickcheck[exhaustive, expect = counterexample]
-  -- {* Wrong. Precondition needed.*}
-  oops
-
-lemma "occurs b xs = 0 \<or> a=b \<longrightarrow> occurs a xs = occurs b (replace a b xs)"
-  quickcheck[random, expect = no_counterexample]
-  quickcheck[exhaustive, expect = no_counterexample]
-  by (induct xs) simp_all
-
-
-subsection {* Trees *}
-
-datatype 'a tree = Twig |  Leaf 'a | Branch "'a tree" "'a tree"
-
-primrec leaves :: "'a tree \<Rightarrow> 'a list" where
-  "leaves Twig = []"
-  | "leaves (Leaf a) = [a]"
-  | "leaves (Branch l r) = (leaves l) @ (leaves r)"
-
-primrec plant :: "'a list \<Rightarrow> 'a tree" where
-  "plant [] = Twig "
-  | "plant (x#xs) = Branch (Leaf x) (plant xs)"
-
-primrec mirror :: "'a tree \<Rightarrow> 'a tree" where
-  "mirror (Twig) = Twig "
-  | "mirror (Leaf a) = Leaf a "
-  | "mirror (Branch l r) = Branch (mirror r) (mirror l)"
-
-theorem "plant (rev (leaves xt)) = mirror xt"
-  quickcheck[random, expect = counterexample]
-  quickcheck[exhaustive, expect = counterexample]
-    --{* Wrong! *} 
-  oops
-
-theorem "plant((leaves xt) @ (leaves yt)) = Branch xt yt"
-  quickcheck[random, expect = counterexample]
-  quickcheck[exhaustive, expect = counterexample]
-    --{* Wrong! *} 
-  oops
-
-datatype 'a ntree = Tip "'a" | Node "'a" "'a ntree" "'a ntree"
-
-primrec inOrder :: "'a ntree \<Rightarrow> 'a list" where
-  "inOrder (Tip a)= [a]"
-  | "inOrder (Node f x y) = (inOrder x)@[f]@(inOrder y)"
-
-primrec root :: "'a ntree \<Rightarrow> 'a" where
-  "root (Tip a) = a"
-  | "root (Node f x y) = f"
-
-theorem "hd (inOrder xt) = root xt"
-  quickcheck[random, expect = counterexample]
-  quickcheck[exhaustive, expect = counterexample]
-  --{* Wrong! *} 
-  oops
-
-
-subsection {* Exhaustive Testing beats Random Testing *}
-
-text {* Here are some examples from mutants from the List theory
-where exhaustive testing beats random testing *}
-
-lemma
-  "[] ~= xs ==> hd xs = last (x # xs)"
-quickcheck[random]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  assumes "!!i. [| i < n; i < length xs |] ==> P (xs ! i)" "n < length xs ==> ~ P (xs ! n)"
-  shows "drop n xs = takeWhile P xs"
-quickcheck[random, iterations = 10000, quiet]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "i < length (List.transpose (List.transpose xs)) ==> xs ! i = map (%xs. xs ! i) [ys<-xs. i < length ys]"
-quickcheck[random, iterations = 10000]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "i < n - m ==> f (lcm m i) = map f [m..<n] ! i"
-quickcheck[random, iterations = 10000, finite_types = false]
-quickcheck[exhaustive, finite_types = false, expect = counterexample]
-oops
-
-lemma
-  "i < n - m ==> f (lcm m i) = map f [m..<n] ! i"
-quickcheck[random, iterations = 10000, finite_types = false]
-quickcheck[exhaustive, finite_types = false, expect = counterexample]
-oops
-
-lemma
-  "ns ! k < length ns ==> k <= listsum ns"
-quickcheck[random, iterations = 10000, finite_types = false, quiet]
-quickcheck[exhaustive, finite_types = false, expect = counterexample]
-oops
-
-lemma
-  "[| ys = x # xs1; zs = xs1 @ xs |] ==> ys @ zs = x # xs"
-quickcheck[random, iterations = 10000]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-"i < length xs ==> take (Suc i) xs = [] @ xs ! i # take i xs"
-quickcheck[random, iterations = 10000]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "i < length xs ==> take (Suc i) xs = (xs ! i # xs) @ take i []"
-quickcheck[random, iterations = 10000]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "[| sorted (rev (map length xs)); i < length xs |] ==> xs ! i = map (%ys. ys ! i) [ys<-remdups xs. i < length ys]"
-quickcheck[random]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "[| sorted (rev (map length xs)); i < length xs |] ==> xs ! i = map (%ys. ys ! i) [ys<-List.transpose xs. length ys \<in> {..<i}]"
-quickcheck[random]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "(ys = zs) = (xs @ ys = splice xs zs)"
-quickcheck[random]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-subsection {* Examples with quantifiers *}
-
-text {*
-  These examples show that we can handle quantifiers.
