src/HOL/Tools/Transfer/transfer.ML
changeset 56524 f4ba736040fa
parent 56520 3373f5d1e074
child 56722 ba1ac087b3a7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Transfer/transfer.ML	Thu Apr 10 17:48:18 2014 +0200
@@ -0,0 +1,868 @@
+(*  Title:      HOL/Tools/Transfer/transfer.ML
+    Author:     Brian Huffman, TU Muenchen
+    Author:     Ondrej Kuncar, TU Muenchen
+
+Generic theorem transfer method.
+*)
+
+signature TRANSFER =
+sig
+  type pred_data
+  val rel_eq_onp: pred_data -> thm
+
+  val bottom_rewr_conv: thm list -> conv
+  val top_rewr_conv: thm list -> conv
+
+  val prep_conv: conv
+  val get_transfer_raw: Proof.context -> thm list
+  val get_relator_eq_item_net: Proof.context -> thm Item_Net.T
+  val get_relator_eq: Proof.context -> thm list
+  val get_sym_relator_eq: Proof.context -> thm list
+  val get_relator_eq_raw: Proof.context -> thm list
+  val get_relator_domain: Proof.context -> thm list
+  val morph_pred_data: morphism -> pred_data -> pred_data
+  val lookup_pred_data: Proof.context -> string -> pred_data option
+  val update_pred_data: string -> pred_data -> Context.generic -> Context.generic
+  val get_compound_lhs: Proof.context -> (term * thm) Item_Net.T
+  val get_compound_rhs: Proof.context -> (term * thm) Item_Net.T
+  val transfer_add: attribute
+  val transfer_del: attribute
+  val transfer_raw_add: thm -> Context.generic -> Context.generic
+  val transfer_raw_del: thm -> Context.generic -> Context.generic
+  val transferred_attribute: thm list -> attribute
+  val untransferred_attribute: thm list -> attribute
+  val prep_transfer_domain_thm: Proof.context -> thm -> thm
+  val transfer_domain_add: attribute
+  val transfer_domain_del: attribute
+  val transfer_rule_of_term: Proof.context -> bool -> term -> thm
+  val transfer_rule_of_lhs: Proof.context -> term -> thm
+  val eq_tac: Proof.context -> int -> tactic
+  val transfer_step_tac: Proof.context -> int -> tactic
+  val transfer_tac: bool -> Proof.context -> int -> tactic
+  val transfer_prover_tac: Proof.context -> int -> tactic
+  val gen_frees_tac: (string * typ) list -> Proof.context -> int -> tactic
+  val setup: theory -> theory
+end
+
+structure Transfer : TRANSFER =
+struct
+
+(** Theory Data **)
+
+val compound_xhs_empty_net = Item_Net.init (Thm.eq_thm_prop o pairself snd) (single o fst);
+val rewr_rules = Item_Net.init Thm.eq_thm_prop (single o fst o HOLogic.dest_eq 
+  o HOLogic.dest_Trueprop o Thm.concl_of);
+
+type pred_data = {rel_eq_onp: thm}
+
+val rel_eq_onp = #rel_eq_onp
+
+structure Data = Generic_Data
+(
+  type T =
+    { transfer_raw : thm Item_Net.T,
+      known_frees : (string * typ) list,
+      compound_lhs : (term * thm) Item_Net.T,
+      compound_rhs : (term * thm) Item_Net.T,
+      relator_eq : thm Item_Net.T,
+      relator_eq_raw : thm Item_Net.T,
+      relator_domain : thm Item_Net.T,
+      pred_data : pred_data Symtab.table }
+  val empty =
+    { transfer_raw = Thm.intro_rules,
+      known_frees = [],
+      compound_lhs = compound_xhs_empty_net,
+      compound_rhs = compound_xhs_empty_net,
+      relator_eq = rewr_rules,
+      relator_eq_raw = Thm.full_rules,
+      relator_domain = Thm.full_rules,
+      pred_data = Symtab.empty }
+  val extend = I
+  fun merge
+    ( { transfer_raw = t1, known_frees = k1,
+        compound_lhs = l1,
+        compound_rhs = c1, relator_eq = r1,
+        relator_eq_raw = rw1, relator_domain = rd1,
+        pred_data = pd1 },
+      { transfer_raw = t2, known_frees = k2,
+        compound_lhs = l2,
+        compound_rhs = c2, relator_eq = r2,
+        relator_eq_raw = rw2, relator_domain = rd2,
+        pred_data = pd2 } ) =
+    { transfer_raw = Item_Net.merge (t1, t2),
+      known_frees = Library.merge (op =) (k1, k2),
+      compound_lhs = Item_Net.merge (l1, l2),
+      compound_rhs = Item_Net.merge (c1, c2),
+      relator_eq = Item_Net.merge (r1, r2),
