(* Title: HOLCF/Lift.thy
ID: $Id$
Author: Olaf Mueller
License: GPL (GNU GENERAL PUBLIC LICENSE)
*)
header {* Lifting types of class type to flat pcpo's *}
theory Lift = Cprod3:
defaultsort type
typedef 'a lift = "UNIV :: 'a option set" ..
constdefs
Undef :: "'a lift"
"Undef == Abs_lift None"
Def :: "'a => 'a lift"
"Def x == Abs_lift (Some x)"
instance lift :: (type) sq_ord ..
defs (overloaded)
less_lift_def: "x << y == (x=y | x=Undef)"
instance lift :: (type) po
proof
fix x y z :: "'a lift"
show "x << x" by (unfold less_lift_def) blast
{ assume "x << y" and "y << x" thus "x = y" by (unfold less_lift_def) blast }
{ assume "x << y" and "y << z" thus "x << z" by (unfold less_lift_def) blast }
qed
lemma inst_lift_po: "(op <<) = (\<lambda>x y. x = y | x = Undef)"
-- {* For compatibility with old HOLCF-Version. *}
by (simp only: less_lift_def [symmetric])
subsection {* Type lift is pointed *}
lemma minimal_lift [iff]: "Undef << x"
by (simp add: inst_lift_po)
lemma UU_lift_def: "(SOME u. \<forall>y. u \<sqsubseteq> y) = Undef"
apply (rule minimal2UU [symmetric])
apply (rule minimal_lift)
done
lemma least_lift: "EX x::'a lift. ALL y. x << y"
apply (rule_tac x = Undef in exI)
apply (rule minimal_lift [THEN allI])
done
subsection {* Type lift is a cpo *}
text {*
The following lemmas have already been proved in @{text Pcpo.ML} and
@{text Fix.ML}, but there class @{text pcpo} is assumed, although
only @{text po} is necessary and a least element. Therefore they are
redone here for the @{text po} lift with least element @{text
Undef}.
*}
lemma notUndef_I: "[| x<<y; x ~= Undef |] ==> y ~= Undef"
-- {* Tailoring @{text notUU_I} of @{text Pcpo.ML} to @{text Undef} *}
by (blast intro: antisym_less)
lemma chain_mono2_po: "[| EX j.~Y(j)=Undef; chain(Y::nat=>('a)lift) |]
==> EX j. ALL i. j<i-->~Y(i)=Undef"
-- {* Tailoring @{text chain_mono2} of @{text Pcpo.ML} to @{text Undef} *}
apply safe
apply (rule exI)
apply (intro strip)
apply (rule notUndef_I)
apply (erule (1) chain_mono)
apply assumption
done
lemma flat_imp_chfin_poo: "(ALL Y. chain(Y::nat=>('a)lift)-->(EX n. max_in_chain n Y))"
-- {* Tailoring @{text flat_imp_chfin} of @{text Fix.ML} to @{text lift} *}
apply (unfold max_in_chain_def)
apply (intro strip)
apply (rule_tac P = "ALL i. Y (i) = Undef" in case_split)
apply (rule_tac x = 0 in exI)
apply (intro strip)
apply (rule trans)
apply (erule spec)
apply (rule sym)
apply (erule spec)
apply (subgoal_tac "ALL x y. x << (y:: ('a) lift) --> x=Undef | x=y")
prefer 2 apply (simp add: inst_lift_po)
apply (rule chain_mono2_po [THEN exE])
apply fast
apply assumption
apply (rule_tac x = "Suc x" in exI)
apply (intro strip)
apply (rule disjE)
prefer 3 apply assumption
apply (rule mp)
apply (drule spec)
apply (erule spec)
apply (erule le_imp_less_or_eq [THEN disjE])
apply (erule chain_mono)
apply auto
done
theorem cpo_lift: "chain (Y::nat => 'a lift) ==> EX x. range Y <<| x"
apply (cut_tac flat_imp_chfin_poo)
apply (blast intro: lub_finch1)
done
instance lift :: (type) pcpo
apply intro_classes
apply (erule cpo_lift)
apply (rule least_lift)
done
lemma inst_lift_pcpo: "UU = Undef"
-- {* For compatibility with old HOLCF-Version. *}
by (simp add: UU_def UU_lift_def)
subsection {* Lift as a datatype *}
lemma lift_distinct1: "UU ~= Def x"
by (simp add: Undef_def Def_def Abs_lift_inject lift_def inst_lift_pcpo)
lemma lift_distinct2: "Def x ~= UU"
by (simp add: Undef_def Def_def Abs_lift_inject lift_def inst_lift_pcpo)
lemma Def_inject: "(Def x = Def x') = (x = x')"
by (simp add: Def_def Abs_lift_inject lift_def)
lemma lift_induct: "P UU ==> (!!x. P (Def x)) ==> P y"
apply (induct y)
apply (induct_tac y)
apply (simp_all add: Undef_def Def_def inst_lift_pcpo)
done
rep_datatype lift
distinct lift_distinct1 lift_distinct2
inject Def_inject
induction lift_induct
lemma Def_not_UU: "Def a ~= UU"
by simp
subsection {* Further operations *}
consts
flift1 :: "('a => 'b::pcpo) => ('a lift -> 'b)"
flift2 :: "('a => 'b) => ('a lift -> 'b lift)"
liftpair ::"'a::type lift * 'b::type lift => ('a * 'b) lift"
defs
flift1_def:
"flift1 f == (LAM x. (case x of
UU => UU
| Def y => (f y)))"
flift2_def:
"flift2 f == (LAM x. (case x of