-*}
-
-lemma "(\<exists>x. P x) \<longrightarrow> (\<forall>x. P x)"
-  quickcheck[random, expect = counterexample]
-  quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma "(\<forall>x. \<exists>y. P x y) \<longrightarrow> (\<exists>y. \<forall>x. P x y)"
-  quickcheck[random, expect = counterexample]
-  quickcheck[expect = counterexample]
-oops
-
-lemma "(\<exists>x. P x) \<longrightarrow> (EX! x. P x)"
-  quickcheck[random, expect = counterexample]
-  quickcheck[expect = counterexample]
-oops
-
-
-subsection {* Examples with sets *}
-
-lemma
-  "{} = A Un - A"
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "[| bij_betw f A B; bij_betw f C D |] ==> bij_betw f (A Un C) (B Un D)"
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-
-subsection {* Examples with relations *}
-
-lemma
-  "acyclic (R :: ('a * 'a) set) ==> acyclic S ==> acyclic (R Un S)"
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "acyclic (R :: (nat * nat) set) ==> acyclic S ==> acyclic (R Un S)"
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-(* FIXME: some dramatic performance decrease after changing the code equation of the ntrancl *)
-lemma
-  "(x, z) : rtrancl (R Un S) ==> \<exists> y. (x, y) : rtrancl R & (y, z) : rtrancl S"
-(*quickcheck[exhaustive, expect = counterexample]*)
-oops
-
-lemma
-  "wf (R :: ('a * 'a) set) ==> wf S ==> wf (R Un S)"
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "wf (R :: (nat * nat) set) ==> wf S ==> wf (R Un S)"
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "wf (R :: (int * int) set) ==> wf S ==> wf (R Un S)"
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-
-subsection {* Examples with the descriptive operator *}
-
-lemma
-  "(THE x. x = a) = b"
-quickcheck[random, expect = counterexample]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-subsection {* Examples with Multisets *}
-
-lemma
-  "X + Y = Y + (Z :: 'a multiset)"
-quickcheck[random, expect = counterexample]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "X - Y = Y - (Z :: 'a multiset)"
-quickcheck[random, expect = counterexample]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "N + M - N = (N::'a multiset)"
-quickcheck[random, expect = counterexample]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-subsection {* Examples with numerical types *}
-
-text {*
-Quickcheck supports the common types nat, int, rat and real.