+      relator_eq_raw = Item_Net.merge (rw1, rw2),
+      relator_domain = Item_Net.merge (rd1, rd2),
+      pred_data = Symtab.merge (K true) (pd1, pd2) }
+)
+
+fun get_transfer_raw ctxt = ctxt
+  |> (Item_Net.content o #transfer_raw o Data.get o Context.Proof)
+
+fun get_known_frees ctxt = ctxt
+  |> (#known_frees o Data.get o Context.Proof)
+
+fun get_compound_lhs ctxt = ctxt
+  |> (#compound_lhs o Data.get o Context.Proof)
+
+fun get_compound_rhs ctxt = ctxt
+  |> (#compound_rhs o Data.get o Context.Proof)
+
+fun get_relator_eq_item_net ctxt = (#relator_eq o Data.get o Context.Proof) ctxt
+
+fun get_relator_eq ctxt = ctxt
+  |> (Item_Net.content o #relator_eq o Data.get o Context.Proof)
+  |> map safe_mk_meta_eq
+
+fun get_sym_relator_eq ctxt = ctxt
+  |> (Item_Net.content o #relator_eq o Data.get o Context.Proof)
+  |> map (Thm.symmetric o safe_mk_meta_eq)
+
+fun get_relator_eq_raw ctxt = ctxt
+  |> (Item_Net.content o #relator_eq_raw o Data.get o Context.Proof)
+
+fun get_relator_domain ctxt = ctxt
+  |> (Item_Net.content o #relator_domain o Data.get o Context.Proof)
+
+fun get_pred_data ctxt = ctxt
+  |> (#pred_data o Data.get o Context.Proof)
+
+fun map_data f1 f2 f3 f4 f5 f6 f7 f8
+  { transfer_raw, known_frees, compound_lhs, compound_rhs,
+    relator_eq, relator_eq_raw, relator_domain, pred_data } =
+  { transfer_raw = f1 transfer_raw,
+    known_frees = f2 known_frees,
+    compound_lhs = f3 compound_lhs,
+    compound_rhs = f4 compound_rhs,
+    relator_eq = f5 relator_eq,
+    relator_eq_raw = f6 relator_eq_raw,
+    relator_domain = f7 relator_domain,
+    pred_data = f8 pred_data }
+
+fun map_transfer_raw   f = map_data f I I I I I I I
+fun map_known_frees    f = map_data I f I I I I I I
+fun map_compound_lhs   f = map_data I I f I I I I I
+fun map_compound_rhs   f = map_data I I I f I I I I
+fun map_relator_eq     f = map_data I I I I f I I I
+fun map_relator_eq_raw f = map_data I I I I I f I I
+fun map_relator_domain f = map_data I I I I I I f I
+fun map_pred_data      f = map_data I I I I I I I f
+
+fun add_transfer_thm thm = Data.map
+  (map_transfer_raw (Item_Net.update thm) o
+   map_compound_lhs
+     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
+        Const (@{const_name Rel}, _) $ _ $ (lhs as (_ $ _)) $ _ =>
+          Item_Net.update (lhs, thm)
+      | _ => I) o
+   map_compound_rhs
+     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
+        Const (@{const_name Rel}, _) $ _ $ _ $ (rhs as (_ $ _)) =>
+          Item_Net.update (rhs, thm)
+      | _ => I) o
+   map_known_frees (Term.add_frees (Thm.concl_of thm)))
+
+fun del_transfer_thm thm = Data.map 
+  (map_transfer_raw (Item_Net.remove thm) o
+   map_compound_lhs
+     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
+        Const (@{const_name Rel}, _) $ _ $ (lhs as (_ $ _)) $ _ =>
+          Item_Net.remove (lhs, thm)
+      | _ => I) o
+   map_compound_rhs
+     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
+        Const (@{const_name Rel}, _) $ _ $ _ $ (rhs as (_ $ _)) =>
+          Item_Net.remove (rhs, thm)
+      | _ => I))
+
+fun transfer_raw_add thm ctxt = add_transfer_thm thm ctxt
+fun transfer_raw_del thm ctxt = del_transfer_thm thm ctxt
+
+(** Conversions **)
+
+fun bottom_rewr_conv rewrs = Conv.bottom_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) @{context}
+fun top_rewr_conv rewrs = Conv.top_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) @{context}
+
+fun transfer_rel_conv conv = 
+  Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.fun2_conv (Conv.arg_conv conv)))
+
+val Rel_rule = Thm.symmetric @{thm Rel_def}
+
+fun dest_funcT cT =
+  (case Thm.dest_ctyp cT of [T, U] => (T, U)
+    | _ => raise TYPE ("dest_funcT", [Thm.typ_of cT], []))
+
+fun Rel_conv ct =
+  let val (cT, cT') = dest_funcT (Thm.ctyp_of_term ct)
+      val (cU, _) = dest_funcT cT'
