included managing_thread in state of AtpManager:
synchronized termination and check for running managing_thread
(* Title: HOL/Induct/Tree.thy
ID: $Id$
Author: Stefan Berghofer, TU Muenchen
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
*)
header {* Infinitely branching trees *}
theory Tree imports Main begin
datatype 'a tree =
Atom 'a
| Branch "nat => 'a tree"
consts
map_tree :: "('a => 'b) => 'a tree => 'b tree"
primrec
"map_tree f (Atom a) = Atom (f a)"
"map_tree f (Branch ts) = Branch (\<lambda>x. map_tree f (ts x))"
lemma tree_map_compose: "map_tree g (map_tree f t) = map_tree (g \<circ> f) t"
by (induct t) simp_all
consts
exists_tree :: "('a => bool) => 'a tree => bool"
primrec
"exists_tree P (Atom a) = P a"
"exists_tree P (Branch ts) = (\<exists>x. exists_tree P (ts x))"
lemma exists_map:
"(!!x. P x ==> Q (f x)) ==>
exists_tree P ts ==> exists_tree Q (map_tree f ts)"
by (induct ts) auto
subsection{*The Brouwer ordinals, as in ZF/Induct/Brouwer.thy.*}
datatype brouwer = Zero | Succ "brouwer" | Lim "nat => brouwer"
text{*Addition of ordinals*}
consts
add :: "[brouwer,brouwer] => brouwer"
primrec
"add i Zero = i"
"add i (Succ j) = Succ (add i j)"
"add i (Lim f) = Lim (%n. add i (f n))"
lemma add_assoc: "add (add i j) k = add i (add j k)"
by (induct k) auto
text{*Multiplication of ordinals*}
consts
mult :: "[brouwer,brouwer] => brouwer"
primrec
"mult i Zero = Zero"
"mult i (Succ j) = add (mult i j) i"
"mult i (Lim f) = Lim (%n. mult i (f n))"
lemma add_mult_distrib: "mult i (add j k) = add (mult i j) (mult i k)"
by (induct k) (auto simp add: add_assoc)
lemma mult_assoc: "mult (mult i j) k = mult i (mult j k)"
by (induct k) (auto simp add: add_mult_distrib)
text{*We could probably instantiate some axiomatic type classes and use
the standard infix operators.*}
subsection{*A WF Ordering for The Brouwer ordinals (Michael Compton)*}
text{*To define recdef style functions we need an ordering on the Brouwer
ordinals. Start with a predecessor relation and form its transitive
closure. *}
definition
brouwer_pred :: "(brouwer * brouwer) set" where
"brouwer_pred = (\<Union>i. {(m,n). n = Succ m \<or> (EX f. n = Lim f & m = f i)})"
definition
brouwer_order :: "(brouwer * brouwer) set" where
"brouwer_order = brouwer_pred^+"
lemma wf_brouwer_pred: "wf brouwer_pred"
by(unfold wf_def brouwer_pred_def, clarify, induct_tac x, blast+)
lemma wf_brouwer_order: "wf brouwer_order"
by(unfold brouwer_order_def, rule wf_trancl[OF wf_brouwer_pred])
lemma [simp]: "(j, Succ j) : brouwer_order"
by(auto simp add: brouwer_order_def brouwer_pred_def)
lemma [simp]: "(f n, Lim f) : brouwer_order"
by(auto simp add: brouwer_order_def brouwer_pred_def)
text{*Example of a recdef*}
consts
add2 :: "(brouwer*brouwer) => brouwer"
recdef add2 "inv_image brouwer_order (\<lambda> (x,y). y)"
"add2 (i, Zero) = i"
"add2 (i, (Succ j)) = Succ (add2 (i, j))"
"add2 (i, (Lim f)) = Lim (\<lambda> n. add2 (i, (f n)))"
(hints recdef_wf: wf_brouwer_order)
lemma add2_assoc: "add2 (add2 (i, j), k) = add2 (i, add2 (j, k))"
by (induct k) auto
end