-*}
-
-lemma
-  "(x :: nat) > 0 ==> y > 0 ==> z > 0 ==> x * x + y * y \<noteq> z * z"
-quickcheck[exhaustive, size = 10, expect = counterexample]
-quickcheck[random, size = 10]
-oops
-
-lemma
-  "(x :: int) > 0 ==> y > 0 ==> z > 0 ==> x * x + y * y \<noteq> z * z"
-quickcheck[exhaustive, size = 10, expect = counterexample]
-quickcheck[random, size = 10]
-oops
-
-lemma
-  "(x :: rat) > 0 ==> y > 0 ==> z > 0 ==> x * x + y * y \<noteq> z * z"
-quickcheck[exhaustive, size = 10, expect = counterexample]
-quickcheck[random, size = 10]
-oops
-
-lemma "(x :: rat) >= 0"
-quickcheck[random, expect = counterexample]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "(x :: real) > 0 ==> y > 0 ==> z > 0 ==> x * x + y * y \<noteq> z * z"
-quickcheck[exhaustive, size = 10, expect = counterexample]
-quickcheck[random, size = 10]
-oops
-
-lemma "(x :: real) >= 0"
-quickcheck[random, expect = counterexample]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-subsubsection {* floor and ceiling functions *}
-
-lemma
-  "floor x + floor y = floor (x + y :: rat)"
-quickcheck[expect = counterexample]
-oops
-
-lemma
-  "floor x + floor y = floor (x + y :: real)"
-quickcheck[expect = counterexample]
-oops
-
-lemma
-  "ceiling x + ceiling y = ceiling (x + y :: rat)"
-quickcheck[expect = counterexample]
-oops
-
-lemma
-  "ceiling x + ceiling y = ceiling (x + y :: real)"
-quickcheck[expect = counterexample]
-oops
-
-subsection {* Examples with abstract types *}
-
-lemma
-  "Dlist.length (Dlist.remove x xs) = Dlist.length xs - 1"
-quickcheck[exhaustive]
-quickcheck[random]
-oops
-
-lemma
-  "Dlist.length (Dlist.insert x xs) = Dlist.length xs + 1"
-quickcheck[exhaustive]
-quickcheck[random]
-oops
-
-subsection {* Examples with Records *}
-
-record point =
-  xpos :: nat
-  ypos :: nat
-
-lemma
-  "xpos r = xpos r' ==> r = r'"
-quickcheck[exhaustive, expect = counterexample]
-quickcheck[random, expect = counterexample]
-oops
-
-datatype colour = Red | Green | Blue
-
-record cpoint = point +
-  colour :: colour
-
-lemma
-  "xpos r = xpos r' ==> ypos r = ypos r' ==> (r :: cpoint) = r'"
-quickcheck[exhaustive, expect = counterexample]
-quickcheck[random, expect = counterexample]
-oops
-
-subsection {* Examples with locales *}
-
-locale Truth
-
-context Truth
-begin
-
-lemma "False"
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-end
-
-interpretation Truth .
-
-context Truth
-begin
-
-lemma "False"
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-end
-
-locale antisym =
-  fixes R
-  assumes "R x y --> R y x --> x = y"
-begin
-
-lemma
-  "R x y --> R y z --> R x z"
-quickcheck[exhaustive, finite_type_size = 2, expect = no_counterexample]
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-end
-
-subsection {* Examples with HOL quantifiers *}
-
-lemma
-  "\<forall> xs ys. xs = [] --> xs = ys"
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "ys = [] --> (\<forall>xs. xs = [] --> xs = y # ys)"
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-lemma
-  "\<forall>xs. (\<exists> ys. ys = []) --> xs = ys"
-quickcheck[exhaustive, expect = counterexample]
-oops
-
-subsection {* Examples with underspecified/partial functions *}
-
-lemma
-  "xs = [] ==> hd xs \<noteq> x"
-quickcheck[exhaustive, expect = no_counterexample]
-quickcheck[random, report = false, expect = no_counterexample]
-quickcheck[random, report = true, expect = no_counterexample]
-oops
-
-lemma
-  "xs = [] ==> hd xs = x"
-quickcheck[exhaustive, expect = no_counterexample]
-quickcheck[random, report = false, expect = no_counterexample]
-quickcheck[random, report = true, expect = no_counterexample]
-oops
-
-lemma "xs = [] ==> hd xs = x ==> x = y"
-quickcheck[exhaustive, expect = no_counterexample]
-quickcheck[random, report = false, expect = no_counterexample]
-quickcheck[random, report = true, expect = no_counterexample]
-oops
-
-text {* with the simple testing scheme *}
-
-setup {* Exhaustive_Generators.setup_exhaustive_datatype_interpretation *}
-declare [[quickcheck_full_support = false]]
-
-lemma
-  "xs = [] ==> hd xs \<noteq> x"
-quickcheck[exhaustive, expect = no_counterexample]
-oops
-
-lemma
-  "xs = [] ==> hd xs = x"
-quickcheck[exhaustive, expect = no_counterexample]
-oops
-
-lemma "xs = [] ==> hd xs = x ==> x = y"
-quickcheck[exhaustive, expect = no_counterexample]
-oops
-
-declare [[quickcheck_full_support = true]]
-
-end