+  in Drule.instantiate' [SOME cT, SOME cU] [SOME ct] Rel_rule end
+
+(* Conversion to preprocess a transfer rule *)
+fun safe_Rel_conv ct =
+  Conv.try_conv (HOLogic.Trueprop_conv (Conv.fun_conv (Conv.fun_conv Rel_conv))) ct
+
+fun prep_conv ct = (
+      Conv.implies_conv safe_Rel_conv prep_conv
+      else_conv
+      safe_Rel_conv
+      else_conv
+      Conv.all_conv) ct
+
+(** Replacing explicit equalities with is_equality premises **)
+
+fun mk_is_equality t =
+  Const (@{const_name is_equality}, Term.fastype_of t --> HOLogic.boolT) $ t
+
+val is_equality_lemma =
+  @{lemma "(!!R. is_equality R ==> PROP (P R)) == PROP (P (op =))"
+    by (unfold is_equality_def, rule, drule meta_spec,
+      erule meta_mp, rule refl, simp)}
+
+fun gen_abstract_equalities ctxt (dest : term -> term * (term -> term)) thm =
+  let
+    val thy = Thm.theory_of_thm thm
+    val prop = Thm.prop_of thm
+    val (t, mk_prop') = dest prop
+    (* Only consider "op =" at non-base types *)
+    fun is_eq (Const (@{const_name HOL.eq}, Type ("fun", [T, _]))) =
+        (case T of Type (_, []) => false | _ => true)
+      | is_eq _ = false
+    val add_eqs = Term.fold_aterms (fn t => if is_eq t then insert (op =) t else I)
+    val eq_consts = rev (add_eqs t [])
+    val eqTs = map (snd o dest_Const) eq_consts
+    val used = Term.add_free_names prop []
+    val names = map (K "") eqTs |> Name.variant_list used
+    val frees = map Free (names ~~ eqTs)
+    val prems = map (HOLogic.mk_Trueprop o mk_is_equality) frees
+    val prop1 = mk_prop' (Term.subst_atomic (eq_consts ~~ frees) t)
+    val prop2 = fold Logic.all frees (Logic.list_implies (prems, prop1))
+    val cprop = Thm.cterm_of thy prop2
+    val equal_thm = Raw_Simplifier.rewrite ctxt false [is_equality_lemma] cprop
+    fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm
+  in
+    forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2}))
+  end
+    handle TERM _ => thm
+
+fun abstract_equalities_transfer ctxt thm =
+  let
+    fun dest prop =
+      let
+        val prems = Logic.strip_imp_prems prop
+        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
+        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
+      in
+        (rel, fn rel' =>
+          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel' $ x $ y)))
+      end
+    val contracted_eq_thm = 
+      Conv.fconv_rule (transfer_rel_conv (bottom_rewr_conv (get_relator_eq ctxt))) thm
+      handle CTERM _ => thm
+  in
+    gen_abstract_equalities ctxt dest contracted_eq_thm
+  end
+
+fun abstract_equalities_relator_eq ctxt rel_eq_thm =
+  gen_abstract_equalities ctxt (fn x => (x, I))
+    (rel_eq_thm RS @{thm is_equality_def [THEN iffD2]})
+
+fun abstract_equalities_domain ctxt thm =
+  let
+    fun dest prop =
+      let
+        val prems = Logic.strip_imp_prems prop
+        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
+        val ((eq, dom), y) = apfst Term.dest_comb (Term.dest_comb concl)
+      in
+        (dom, fn dom' => Logic.list_implies (prems, HOLogic.mk_Trueprop (eq $ dom' $ y)))
+      end
+    fun transfer_rel_conv conv = 
+      Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.arg1_conv (Conv.arg_conv conv)))
+    val contracted_eq_thm = 
+      Conv.fconv_rule (transfer_rel_conv (bottom_rewr_conv (get_relator_eq ctxt))) thm
+  in
+    gen_abstract_equalities ctxt dest contracted_eq_thm
+  end 
+
+
+(** Replacing explicit Domainp predicates with Domainp assumptions **)
+
+fun mk_Domainp_assm (T, R) =
+  HOLogic.mk_eq ((Const (@{const_name Domainp}, Term.fastype_of T --> Term.fastype_of R) $ T), R)
+
+val Domainp_lemma =
+  @{lemma "(!!R. Domainp T = R ==> PROP (P R)) == PROP (P (Domainp T))"
+    by (rule, drule meta_spec,
+      erule meta_mp, rule refl, simp)}
+
+fun fold_Domainp f (t as Const (@{const_name Domainp},_) $ (Var (_,_))) = f t
