more fundamental pred-to-set conversions for range and domain by means of inductive_set
(* Title: HOL/Metis.thy
Author: Lawrence C. Paulson, Cambridge University Computer Laboratory
Author: Jia Meng, Cambridge University Computer Laboratory and NICTA
Author: Jasmin Blanchette, TU Muenchen
*)
header {* Metis Proof Method *}
theory Metis
imports ATP
uses "~~/src/Tools/Metis/metis.ML"
("Tools/Metis/metis_generate.ML")
("Tools/Metis/metis_reconstruct.ML")
("Tools/Metis/metis_tactic.ML")
("Tools/try0.ML")
begin
subsection {* Literal selection and lambda-lifting helpers *}
definition select :: "'a \<Rightarrow> 'a" where
[no_atp]: "select = (\<lambda>x. x)"
lemma not_atomize: "(\<not> A \<Longrightarrow> False) \<equiv> Trueprop A"
by (cut_tac atomize_not [of "\<not> A"]) simp
lemma atomize_not_select: "(A \<Longrightarrow> select False) \<equiv> Trueprop (\<not> A)"
unfolding select_def by (rule atomize_not)
lemma not_atomize_select: "(\<not> A \<Longrightarrow> select False) \<equiv> Trueprop A"
unfolding select_def by (rule not_atomize)
lemma select_FalseI: "False \<Longrightarrow> select False" by simp
definition lambda :: "'a \<Rightarrow> 'a" where
[no_atp]: "lambda = (\<lambda>x. x)"
lemma eq_lambdaI: "x \<equiv> y \<Longrightarrow> x \<equiv> lambda y"
unfolding lambda_def by assumption
subsection {* Metis package *}
use "Tools/Metis/metis_generate.ML"
use "Tools/Metis/metis_reconstruct.ML"
use "Tools/Metis/metis_tactic.ML"
setup {* Metis_Tactic.setup *}
hide_const (open) fFalse fTrue fNot fconj fdisj fimplies fequal select lambda
hide_fact (open) fFalse_def fTrue_def fNot_def fconj_def fdisj_def fimplies_def
fequal_def select_def not_atomize atomize_not_select not_atomize_select
select_FalseI lambda_def eq_lambdaI
subsection {* Try0 *}
use "Tools/try0.ML"
setup {* Try0.setup *}
end