--- a/src/Doc/Tutorial/Ifexpr/Ifexpr.thy Sat Nov 01 11:40:55 2014 +0100
+++ b/src/Doc/Tutorial/Ifexpr/Ifexpr.thy Sat Nov 01 14:20:38 2014 +0100
@@ -1,5 +1,5 @@
(*<*)
-theory Ifexpr imports Main begin;
+theory Ifexpr imports Main begin
(*>*)
subsection{*Case Study: Boolean Expressions*}
@@ -19,7 +19,7 @@
*}
datatype boolex = Const bool | Var nat | Neg boolex
- | And boolex boolex;
+ | And boolex boolex
text{*\noindent
The two constants are represented by @{term"Const True"} and
@@ -51,7 +51,7 @@
(@{term"IF"}):
*}
-datatype ifex = CIF bool | VIF nat | IF ifex ifex ifex;
+datatype ifex = CIF bool | VIF nat | IF ifex ifex ifex
text{*\noindent
The evaluation of If-expressions proceeds as for @{typ"boolex"}:
@@ -82,14 +82,14 @@
value of its argument:
*}
-lemma "valif (bool2if b) env = value b env";
+lemma "valif (bool2if b) env = value b env"
txt{*\noindent
The proof is canonical:
*}
-apply(induct_tac b);
-apply(auto);
+apply(induct_tac b)
+apply(auto)
done
text{*\noindent
@@ -120,7 +120,7 @@
transformation preserves the value of the expression:
*}
-theorem "valif (norm b) env = valif b env";(*<*)oops;(*>*)
+theorem "valif (norm b) env = valif b env"(*<*)oops(*>*)
text{*\noindent
The proof is canonical, provided we first show the following simplification
@@ -128,14 +128,14 @@
*}
lemma [simp]:
- "\<forall>t e. valif (normif b t e) env = valif (IF b t e) env";
+ "\<forall>t e. valif (normif b t e) env = valif (IF b t e) env"
(*<*)
-apply(induct_tac b);
-by(auto);
+apply(induct_tac b)
+by(auto)
-theorem "valif (norm b) env = valif b env";
-apply(induct_tac b);
-by(auto);
+theorem "valif (norm b) env = valif b env"
+apply(induct_tac b)
+by(auto)
(*>*)
text{*\noindent
Note that the lemma does not have a name, but is implicitly used in the proof
@@ -156,14 +156,14 @@
normality of @{term"normif"}:
*}
-lemma [simp]: "\<forall>t e. normal(normif b t e) = (normal t \<and> normal e)";
+lemma [simp]: "\<forall>t e. normal(normif b t e) = (normal t \<and> normal e)"
(*<*)
-apply(induct_tac b);
-by(auto);
+apply(induct_tac b)
+by(auto)
-theorem "normal(norm b)";
-apply(induct_tac b);
-by(auto);
+theorem "normal(norm b)"
+apply(induct_tac b)
+by(auto)
(*>*)
text{*\medskip