+  | fold_Domainp f (t $ u) = fold_Domainp f t #> fold_Domainp f u
+  | fold_Domainp f (Abs (_, _, t)) = fold_Domainp f t
+  | fold_Domainp _ _ = I
+
+fun subst_terms tab t = 
+  let
+    val t' = Termtab.lookup tab t
+  in
+    case t' of
+      SOME t' => t'
+      | NONE => 
+        (case t of
+          u $ v => (subst_terms tab u) $ (subst_terms tab v)
+          | Abs (a, T, t) => Abs (a, T, subst_terms tab t)
+          | t => t)
+  end
+
+fun gen_abstract_domains ctxt (dest : term -> term * (term -> term)) thm =
+  let
+    val thy = Thm.theory_of_thm thm
+    val prop = Thm.prop_of thm
+    val (t, mk_prop') = dest prop
+    val Domainp_tms = rev (fold_Domainp (fn t => insert op= t) t [])
+    val Domainp_Ts = map (snd o dest_funT o snd o dest_Const o fst o dest_comb) Domainp_tms
+    val used = Term.add_free_names t []
+    val rels = map (snd o dest_comb) Domainp_tms
+    val rel_names = map (fst o fst o dest_Var) rels
+    val names = map (fn name => ("D" ^ name)) rel_names |> Name.variant_list used
+    val frees = map Free (names ~~ Domainp_Ts)
+    val prems = map (HOLogic.mk_Trueprop o mk_Domainp_assm) (rels ~~ frees);
+    val t' = subst_terms (fold Termtab.update (Domainp_tms ~~ frees) Termtab.empty) t
+    val prop1 = fold Logic.all frees (Logic.list_implies (prems, mk_prop' t'))
+    val prop2 = Logic.list_rename_params (rev names) prop1
+    val cprop = Thm.cterm_of thy prop2
+    val equal_thm = Raw_Simplifier.rewrite ctxt false [Domainp_lemma] cprop
+    fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm;
+  in
+    forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2}))
+  end
+    handle TERM _ => thm
+
+fun abstract_domains_transfer ctxt thm =
+  let
+    fun dest prop =
+      let
+        val prems = Logic.strip_imp_prems prop
+        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
+        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
+      in
+        (x, fn x' =>
+          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x' $ y)))
+      end
+  in
+    gen_abstract_domains ctxt dest thm
+  end
+
+fun abstract_domains_relator_domain ctxt thm =
+  let
+    fun dest prop =
+      let
+        val prems = Logic.strip_imp_prems prop
+        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
+        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
+      in
+        (y, fn y' =>
+          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x $ y')))
+      end
+  in
+    gen_abstract_domains ctxt dest thm
+  end
+
+fun detect_transfer_rules thm =
+  let
+    fun is_transfer_rule tm = case (HOLogic.dest_Trueprop tm) of
+      (Const (@{const_name HOL.eq}, _)) $ ((Const (@{const_name Domainp}, _)) $ _) $ _ => false
+      | _ $ _ $ _ => true
+      | _ => false
+    fun safe_transfer_rule_conv ctm =
+      if is_transfer_rule (term_of ctm) then safe_Rel_conv ctm else Conv.all_conv ctm
+  in
+    Conv.fconv_rule (Conv.prems_conv ~1 safe_transfer_rule_conv) thm
+  end
+
+(** Adding transfer domain rules **)
+
+fun prep_transfer_domain_thm ctxt thm = 
+  (abstract_equalities_domain ctxt o detect_transfer_rules) thm 
+
+fun add_transfer_domain_thm thm ctxt = (add_transfer_thm o 
+  prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt
+
+fun del_transfer_domain_thm thm ctxt = (del_transfer_thm o 
+  prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt
+
+(** Transfer proof method **)
+
+val post_simps =
+  @{thms transfer_forall_eq [symmetric]
+    transfer_implies_eq [symmetric] transfer_bforall_unfold}
+
+fun gen_frees_tac keepers ctxt = SUBGOAL (fn (t, i) =>
+  let
+    val keepers = keepers @ get_known_frees ctxt
+    val vs = rev (Term.add_frees t [])
+    val vs' = filter_out (member (op =) keepers) vs
+  in
+    Induct.arbitrary_tac ctxt 0 vs' i
+  end)
+
+fun mk_relT (T, U) = T --> U --> HOLogic.boolT
+
+fun mk_Rel t =
+  let val T = fastype_of t
