(* Title: Pure/goal.ML
ID: $Id$
Author: Makarius and Lawrence C Paulson
Goals in tactical theorem proving.
*)
signature BASIC_GOAL =
sig
val SELECT_GOAL: tactic -> int -> tactic
end;
signature GOAL =
sig
include BASIC_GOAL
val init: cterm -> thm
val protect: thm -> thm
val conclude: thm -> thm
val finish: thm -> thm
val norm_hhf: thm -> thm
val compose_hhf: thm -> int -> thm -> thm Seq.seq
val compose_hhf_tac: thm -> int -> tactic
val comp_hhf: thm -> thm -> thm
val prove_multi: theory -> string list -> term list -> term list ->
(thm list -> tactic) -> thm list
val prove: theory -> string list -> term list -> term -> (thm list -> tactic) -> thm
val prove_raw: cterm list -> cterm -> (thm list -> tactic) -> thm
end;
structure Goal: GOAL =
struct
(** goals **)
(*
-------- (init)
C ==> #C
*)
fun init ct = Drule.instantiate' [] [SOME ct] Drule.protectI;
(*
C
--- (protect)
#C
*)
fun protect th = th COMP Drule.incr_indexes th Drule.protectI;
(*
A ==> ... ==> #C
---------------- (conclude)
A ==> ... ==> C
*)
fun conclude th =
(case SINGLE (Thm.bicompose false (false, th, Thm.nprems_of th) 1)
(Drule.incr_indexes th Drule.protectD) of
SOME th' => th'
| NONE => raise THM ("Failed to conclude goal", 0, [th]));
(*
#C
--- (finish)
C
*)
fun finish th =
(case Thm.nprems_of th of
0 => conclude th
| n => raise THM ("Proof failed.\n" ^
Pretty.string_of (Pretty.chunks (Display.pretty_goals n th)) ^
("\n" ^ string_of_int n ^ " unsolved goal(s)!"), 0, [th]));
(** results **)
(* HHF normal form *)
val norm_hhf =
(not o Drule.is_norm_hhf o Thm.prop_of) ?
MetaSimplifier.simplify_aux (K (K NONE)) true [Drule.norm_hhf_eq]
#> Thm.adjust_maxidx_thm
#> Drule.gen_all;
(* composition of normal results *)
fun compose_hhf tha i thb =
Thm.bicompose false (false, Drule.lift_all (Thm.cprem_of thb i) tha, 0) i thb;
fun compose_hhf_tac th i = PRIMSEQ (compose_hhf th i);
fun comp_hhf tha thb =
(case Seq.chop (2, compose_hhf tha 1 thb) of
([th], _) => th
| ([], _) => raise THM ("comp_hhf: no unifiers", 1, [tha, thb])
| _ => raise THM ("comp_hhf: multiple unifiers", 1, [tha, thb]));
(** tactical theorem proving **)
(* prove_multi *)
fun prove_multi thy xs asms props tac =
let
val prop = Logic.mk_conjunction_list props;
val statement = Logic.list_implies (asms, prop);
val frees = Term.add_frees statement [];
val fixed_frees = filter_out (member (op =) xs o #1) frees;
val fixed_tfrees = fold (Term.add_tfreesT o #2) fixed_frees [];
val params = List.mapPartial (fn x => Option.map (pair x) (AList.lookup (op =) frees x)) xs;
fun err msg = raise ERROR_MESSAGE
(msg ^ "\nThe error(s) above occurred for the goal statement:\n" ^
Sign.string_of_term thy (Term.list_all_free (params, statement)));
fun cert_safe t = Thm.cterm_of thy (Envir.beta_norm t)
handle TERM (msg, _) => err msg | TYPE (msg, _, _) => err msg;
val _ = cert_safe statement;
val _ = Term.no_dummy_patterns statement handle TERM (msg, _) => err msg;
val cparams = map (cert_safe o Free) params;
val casms = map cert_safe asms;
val prems = map (norm_hhf o Thm.assume) casms;
val goal = init (cert_safe prop);
val goal' = case SINGLE (tac prems) goal of SOME goal' => goal' | _ => err "Tactic failed.";
val raw_result = finish goal' handle THM (msg, _, _) => err msg;
val prop' = Thm.prop_of raw_result;
val _ = conditional (not (Pattern.matches thy (Envir.beta_norm prop, prop'))) (fn () =>
err ("Proved a different theorem: " ^ Sign.string_of_term thy prop'));
in
Drule.conj_elim_precise (length props) raw_result
|> map
(Drule.implies_intr_list casms
#> Drule.forall_intr_list cparams
#> norm_hhf
#> Thm.varifyT' fixed_tfrees
#-> K Drule.zero_var_indexes)
end;
(* prove *)
fun prove thy xs asms prop tac = hd (prove_multi thy xs asms [prop] tac);
(* prove_raw -- no checks, no normalization of result! *)
fun prove_raw casms cprop tac =
(case SINGLE (tac (map (norm_hhf o Thm.assume) casms)) (init cprop) of
SOME th => Drule.implies_intr_list casms (finish th)
| NONE => raise ERROR_MESSAGE "Tactic failed.");
(* SELECT_GOAL *)
(*Tactical for restricting the effect of a tactic to subgoal i. Works
by making a new state from subgoal i, applying tac to it, and
composing the resulting thm with the original state.*)
fun SELECT tac i st =
init (Thm.adjust_maxidx (Thm.cprem_of st i))
|> tac
|> Seq.maps (fn st' => Thm.bicompose false (false, conclude st', Thm.nprems_of st') i st);
fun SELECT_GOAL tac i st =
let val n = Thm.nprems_of st in
if 1 <= i andalso i <= n then
if n = 1 then tac st else SELECT tac i st
else Seq.empty
end;
end;
structure BasicGoal: BASIC_GOAL = Goal;
open BasicGoal;