src/HOLCF/Lift.thy
author oheimb
Fri, 11 Jul 2003 14:11:56 +0200
changeset 14098 54f130df1136
parent 14096 f79d139c7e46
child 14981 e73f8140af78
permissions -rw-r--r--
added rev_ballE
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
     1
(*  Title:      HOLCF/Lift.thy
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
     2
    ID:         $Id$
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
     3
    Author:     Olaf Mueller
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
     5
*)
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
     6
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12026
diff changeset
     7
header {* Lifting types of class type to flat pcpo's *}
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
     8
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
     9
theory Lift = Cprod3:
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    10
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12026
diff changeset
    11
defaultsort type
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    12
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    13
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    14
typedef 'a lift = "UNIV :: 'a option set" ..
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    15
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    16
constdefs
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    17
  Undef :: "'a lift"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    18
  "Undef == Abs_lift None"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    19
  Def :: "'a => 'a lift"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    20
  "Def x == Abs_lift (Some x)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    21
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12026
diff changeset
    22
instance lift :: (type) sq_ord ..
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    23
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    24
defs (overloaded)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    25
  less_lift_def: "x << y == (x=y | x=Undef)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    26
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12026
diff changeset
    27
instance lift :: (type) po
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    28
proof
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    29
  fix x y z :: "'a lift"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    30
  show "x << x" by (unfold less_lift_def) blast
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    31
  { assume "x << y" and "y << x" thus "x = y" by (unfold less_lift_def) blast }
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    32
  { assume "x << y" and "y << z" thus "x << z" by (unfold less_lift_def) blast }
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    33
qed
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    34
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    35
lemma inst_lift_po: "(op <<) = (\<lambda>x y. x = y | x = Undef)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    36
  -- {* For compatibility with old HOLCF-Version. *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    37
  by (simp only: less_lift_def [symmetric])
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    38
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    39
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    40
subsection {* Type lift is pointed *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    41
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    42
lemma minimal_lift [iff]: "Undef << x"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    43
  by (simp add: inst_lift_po)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    44
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    45
lemma UU_lift_def: "(SOME u. \<forall>y. u \<sqsubseteq> y) = Undef"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    46
  apply (rule minimal2UU [symmetric])
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    47
  apply (rule minimal_lift)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    48
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    49
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    50
lemma least_lift: "EX x::'a lift. ALL y. x << y"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    51
  apply (rule_tac x = Undef in exI)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    52
  apply (rule minimal_lift [THEN allI])
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    53
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    54
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    55
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    56
subsection {* Type lift is a cpo *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    57
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    58
text {*
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    59
  The following lemmas have already been proved in @{text Pcpo.ML} and
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    60
  @{text Fix.ML}, but there class @{text pcpo} is assumed, although
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    61
  only @{text po} is necessary and a least element. Therefore they are
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    62
  redone here for the @{text po} lift with least element @{text
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    63
  Undef}.
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    64
*}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    65
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    66
lemma notUndef_I: "[| x<<y; x ~= Undef |] ==> y ~= Undef"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    67
  -- {* Tailoring @{text notUU_I} of @{text Pcpo.ML} to @{text Undef} *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    68
  by (blast intro: antisym_less)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    69
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    70
lemma chain_mono2_po: "[| EX j.~Y(j)=Undef; chain(Y::nat=>('a)lift) |]
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    71
         ==> EX j. ALL i. j<i-->~Y(i)=Undef"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    72
  -- {* Tailoring @{text chain_mono2} of @{text Pcpo.ML} to @{text Undef} *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    73
  apply safe
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    74
  apply (rule exI)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    75
  apply (intro strip)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    76
  apply (rule notUndef_I)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    77
   apply (erule (1) chain_mono)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    78
  apply assumption
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    79
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    80
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    81
lemma flat_imp_chfin_poo: "(ALL Y. chain(Y::nat=>('a)lift)-->(EX n. max_in_chain n Y))"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    82
  -- {* Tailoring @{text flat_imp_chfin} of @{text Fix.ML} to @{text lift} *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    83
  apply (unfold max_in_chain_def)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    84
  apply (intro strip)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    85
  apply (rule_tac P = "ALL i. Y (i) = Undef" in case_split)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    86
   apply (rule_tac x = 0 in exI)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    87
   apply (intro strip)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    88
   apply (rule trans)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    89
    apply (erule spec)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    90
   apply (rule sym)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    91
   apply (erule spec)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    92
  apply (subgoal_tac "ALL x y. x << (y:: ('a) lift) --> x=Undef | x=y")
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    93
   prefer 2 apply (simp add: inst_lift_po)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    94
  apply (rule chain_mono2_po [THEN exE])
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    95
    apply fast
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    96
   apply assumption
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    97
  apply (rule_tac x = "Suc x" in exI)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    98
  apply (intro strip)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    99
  apply (rule disjE)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   100
    prefer 3 apply assumption
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   101
   apply (rule mp)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   102
    apply (drule spec)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   103
    apply (erule spec)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   104
   apply (erule le_imp_less_or_eq [THEN disjE])
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   105
    apply (erule chain_mono)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   106
    apply auto
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   107
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   108
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   109
theorem cpo_lift: "chain (Y::nat => 'a lift) ==> EX x. range Y <<| x"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   110
  apply (cut_tac flat_imp_chfin_poo)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   111
  apply (blast intro: lub_finch1)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   112
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   113