+  in Const (@{const_name Transfer.Rel}, T --> T) $ t end
+
+fun transfer_rule_of_terms (prj : typ * typ -> typ) ctxt tab t u =
+  let
+    val thy = Proof_Context.theory_of ctxt
+    (* precondition: prj(T,U) must consist of only TFrees and type "fun" *)
+    fun rel (T as Type ("fun", [T1, T2])) (U as Type ("fun", [U1, U2])) =
+        let
+          val r1 = rel T1 U1
+          val r2 = rel T2 U2
+          val rT = fastype_of r1 --> fastype_of r2 --> mk_relT (T, U)
+        in
+          Const (@{const_name rel_fun}, rT) $ r1 $ r2
+        end
+      | rel T U =
+        let
+          val (a, _) = dest_TFree (prj (T, U))
+        in
+          Free (the (AList.lookup (op =) tab a), mk_relT (T, U))
+        end
+    fun zip _ thms (Bound i) (Bound _) = (nth thms i, [])
+      | zip ctxt thms (Abs (x, T, t)) (Abs (y, U, u)) =
+        let
+          val ([x', y'], ctxt') = Variable.variant_fixes [x, y] ctxt
+          val prop = mk_Rel (rel T U) $ Free (x', T) $ Free (y', U)
+          val cprop = Thm.cterm_of thy (HOLogic.mk_Trueprop prop)
+          val thm0 = Thm.assume cprop
+          val (thm1, hyps) = zip ctxt' (thm0 :: thms) t u
+          val ((r1, x), y) = apfst Thm.dest_comb (Thm.dest_comb (Thm.dest_arg cprop))
+          val r2 = Thm.dest_fun2 (Thm.dest_arg (cprop_of thm1))
+          val (a1, (b1, _)) = apsnd dest_funcT (dest_funcT (ctyp_of_term r1))
+          val (a2, (b2, _)) = apsnd dest_funcT (dest_funcT (ctyp_of_term r2))
+          val tinsts = [SOME a1, SOME b1, SOME a2, SOME b2]
+          val insts = [SOME (Thm.dest_arg r1), SOME (Thm.dest_arg r2)]
+          val rule = Drule.instantiate' tinsts insts @{thm Rel_abs}
+          val thm2 = Thm.forall_intr x (Thm.forall_intr y (Thm.implies_intr cprop thm1))
+        in
+          (thm2 COMP rule, hyps)
+        end
+      | zip ctxt thms (f $ t) (g $ u) =
+        let
+          val (thm1, hyps1) = zip ctxt thms f g
+          val (thm2, hyps2) = zip ctxt thms t u
+        in
+          (thm2 RS (thm1 RS @{thm Rel_app}), hyps1 @ hyps2)
+        end
+      | zip _ _ t u =
+        let
+          val T = fastype_of t
+          val U = fastype_of u
+          val prop = mk_Rel (rel T U) $ t $ u
+          val cprop = Thm.cterm_of thy (HOLogic.mk_Trueprop prop)
+        in
+          (Thm.assume cprop, [cprop])
+        end
+    val r = mk_Rel (rel (fastype_of t) (fastype_of u))
+    val goal = HOLogic.mk_Trueprop (r $ t $ u)
+    val rename = Thm.trivial (cterm_of thy goal)
+    val (thm, hyps) = zip ctxt [] t u
+  in
+    Drule.implies_intr_list hyps (thm RS rename)
+  end
+
+(* create a lambda term of the same shape as the given term *)
+fun skeleton (is_atom : term -> bool) ctxt t =
+  let
+    fun dummy ctxt =
+      let
+        val (c, ctxt) = yield_singleton Variable.variant_fixes "a" ctxt
+      in
+        (Free (c, dummyT), ctxt)
+      end
+    fun go (Bound i) ctxt = (Bound i, ctxt)
+      | go (Abs (x, _, t)) ctxt =
+        let
+          val (t', ctxt) = go t ctxt
+        in
+          (Abs (x, dummyT, t'), ctxt)
+        end
+      | go (tu as (t $ u)) ctxt =
+        if is_atom tu andalso not (Term.is_open tu) then dummy ctxt else
+        let
+          val (t', ctxt) = go t ctxt
+          val (u', ctxt) = go u ctxt
+        in
+          (t' $ u', ctxt)
+        end
+      | go _ ctxt = dummy ctxt
+  in
+    go t ctxt |> fst |> Syntax.check_term ctxt |>
+      map_types (map_type_tfree (fn (a, _) => TFree (a, @{sort type})))
+  end
+
+(** Monotonicity analysis **)
+
+(* TODO: Put extensible table in theory data *)
+val monotab =
+  Symtab.make
+    [(@{const_name transfer_implies}, [~1, 1]),
+     (@{const_name transfer_forall}, [1])(*,
+     (@{const_name implies}, [~1, 1]),
+     (@{const_name All}, [1])*)]
+
+(*
+Function bool_insts determines the set of boolean-relation variables
+that can be instantiated to implies, rev_implies, or iff.
