src/HOL/IMP/AExp.thy
author wenzelm
Wed, 17 Aug 2011 20:08:36 +0200
changeset 44246 380a4677c55d
parent 44036 d03f9f28d01d
child 44923 b80108b346a9
permissions -rw-r--r--
tuned signature;

header "Arithmetic and Boolean Expressions"

theory AExp imports Main begin

subsection "Arithmetic Expressions"

type_synonym name = string
type_synonym val = int
type_synonym state = "name \<Rightarrow> val"

datatype aexp = N int | V name | Plus aexp aexp

fun aval :: "aexp \<Rightarrow> state \<Rightarrow> val" where
"aval (N n) _ = n" |
"aval (V x) s = s x" |
"aval (Plus a1 a2) s = aval a1 s + aval a2 s"


value "aval (Plus (V ''x'') (N 5)) (%x. if x = ''x'' then 7 else 0)"

text {* The same state more concisely: *}
value "aval (Plus (V ''x'') (N 5)) ((%x. 0) (''x'':= 7))"

text {* A little syntax magic to write larger states compactly: *}

definition
  "null_heap \<equiv> \<lambda>x. 0"
syntax 
  "_State" :: "updbinds => 'a" ("<_>")
translations
  "_State ms" => "_Update (CONST null_heap) ms"

text {* 
  We can now write a series of updates to the function @{text "\<lambda>x. 0"} compactly:
*}
lemma "<a := Suc 0, b := 2> = (null_heap (a := Suc 0)) (b := 2)"
  by (rule refl)

value "aval (Plus (V ''x'') (N 5)) <''x'' := 7>"

text {* Variables that are not mentioned in the state are 0 by default in 
  the @{term "<a := b::int>"} syntax: 
*}   
value "aval (Plus (V ''x'') (N 5)) <''y'' := 7>"


subsection "Optimization"

text{* Evaluate constant subsexpressions: *}

fun asimp_const :: "aexp \<Rightarrow> aexp" where
"asimp_const (N n) = N n" |
"asimp_const (V x) = V x" |
"asimp_const (Plus a1 a2) =
  (case (asimp_const a1, asimp_const a2) of
    (N n1, N n2) \<Rightarrow> N(n1+n2) |
    (a1',a2') \<Rightarrow> Plus a1' a2')"

theorem aval_asimp_const[simp]:
  "aval (asimp_const a) s = aval a s"
apply(induct a)
apply (auto split: aexp.split)
done

text{* Now we also eliminate all occurrences 0 in additions. The standard
method: optimized versions of the constructors: *}

fun plus :: "aexp \<Rightarrow> aexp \<Rightarrow> aexp" where
"plus (N i1) (N i2) = N(i1+i2)" |
"plus (N i) a = (if i=0 then a else Plus (N i) a)" |
"plus a (N i) = (if i=0 then a else Plus a (N i))" |
"plus a1 a2 = Plus a1 a2"

code_thms plus
code_thms plus

(* FIXME: dropping subsumed code eqns?? *)
lemma aval_plus[simp]:
  "aval (plus a1 a2) s = aval a1 s + aval a2 s"
apply(induct a1 a2 rule: plus.induct)
apply simp_all (* just for a change from auto *)
done
code_thms plus

fun asimp :: "aexp \<Rightarrow> aexp" where
"asimp (N n) = N n" |
"asimp (V x) = V x" |
"asimp (Plus a1 a2) = plus (asimp a1) (asimp a2)"

text{* Note that in @{const asimp_const} the optimized constructor was
inlined. Making it a separate function @{const plus} improves modularity of
the code and the proofs. *}

value "asimp (Plus (Plus (N 0) (N 0)) (Plus (V ''x'') (N 0)))"

theorem aval_asimp[simp]:
  "aval (asimp a) s = aval a s"
apply(induct a)
apply simp_all
done

end