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12026
diff changeset
   114
instance lift :: (type) pcpo
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   115
  apply intro_classes
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   116
   apply (erule cpo_lift)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   117
  apply (rule least_lift)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   118
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   119
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   120
lemma inst_lift_pcpo: "UU = Undef"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   121
  -- {* For compatibility with old HOLCF-Version. *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   122
  by (simp add: UU_def UU_lift_def)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   123
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   124
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   125
subsection {* Lift as a datatype *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   126
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   127
lemma lift_distinct1: "UU ~= Def x"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   128
  by (simp add: Undef_def Def_def Abs_lift_inject lift_def inst_lift_pcpo)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   129
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   130
lemma lift_distinct2: "Def x ~= UU"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   131
  by (simp add: Undef_def Def_def Abs_lift_inject lift_def inst_lift_pcpo)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   132
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   133
lemma Def_inject: "(Def x = Def x') = (x = x')"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   134
  by (simp add: Def_def Abs_lift_inject lift_def)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   135
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   136
lemma lift_induct: "P UU ==> (!!x. P (Def x)) ==> P y"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   137
  apply (induct y)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   138
  apply (induct_tac y)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   139
   apply (simp_all add: Undef_def Def_def inst_lift_pcpo)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   140
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   141
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   142
rep_datatype lift
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   143
  distinct lift_distinct1 lift_distinct2
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   144
  inject Def_inject
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   145
  induction lift_induct
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   146
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   147
lemma Def_not_UU: "Def a ~= UU"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   148
  by simp
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   149
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   150
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   151
subsection {* Further operations *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   152
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   153
consts
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   154
 flift1      :: "('a => 'b::pcpo) => ('a lift -> 'b)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   155
 flift2      :: "('a => 'b)       => ('a lift -> 'b lift)"
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12026
diff changeset
   156
 liftpair    ::"'a::type lift * 'b::type lift => ('a * 'b) lift"
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
   157
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   158
defs
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   159
 flift1_def:
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   160
  "flift1 f == (LAM x. (case x of
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   161
                   UU => UU
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   162
                 | Def y => (f y)))"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   163
 flift2_def:
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   164
  "flift2 f == (LAM x. (case x of
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   165
                   UU => UU
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   166
                 | Def y => Def (f y)))"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   167
 liftpair_def:
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   168
  "liftpair x  == (case (cfst$x) of
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   169
                  UU  => UU
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   170
                | Def x1 => (case (csnd$x) of
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   171
                               UU => UU
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   172
                             | Def x2 => Def (x1,x2)))"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   173
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   174
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   175
declare inst_lift_pcpo [symmetric, simp]
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   176
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   177
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   178
lemma less_lift: "(x::'a lift) << y = (x=y | x=UU)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   179
  by (simp add: inst_lift_po)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   180
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   181
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   182
text {* @{text UU} and @{text Def} *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   183
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   184
lemma Lift_exhaust: "x = UU | (EX y. x = Def y)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   185
  by (induct x) simp_all
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   186
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   187
lemma Lift_cases: "[| x = UU ==> P; ? a. x = Def a ==> P |] ==> P"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   188
  by (insert Lift_exhaust) blast
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   189
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   190
lemma not_Undef_is_Def: "(x ~= UU) = (EX y. x = Def y)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   191
  by (cases x) simp_all
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   192
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   193
text {*
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   194
  For @{term "x ~= UU"} in assumptions @{text def_tac} replaces @{text
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   195
  x} by @{text "Def a"} in conclusion. *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   196
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   197
ML {*
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   198
  local val not_Undef_is_Def = thm "not_Undef_is_Def"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   199
  in val def_tac = SIMPSET' (fn ss =>
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   200
    etac (not_Undef_is_Def RS iffD1 RS exE) THEN' asm_simp_tac ss)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   201
  end;
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   202
*}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   203
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   204
lemma Undef_eq_UU: "Undef = UU"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   205
  by (rule inst_lift_pcpo [symmetric])
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   206
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   207
lemma DefE: "Def x = UU ==> R"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   208
  by simp
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   209
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   210
lemma DefE2: "[| x = Def s; x = UU |] ==> R"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   211
  by simp
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   212
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   213
lemma Def_inject_less_eq: "Def x << Def y = (x = y)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   214
  by (simp add: less_lift_def)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   215
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   216
lemma Def_less_is_eq [simp]: "Def x << y = (Def x = y)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   217
  by (simp add: less_lift)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   218
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   219
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   220
subsection {* Lift is flat *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   221
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12026
diff changeset
   222
instance lift :: (type) flat
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   223
proof
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   224
  show "ALL x y::'a lift. x << y --> x = UU | x = y"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   225
    by (simp add: less_lift)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   226
qed
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   227
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   228
defaultsort pcpo
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   229
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   230
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   231
text {*
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   232
  \medskip Two specific lemmas for the combination of LCF and HOL
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   233
  terms.