UU => UU
| Def y => Def (f y)))"
liftpair_def:
"liftpair x == (case (cfst$x) of
UU => UU
| Def x1 => (case (csnd$x) of
UU => UU
| Def x2 => Def (x1,x2)))"
declare inst_lift_pcpo [symmetric, simp]
lemma less_lift: "(x::'a lift) << y = (x=y | x=UU)"
by (simp add: inst_lift_po)
text {* @{text UU} and @{text Def} *}
lemma Lift_exhaust: "x = UU | (EX y. x = Def y)"
by (induct x) simp_all
lemma Lift_cases: "[| x = UU ==> P; ? a. x = Def a ==> P |] ==> P"
by (insert Lift_exhaust) blast
lemma not_Undef_is_Def: "(x ~= UU) = (EX y. x = Def y)"
by (cases x) simp_all
text {*
For @{term "x ~= UU"} in assumptions @{text def_tac} replaces @{text
x} by @{text "Def a"} in conclusion. *}
ML {*
local val not_Undef_is_Def = thm "not_Undef_is_Def"
in val def_tac = SIMPSET' (fn ss =>
etac (not_Undef_is_Def RS iffD1 RS exE) THEN' asm_simp_tac ss)
end;
*}
lemma Undef_eq_UU: "Undef = UU"
by (rule inst_lift_pcpo [symmetric])
lemma DefE: "Def x = UU ==> R"
by simp
lemma DefE2: "[| x = Def s; x = UU |] ==> R"
by simp
lemma Def_inject_less_eq: "Def x << Def y = (x = y)"
by (simp add: less_lift_def)
lemma Def_less_is_eq [simp]: "Def x << y = (Def x = y)"
by (simp add: less_lift)
subsection {* Lift is flat *}
instance lift :: (type) flat
proof
show "ALL x y::'a lift. x << y --> x = UU | x = y"
by (simp add: less_lift)
qed
defaultsort pcpo
text {*
\medskip Two specific lemmas for the combination of LCF and HOL
terms.
*}
lemma cont_Rep_CFun_app: "[|cont g; cont f|] ==> cont(%x. ((f x)$(g x)) s)"
apply (rule cont2cont_CF1L)
apply (tactic "resolve_tac cont_lemmas1 1")+
apply auto
done
lemma cont_Rep_CFun_app_app: "[|cont g; cont f|] ==> cont(%x. ((f x)$(g x)) s t)"
apply (rule cont2cont_CF1L)
apply (erule cont_Rep_CFun_app)
apply assumption
done
text {* Continuity of if-then-else. *}
lemma cont_if: "[| cont f1; cont f2 |] ==> cont (%x. if b then f1 x else f2 x)"
by (cases b) simp_all
subsection {* Continuity Proofs for flift1, flift2, if *}
text {* Need the instance of @{text flat}. *}
lemma cont_flift1_arg: "cont (lift_case UU f)"
-- {* @{text flift1} is continuous in its argument itself. *}
apply (rule flatdom_strict2cont)
apply simp
done
lemma cont_flift1_not_arg: "!!f. [| !! a. cont (%y. (f y) a) |] ==>
cont (%y. lift_case UU (f y))"
-- {* @{text flift1} is continuous in a variable that occurs only
in the @{text Def} branch. *}
apply (rule cont2cont_CF1L_rev)
apply (intro strip)
apply (case_tac y)
apply simp
apply simp
done
lemma cont_flift1_arg_and_not_arg: "!!f. [| !! a. cont (%y. (f y) a); cont g|] ==>
cont (%y. lift_case UU (f y) (g y))"
-- {* @{text flift1} is continuous in a variable that occurs either
in the @{text Def} branch or in the argument. *}
apply (rule_tac tt = g in cont2cont_app)
apply (rule cont_flift1_not_arg)
apply auto
apply (rule cont_flift1_arg)
done
lemma cont_flift2_arg: "cont (lift_case UU (%y. Def (f y)))"
-- {* @{text flift2} is continuous in its argument itself. *}
apply (rule flatdom_strict2cont)
apply simp
done
text {*
\medskip Extension of @{text cont_tac} and installation of simplifier.
*}
lemma cont2cont_CF1L_rev2: "(!!y. cont (%x. c1 x y)) ==> cont c1"
apply (rule cont2cont_CF1L_rev)
apply simp
done
lemmas cont_lemmas_ext [simp] =
cont_flift1_arg cont_flift2_arg
cont_flift1_arg_and_not_arg cont2cont_CF1L_rev2
cont_Rep_CFun_app cont_Rep_CFun_app_app cont_if
ML_setup {*
val cont_lemmas2 = cont_lemmas1 @ thms "cont_lemmas_ext";
fun cont_tac i = resolve_tac cont_lemmas2 i;
fun cont_tacR i = REPEAT (cont_tac i);
local val flift1_def = thm "flift1_def" and flift2_def = thm "flift2_def"
in fun cont_tacRs i =
simp_tac (simpset() addsimps [flift1_def, flift2_def]) i THEN
REPEAT (cont_tac i)
end;
simpset_ref() := simpset() addSolver
(mk_solver "cont_tac" (K (DEPTH_SOLVE_1 o cont_tac)));
*}
subsection {* flift1, flift2 *}
lemma flift1_Def [simp]: "flift1 f$(Def x) = (f x)"
by (simp add: flift1_def)
lemma flift2_Def [simp]: "flift2 f$(Def x) = Def (f x)"
by (simp add: flift2_def)
lemma flift1_UU [simp]: "flift1 f$UU = UU"
by (simp add: flift1_def)
lemma flift2_UU [simp]: "flift2 f$UU = UU"
by (simp add: flift2_def)
lemma flift2_nUU [simp]: "x~=UU ==> (flift2 f)$x~=UU"
by (tactic "def_tac 1")
end