+
+Invariants: bool_insts p (t, u) requires that
+  u :: _ => _ => ... => bool, and
+  t is a skeleton of u
+*)
+fun bool_insts p (t, u) =
+  let
+    fun strip2 (t1 $ t2, u1 $ u2, tus) =
+        strip2 (t1, u1, (t2, u2) :: tus)
+      | strip2 x = x
+    fun or3 ((a, b, c), (x, y, z)) = (a orelse x, b orelse y, c orelse z)
+    fun go Ts p (Abs (_, T, t), Abs (_, _, u)) tab = go (T :: Ts) p (t, u) tab
+      | go Ts p (t, u) tab =
+        let
+          val (a, _) = dest_TFree (Term.body_type (Term.fastype_of1 (Ts, t)))
+          val (_, tf, tus) = strip2 (t, u, [])
+          val ps_opt = case tf of Const (c, _) => Symtab.lookup monotab c | _ => NONE
+          val tab1 =
+            case ps_opt of
+              SOME ps =>
+              let
+                val ps' = map (fn x => p * x) (take (length tus) ps)
+              in
+                fold I (map2 (go Ts) ps' tus) tab
+              end
+            | NONE => tab
+          val tab2 = Symtab.make [(a, (p >= 0, p <= 0, is_none ps_opt))]
+        in
+          Symtab.join (K or3) (tab1, tab2)
+        end
+    val tab = go [] p (t, u) Symtab.empty
+    fun f (a, (true, false, false)) = SOME (a, @{const implies})
+      | f (a, (false, true, false)) = SOME (a, @{const rev_implies})
+      | f (a, (true, true, _))      = SOME (a, HOLogic.eq_const HOLogic.boolT)
+      | f _                         = NONE
+  in
+    map_filter f (Symtab.dest tab)
+  end
+
+fun retrieve_terms t net = map fst (Item_Net.retrieve net t)
+  
+fun matches_list ctxt term = 
+  is_some o find_first (fn pat => Pattern.matches (Proof_Context.theory_of ctxt) (pat, term))
+
+fun transfer_rule_of_term ctxt equiv t : thm =
+  let
+    val compound_rhs = get_compound_rhs ctxt
+    fun is_rhs t = compound_rhs |> retrieve_terms t |> matches_list ctxt t
+    val s = skeleton is_rhs ctxt t
+    val frees = map fst (Term.add_frees s [])
+    val tfrees = map fst (Term.add_tfrees s [])
+    fun prep a = "R" ^ Library.unprefix "'" a
+    val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt
+    val tab = tfrees ~~ rnames
+    fun prep a = the (AList.lookup (op =) tab a)
+    val thm = transfer_rule_of_terms fst ctxt' tab s t
+    val binsts = bool_insts (if equiv then 0 else 1) (s, t)
+    val cbool = @{ctyp bool}
+    val relT = @{typ "bool => bool => bool"}
+    val idx = Thm.maxidx_of thm + 1
+    val thy = Proof_Context.theory_of ctxt
+    fun tinst (a, _) = (ctyp_of thy (TVar ((a, idx), @{sort type})), cbool)
+    fun inst (a, t) = (cterm_of thy (Var (Name.clean_index (prep a, idx), relT)), cterm_of thy t)
+  in
+    thm
+      |> Thm.generalize (tfrees, rnames @ frees) idx
+      |> Thm.instantiate (map tinst binsts, map inst binsts)
+  end
+
+fun transfer_rule_of_lhs ctxt t : thm =
+  let
+    val compound_lhs = get_compound_lhs ctxt
+    fun is_lhs t = compound_lhs |> retrieve_terms t |> matches_list ctxt t
+    val s = skeleton is_lhs ctxt t
+    val frees = map fst (Term.add_frees s [])
+    val tfrees = map fst (Term.add_tfrees s [])
+    fun prep a = "R" ^ Library.unprefix "'" a
+    val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt
+    val tab = tfrees ~~ rnames
+    fun prep a = the (AList.lookup (op =) tab a)
+    val thm = transfer_rule_of_terms snd ctxt' tab t s
+    val binsts = bool_insts 1 (s, t)
+    val cbool = @{ctyp bool}
+    val relT = @{typ "bool => bool => bool"}
+    val idx = Thm.maxidx_of thm + 1
+    val thy = Proof_Context.theory_of ctxt
+    fun tinst (a, _) = (ctyp_of thy (TVar ((a, idx), @{sort type})), cbool)
+    fun inst (a, t) = (cterm_of thy (Var (Name.clean_index (prep a, idx), relT)), cterm_of thy t)
+  in
+    thm
+      |> Thm.generalize (tfrees, rnames @ frees) idx
+      |> Thm.instantiate (map tinst binsts, map inst binsts)
+  end
+
+fun eq_rules_tac eq_rules = TRY o REPEAT_ALL_NEW (resolve_tac eq_rules) 
+  THEN_ALL_NEW rtac @{thm is_equality_eq}
+
+fun eq_tac ctxt = eq_rules_tac (get_relator_eq_raw ctxt)
+
+fun transfer_step_tac ctxt = (REPEAT_ALL_NEW (resolve_tac (get_transfer_raw ctxt)) 
+  THEN_ALL_NEW (DETERM o eq_rules_tac (get_relator_eq_raw ctxt)))
+
+fun transfer_tac equiv ctxt i =
+  let
+    val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
+    val start_rule =
+      if equiv then @{thm transfer_start} else @{thm transfer_start'}
+    val rules = get_transfer_raw ctxt
+    val eq_rules = get_relator_eq_raw ctxt
+    (* allow unsolved subgoals only for standard transfer method, not for transfer' *)
+    val end_tac = if equiv then K all_tac else K no_tac
+    val err_msg = "Transfer failed to convert goal to an object-logic formula"
+    fun main_tac (t, i) =
+      rtac start_rule i THEN
+      (rtac (transfer_rule_of_term ctxt equiv (HOLogic.dest_Trueprop t))
