normalized Proof.context/method type aliases;
simplified Assumption/ProofContext.export;
tuned;
(* Title: Pure/goal.ML
ID: $Id$
Author: Makarius and Lawrence C Paulson
Goals in tactical theorem proving.
*)
signature BASIC_GOAL =
sig
val SELECT_GOAL: tactic -> int -> tactic
end;
signature GOAL =
sig
include BASIC_GOAL
val init: cterm -> thm
val protect: thm -> thm
val conclude: thm -> thm
val finish: thm -> thm
val compose_hhf: thm -> int -> thm -> thm Seq.seq
val compose_hhf_tac: thm -> int -> tactic
val comp_hhf: thm -> thm -> thm
val prove_raw: cterm list -> cterm -> (thm list -> tactic) -> thm
val prove_multi: Proof.context -> string list -> term list -> term list ->
({prems: thm list, context: Proof.context} -> tactic) -> thm list
val prove: Proof.context -> string list -> term list -> term ->
({prems: thm list, context: Proof.context} -> tactic) -> thm
val prove_global: theory -> string list -> term list -> term -> (thm list -> tactic) -> thm
val extract: int -> int -> thm -> thm Seq.seq
val retrofit: int -> int -> thm -> thm -> thm Seq.seq
end;
structure Goal: GOAL =
struct
(** goals **)
(*
-------- (init)
C ==> #C
*)
val init =
let val A = #1 (Drule.dest_implies (Thm.cprop_of Drule.protectI))
in fn C => Thm.instantiate ([], [(A, C)]) Drule.protectI end;
(*
C
--- (protect)
#C
*)
fun protect th = th COMP Drule.incr_indexes th Drule.protectI;
(*
A ==> ... ==> #C
---------------- (conclude)
A ==> ... ==> C
*)
fun conclude th =
(case SINGLE (Thm.compose_no_flatten false (th, Thm.nprems_of th) 1)
(Drule.incr_indexes th Drule.protectD) of
SOME th' => th'
| NONE => raise THM ("Failed to conclude goal", 0, [th]));
(*
#C
--- (finish)
C
*)
fun finish th =
(case Thm.nprems_of th of
0 => conclude th
| n => raise THM ("Proof failed.\n" ^
Pretty.string_of (Pretty.chunks (Display.pretty_goals n th)) ^
("\n" ^ string_of_int n ^ " unsolved goal(s)!"), 0, [th]));
(** results **)
(* composition of normal results *)
fun compose_hhf tha i thb =
Thm.bicompose false (false, Drule.lift_all (Thm.cprem_of thb i) tha, 0) i thb;
fun compose_hhf_tac th i = PRIMSEQ (compose_hhf th i);
fun comp_hhf tha thb =
(case Seq.chop 2 (compose_hhf tha 1 thb) of
([th], _) => th
| ([], _) => raise THM ("comp_hhf: no unifiers", 1, [tha, thb])
| _ => raise THM ("comp_hhf: multiple unifiers", 1, [tha, thb]));
(** tactical theorem proving **)
(* prove_raw -- no checks, no normalization of result! *)
fun prove_raw casms cprop tac =
(case SINGLE (tac (map Assumption.assume casms)) (init cprop) of
SOME th => Drule.implies_intr_list casms (finish th)
| NONE => error "Tactic failed.");
(* prove_multi *)
fun prove_multi ctxt xs asms props tac =
let
val thy = Context.theory_of_proof ctxt;
val string_of_term = Sign.string_of_term thy;
fun err msg = cat_error msg
("The error(s) above occurred for the goal statement:\n" ^
string_of_term (Logic.list_implies (asms, Logic.mk_conjunction_list props)));
fun cert_safe t = Thm.cterm_of thy (Envir.beta_norm (Term.no_dummy_patterns t))
handle TERM (msg, _) => err msg | TYPE (msg, _, _) => err msg;
val casms = map cert_safe asms;
val cprops = map cert_safe props;
val (prems, ctxt') = ctxt
|> Variable.add_fixes_direct xs
|> fold Variable.declare_internal (asms @ props)
|> Assumption.add_assumes casms;
val goal = init (Conjunction.mk_conjunction_list cprops);
val res =
(case SINGLE (tac {prems = prems, context = ctxt'}) goal of
NONE => err "Tactic failed."
| SOME res => res);
val [results] = Conjunction.elim_precise [length props] (finish res)
handle THM (msg, _, _) => err msg;
val _ = Unify.matches_list thy (map Thm.term_of cprops) (map Thm.prop_of results)
orelse err ("Proved a different theorem: " ^ string_of_term (Thm.prop_of res));
in
results
|> map (Assumption.export false ctxt' ctxt)
|> Variable.export ctxt' ctxt
|> map Drule.zero_var_indexes
end;
(* prove *)
fun prove ctxt xs asms prop tac = hd (prove_multi ctxt xs asms [prop] tac);
fun prove_global thy xs asms prop tac =
Drule.standard (prove (Context.init_proof thy) xs asms prop (fn {prems, ...} => tac prems));
(** local goal states **)
fun extract i n st =
(if i < 1 orelse n < 1 orelse i + n - 1 > Thm.nprems_of st then Seq.empty
else if n = 1 then Seq.single (Thm.cprem_of st i)
else Seq.single (foldr1 Conjunction.mk_conjunction (map (Thm.cprem_of st) (i upto i + n - 1))))
|> Seq.map (Thm.adjust_maxidx_cterm ~1 #> init);
fun retrofit i n st' st =
(if n = 1 then st
else st |> Drule.rotate_prems (i - 1) |> Conjunction.uncurry n |> Drule.rotate_prems (1 - i))
|> Thm.compose_no_flatten false (conclude st', Thm.nprems_of st') i;
fun SELECT_GOAL tac i st =
if Thm.nprems_of st = 1 andalso i = 1 then tac st
else Seq.lifts (retrofit i 1) (Seq.maps tac (extract i 1 st)) st;
end;
structure BasicGoal: BASIC_GOAL = Goal;
open BasicGoal;