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   234
*}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   235
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   236
lemma cont_Rep_CFun_app: "[|cont g; cont f|] ==> cont(%x. ((f x)$(g x)) s)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   237
  apply (rule cont2cont_CF1L)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   238
  apply (tactic "resolve_tac cont_lemmas1 1")+
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   239
   apply auto
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   240
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   241
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   242
lemma cont_Rep_CFun_app_app: "[|cont g; cont f|] ==> cont(%x. ((f x)$(g x)) s t)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   243
  apply (rule cont2cont_CF1L)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   244
  apply (erule cont_Rep_CFun_app)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   245
  apply assumption
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   246
  done
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
   247
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   248
text {* Continuity of if-then-else. *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   249
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   250
lemma cont_if: "[| cont f1; cont f2 |] ==> cont (%x. if b then f1 x else f2 x)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   251
  by (cases b) simp_all
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   252
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   253
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   254
subsection {* Continuity Proofs for flift1, flift2, if *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   255
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   256
text {* Need the instance of @{text flat}. *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   257
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   258
lemma cont_flift1_arg: "cont (lift_case UU f)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   259
  -- {* @{text flift1} is continuous in its argument itself. *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   260
  apply (rule flatdom_strict2cont)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   261
  apply simp
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   262
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   263
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   264
lemma cont_flift1_not_arg: "!!f. [| !! a. cont (%y. (f y) a) |] ==>
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   265
           cont (%y. lift_case UU (f y))"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   266
  -- {* @{text flift1} is continuous in a variable that occurs only
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   267
    in the @{text Def} branch. *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   268
  apply (rule cont2cont_CF1L_rev)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   269
  apply (intro strip)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   270
  apply (case_tac y)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   271
   apply simp
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   272
  apply simp
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   273
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   274
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   275
lemma cont_flift1_arg_and_not_arg: "!!f. [| !! a. cont (%y. (f y) a); cont g|] ==>
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   276
    cont (%y. lift_case UU (f y) (g y))"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   277
  -- {* @{text flift1} is continuous in a variable that occurs either
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   278
    in the @{text Def} branch or in the argument. *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   279
  apply (rule_tac tt = g in cont2cont_app)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   280
    apply (rule cont_flift1_not_arg)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   281
    apply auto
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   282
  apply (rule cont_flift1_arg)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   283
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   284
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   285
lemma cont_flift2_arg: "cont (lift_case UU (%y. Def (f y)))"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   286
  -- {* @{text flift2} is continuous in its argument itself. *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   287
  apply (rule flatdom_strict2cont)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   288
  apply simp
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   289
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   290
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   291
text {*
14096
f79d139c7e46 corrected markup text
oheimb
parents: 12338
diff changeset
   292
  \medskip Extension of @{text cont_tac} and installation of simplifier.
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   293
*}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   294
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   295
lemma cont2cont_CF1L_rev2: "(!!y. cont (%x. c1 x y)) ==> cont c1"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   296
  apply (rule cont2cont_CF1L_rev)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   297
  apply simp
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   298
  done
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   299
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   300
lemmas cont_lemmas_ext [simp] =
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   301
  cont_flift1_arg cont_flift2_arg
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   302
  cont_flift1_arg_and_not_arg cont2cont_CF1L_rev2
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   303
  cont_Rep_CFun_app cont_Rep_CFun_app_app cont_if
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   304
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   305
ML_setup {*
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   306
val cont_lemmas2 = cont_lemmas1 @ thms "cont_lemmas_ext";
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   307
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   308
fun cont_tac  i = resolve_tac cont_lemmas2 i;
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   309
fun cont_tacR i = REPEAT (cont_tac i);
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   310
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   311
local val flift1_def = thm "flift1_def" and flift2_def = thm "flift2_def"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   312
in fun cont_tacRs i =
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   313
  simp_tac (simpset() addsimps [flift1_def, flift2_def]) i THEN
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   314
  REPEAT (cont_tac i)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   315
end;
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   316
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   317
simpset_ref() := simpset() addSolver
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   318
  (mk_solver "cont_tac" (K (DEPTH_SOLVE_1 o cont_tac)));
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   319
*}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   320
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   321
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   322
subsection {* flift1, flift2 *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   323
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   324
lemma flift1_Def [simp]: "flift1 f$(Def x) = (f x)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   325
  by (simp add: flift1_def)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   326
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   327
lemma flift2_Def [simp]: "flift2 f$(Def x) = Def (f x)"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   328
  by (simp add: flift2_def)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   329
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   330
lemma flift1_UU [simp]: "flift1 f$UU = UU"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   331
  by (simp add: flift1_def)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   332
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   333
lemma flift2_UU [simp]: "flift2 f$UU = UU"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   334
  by (simp add: flift2_def)
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   335
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   336
lemma flift2_nUU [simp]: "x~=UU ==> (flift2 f)$x~=UU"
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   337
  by (tactic "def_tac 1")
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
   338
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
   339
end