src/HOL/IMP/AExp.thy
 author paulson Sat, 04 Dec 2021 20:30:16 +0000 changeset 74878 0263787a06b4 parent 69597 ff784d5a5bfb permissions -rw-r--r--
a slightly simpler proof

section "Arithmetic and Boolean Expressions"

subsection "Arithmetic Expressions"

theory AExp imports Main begin

type_synonym vname = string
type_synonym val = int
type_synonym state = "vname \<Rightarrow> val"

text_raw\<open>\snip{AExpaexpdef}{2}{1}{%\<close>
datatype aexp = N int | V vname | Plus aexp aexp
text_raw\<open>}%endsnip\<close>

text_raw\<open>\snip{AExpavaldef}{1}{2}{%\<close>
fun aval :: "aexp \<Rightarrow> state \<Rightarrow> val" where
"aval (N n) s = n" |
"aval (V x) s = s x" |
"aval (Plus a\<^sub>1 a\<^sub>2) s = aval a\<^sub>1 s + aval a\<^sub>2 s"
text_raw\<open>}%endsnip\<close>

value "aval (Plus (V ''x'') (N 5)) (\<lambda>x. if x = ''x'' then 7 else 0)"

text \<open>The same state more concisely:\<close>
value "aval (Plus (V ''x'') (N 5)) ((\<lambda>x. 0) (''x'':= 7))"

text \<open>A little syntax magic to write larger states compactly:\<close>

definition null_state ("<>") where
"null_state \<equiv> \<lambda>x. 0"
syntax
"_State" :: "updbinds => 'a" ("<_>")
translations
"_State ms" == "_Update <> ms"
"_State (_updbinds b bs)" <= "_Update (_State b) bs"

text \<open>\noindent
We can now write a series of updates to the function \<open>\<lambda>x. 0\<close> compactly:
\<close>
lemma "<a := 1, b := 2> = (<> (a := 1)) (b := (2::int))"
by (rule refl)

value "aval (Plus (V ''x'') (N 5)) <''x'' := 7>"

text \<open>In  the @{term[source] "<a := b>"} syntax, variables that are not mentioned are 0 by default:
\<close>
value "aval (Plus (V ''x'') (N 5)) <''y'' := 7>"

text\<open>Note that this \<open><\<dots>>\<close> syntax works for any function space
\<open>\<tau>\<^sub>1 \<Rightarrow> \<tau>\<^sub>2\<close> where \<open>\<tau>\<^sub>2\<close> has a \<open>0\<close>.\<close>

subsection "Constant Folding"

text\<open>Evaluate constant subsexpressions:\<close>

text_raw\<open>\snip{AExpasimpconstdef}{0}{2}{%\<close>
fun asimp_const :: "aexp \<Rightarrow> aexp" where
"asimp_const (N n) = N n" |
"asimp_const (V x) = V x" |
"asimp_const (Plus a\<^sub>1 a\<^sub>2) =
(case (asimp_const a\<^sub>1, asimp_const a\<^sub>2) of
(N n\<^sub>1, N n\<^sub>2) \<Rightarrow> N(n\<^sub>1+n\<^sub>2) |
(b\<^sub>1,b\<^sub>2) \<Rightarrow> Plus b\<^sub>1 b\<^sub>2)"
text_raw\<open>}%endsnip\<close>

theorem aval_asimp_const:
"aval (asimp_const a) s = aval a s"
apply(induction a)
apply (auto split: aexp.split)
done

text\<open>Now we also eliminate all occurrences 0 in additions. The standard
method: optimized versions of the constructors:\<close>

text_raw\<open>\snip{AExpplusdef}{0}{2}{%\<close>
fun plus :: "aexp \<Rightarrow> aexp \<Rightarrow> aexp" where
"plus (N i\<^sub>1) (N i\<^sub>2) = N(i\<^sub>1+i\<^sub>2)" |
"plus (N i) a = (if i=0 then a else Plus (N i) a)" |
"plus a (N i) = (if i=0 then a else Plus a (N i))" |
"plus a\<^sub>1 a\<^sub>2 = Plus a\<^sub>1 a\<^sub>2"
text_raw\<open>}%endsnip\<close>

lemma aval_plus[simp]:
"aval (plus a1 a2) s = aval a1 s + aval a2 s"
apply(induction a1 a2 rule: plus.induct)
apply simp_all (* just for a change from auto *)
done

text_raw\<open>\snip{AExpasimpdef}{2}{0}{%\<close>
fun asimp :: "aexp \<Rightarrow> aexp" where
"asimp (N n) = N n" |
"asimp (V x) = V x" |
"asimp (Plus a\<^sub>1 a\<^sub>2) = plus (asimp a\<^sub>1) (asimp a\<^sub>2)"
text_raw\<open>}%endsnip\<close>

text\<open>Note that in \<^const>\<open>asimp_const\<close> the optimized constructor was
inlined. Making it a separate function \<^const>\<open>plus\<close> improves modularity of
the code and the proofs.\<close>

value "asimp (Plus (Plus (N 0) (N 0)) (Plus (V ''x'') (N 0)))"

theorem aval_asimp[simp]:
"aval (asimp a) s = aval a s"
apply(induction a)
apply simp_all
done

end