+        THEN_ALL_NEW
+          (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules) THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules))
+            ORELSE' end_tac)) (i + 1)
+        handle TERM (_, ts) => raise TERM (err_msg, ts)
+  in
+    EVERY
+      [rewrite_goal_tac ctxt pre_simps i THEN
+       SUBGOAL main_tac i,
+       (* FIXME: rewrite_goal_tac does unwanted eta-contraction *)
+       rewrite_goal_tac ctxt post_simps i,
+       Goal.norm_hhf_tac ctxt i]
+  end
+
+fun transfer_prover_tac ctxt = SUBGOAL (fn (t, i) =>
+  let
+    val rhs = (snd o Term.dest_comb o HOLogic.dest_Trueprop) t
+    val rule1 = transfer_rule_of_term ctxt false rhs
+    val rules = get_transfer_raw ctxt
+    val eq_rules = get_relator_eq_raw ctxt
+    val expand_eq_in_rel = transfer_rel_conv (top_rewr_conv [@{thm rel_fun_eq[symmetric,THEN eq_reflection]}])
+  in
+    EVERY
+      [CONVERSION prep_conv i,
+       rtac @{thm transfer_prover_start} i,
+       ((rtac rule1 ORELSE' (CONVERSION expand_eq_in_rel THEN' rtac rule1))
+        THEN_ALL_NEW
+         (REPEAT_ALL_NEW (resolve_tac rules) THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules))) (i+1),
+       rtac @{thm refl} i]
+  end)
+
+(** Transfer attribute **)
+
+fun transferred ctxt extra_rules thm =
+  let
+    val start_rule = @{thm transfer_start}
+    val start_rule' = @{thm transfer_start'}
+    val rules = extra_rules @ get_transfer_raw ctxt
+    val eq_rules = get_relator_eq_raw ctxt
+    val err_msg = "Transfer failed to convert goal to an object-logic formula"
+    val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
+    val thm1 = Drule.forall_intr_vars thm
+    val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) [])
+                |> map (fn v as ((a, _), S) => (v, TFree (a, S)))
+    val thm2 = thm1
+      |> Thm.certify_instantiate (instT, [])
+      |> Raw_Simplifier.rewrite_rule ctxt pre_simps
+    val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt
+    val t = HOLogic.dest_Trueprop (Thm.concl_of thm2)
+    val rule = transfer_rule_of_lhs ctxt' t
+    val tac =
+      resolve_tac [thm2 RS start_rule', thm2 RS start_rule] 1 THEN
+      (rtac rule
+        THEN_ALL_NEW
+          (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules)
+            THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)))) 1
+        handle TERM (_, ts) => raise TERM (err_msg, ts)
+    val thm3 = Goal.prove_internal ctxt' [] @{cpat "Trueprop ?P"} (K tac)
+    val tnames = map (fst o dest_TFree o snd) instT
+  in
+    thm3
+      |> Raw_Simplifier.rewrite_rule ctxt' post_simps
+      |> Simplifier.norm_hhf ctxt'
+      |> Drule.generalize (tnames, [])
+      |> Drule.zero_var_indexes
+  end
+(*
+    handle THM _ => thm
+*)
+
+fun untransferred ctxt extra_rules thm =
+  let
+    val start_rule = @{thm untransfer_start}
+    val rules = extra_rules @ get_transfer_raw ctxt
+    val eq_rules = get_relator_eq_raw ctxt
+    val err_msg = "Transfer failed to convert goal to an object-logic formula"
+    val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
+    val thm1 = Drule.forall_intr_vars thm
+    val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) [])
+                |> map (fn v as ((a, _), S) => (v, TFree (a, S)))
+    val thm2 = thm1
+      |> Thm.certify_instantiate (instT, [])
+      |> Raw_Simplifier.rewrite_rule ctxt pre_simps
+    val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt
+    val t = HOLogic.dest_Trueprop (Thm.concl_of thm2)
+    val rule = transfer_rule_of_term ctxt' true t
+    val tac =
+      rtac (thm2 RS start_rule) 1 THEN
+      (rtac rule
+        THEN_ALL_NEW
+          (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules)
+            THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)))) 1
+        handle TERM (_, ts) => raise TERM (err_msg, ts)
+    val thm3 = Goal.prove_internal ctxt' [] @{cpat "Trueprop ?P"} (K tac)
+    val tnames = map (fst o dest_TFree o snd) instT
+  in
+    thm3
+      |> Raw_Simplifier.rewrite_rule ctxt' post_simps
+      |> Simplifier.norm_hhf ctxt'
+      |> Drule.generalize (tnames, [])
+      |> Drule.zero_var_indexes
+  end
+
+(** Methods and attributes **)
+
+val free = Args.context -- Args.term >> (fn (_, Free v) => v | (ctxt, t) =>
+  error ("Bad free variable: " ^ Syntax.string_of_term ctxt t))
+
+val fixing = Scan.optional (Scan.lift (Args.$$$ "fixing" -- Args.colon)
+  |-- Scan.repeat free) []
+
+fun transfer_method equiv : (Proof.context -> Proof.method) context_parser =
+  fixing >> (fn vs => fn ctxt =>
+    SIMPLE_METHOD' (gen_frees_tac vs ctxt THEN' transfer_tac equiv ctxt))
+
+val transfer_prover_method : (Proof.context -> Proof.method) context_parser =
+  Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_prover_tac ctxt))
+
+(* Attribute for transfer rules *)
+
+fun prep_rule ctxt = 
+  abstract_domains_transfer ctxt o abstract_equalities_transfer ctxt o Conv.fconv_rule prep_conv
+
+val transfer_add =
+  Thm.declaration_attribute (fn thm => fn ctxt => 
+    (add_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt)
+
+val transfer_del =
+  Thm.declaration_attribute (fn thm => fn ctxt => 
+    (del_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt)
+
+val transfer_attribute =
+  Attrib.add_del transfer_add transfer_del
+
+(* Attributes for transfer domain rules *)
+
+val transfer_domain_add = Thm.declaration_attribute add_transfer_domain_thm
+
+val transfer_domain_del = Thm.declaration_attribute del_transfer_domain_thm
+
+val transfer_domain_attribute =
+  Attrib.add_del transfer_domain_add transfer_domain_del
+
+(* Attributes for transferred rules *)
+
+fun transferred_attribute thms = Thm.rule_attribute
+  (fn context => transferred (Context.proof_of context) thms)
+
+fun untransferred_attribute thms = Thm.rule_attribute
+  (fn context => untransferred (Context.proof_of context) thms)
+
+val transferred_attribute_parser =
+  Attrib.thms >> transferred_attribute
+
+val untransferred_attribute_parser =
+  Attrib.thms >> untransferred_attribute
+
+fun morph_pred_data phi {rel_eq_onp} = {rel_eq_onp = Morphism.thm phi rel_eq_onp}
+
+fun lookup_pred_data ctxt type_name = Symtab.lookup (get_pred_data ctxt) type_name
+  |> Option.map (morph_pred_data (Morphism.transfer_morphism (Proof_Context.theory_of ctxt)))
+
+fun update_pred_data type_name qinfo ctxt = 
+  Data.map (map_pred_data (Symtab.update (type_name, qinfo))) ctxt
+
+(* Theory setup *)
+
+val relator_eq_setup =
+  let
+    val name = @{binding relator_eq}
+    fun add_thm thm context = context
+      |> Data.map (map_relator_eq (Item_Net.update thm))
+      |> Data.map (map_relator_eq_raw
+          (Item_Net.update (abstract_equalities_relator_eq (Context.proof_of context) thm)))
+    fun del_thm thm context = context
+      |> Data.map (map_relator_eq (Item_Net.remove thm))
+      |> Data.map (map_relator_eq_raw
+          (Item_Net.remove (abstract_equalities_relator_eq (Context.proof_of context) thm)))
+    val add = Thm.declaration_attribute add_thm
+    val del = Thm.declaration_attribute del_thm
+    val text = "declaration of relator equality rule (used by transfer method)"
+    val content = Item_Net.content o #relator_eq o Data.get
+  in
+    Attrib.setup name (Attrib.add_del add del) text
+    #> Global_Theory.add_thms_dynamic (name, content)
+  end
+
+val relator_domain_setup =
+  let
+    val name = @{binding relator_domain}
+    fun add_thm thm context = 
+      let
+        val thm = abstract_domains_relator_domain (Context.proof_of context) thm
+      in
+        context |> Data.map (map_relator_domain (Item_Net.update thm)) |> add_transfer_domain_thm thm
+      end
+    fun del_thm thm context = 
+      let
+        val thm = abstract_domains_relator_domain (Context.proof_of context) thm
+      in
+        context |> Data.map (map_relator_domain (Item_Net.remove thm)) |> del_transfer_domain_thm thm
+      end
+    val add = Thm.declaration_attribute add_thm
+    val del = Thm.declaration_attribute del_thm
+    val text = "declaration of relator domain rule (used by transfer method)"
+    val content = Item_Net.content o #relator_domain o Data.get
+  in
+    Attrib.setup name (Attrib.add_del add del) text
+    #> Global_Theory.add_thms_dynamic (name, content)
+  end
+
+val setup =
+  relator_eq_setup
+  #> relator_domain_setup
+  #> Attrib.setup @{binding transfer_rule} transfer_attribute
+     "transfer rule for transfer method"
+  #> Global_Theory.add_thms_dynamic
+     (@{binding transfer_raw}, Item_Net.content o #transfer_raw o Data.get)
+  #> Attrib.setup @{binding transfer_domain_rule} transfer_domain_attribute
+     "transfer domain rule for transfer method"
+  #> Attrib.setup @{binding transferred} transferred_attribute_parser
+     "raw theorem transferred to abstract theorem using transfer rules"
+  #> Attrib.setup @{binding untransferred} untransferred_attribute_parser
+     "abstract theorem transferred to raw theorem using transfer rules"
+  #> Global_Theory.add_thms_dynamic
+     (@{binding relator_eq_raw}, Item_Net.content o #relator_eq_raw o Data.get)
+  #> Method.setup @{binding transfer} (transfer_method true)
+     "generic theorem transfer method"
+  #> Method.setup @{binding transfer'} (transfer_method false)
+     "generic theorem transfer method"
+  #> Method.setup @{binding transfer_prover} transfer_prover_method
+     "for proving transfer rules"
+
+end