author wenzelm
Thu, 15 Mar 2012 22:08:53 +0100
changeset 46950 d0181abdbdac
parent 46641 8801a24f9e9a
child 47946 33afcfad3f8d
permissions -rw-r--r--
declare command keywords via theory header, including strict checking outside Pure;

(*  Title:      HOL/Metis.thy
    Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
    Author:     Jasmin Blanchette, TU Muenchen

header {* Metis Proof Method *}

theory Metis
imports ATP
keywords "try0" :: diag
uses "~~/src/Tools/Metis/metis.ML"

subsection {* Literal selection and lambda-lifting helpers *}

definition select :: "'a \<Rightarrow> 'a" where
[no_atp]: "select = (\<lambda>x. x)"

lemma not_atomize: "(\<not> A \<Longrightarrow> False) \<equiv> Trueprop A"
by (cut_tac atomize_not [of "\<not> A"]) simp

lemma atomize_not_select: "(A \<Longrightarrow> select False) \<equiv> Trueprop (\<not> A)"
unfolding select_def by (rule atomize_not)

lemma not_atomize_select: "(\<not> A \<Longrightarrow> select False) \<equiv> Trueprop A"
unfolding select_def by (rule not_atomize)

lemma select_FalseI: "False \<Longrightarrow> select False" by simp

definition lambda :: "'a \<Rightarrow> 'a" where
[no_atp]: "lambda = (\<lambda>x. x)"

lemma eq_lambdaI: "x \<equiv> y \<Longrightarrow> x \<equiv> lambda y"
unfolding lambda_def by assumption

subsection {* Metis package *}

use "Tools/Metis/metis_generate.ML"
use "Tools/Metis/metis_reconstruct.ML"
use "Tools/Metis/metis_tactic.ML"

setup {* Metis_Tactic.setup *}

hide_const (open) fFalse fTrue fNot fconj fdisj fimplies fequal select lambda
hide_fact (open) fFalse_def fTrue_def fNot_def fconj_def fdisj_def fimplies_def
    fequal_def select_def not_atomize atomize_not_select not_atomize_select
    select_FalseI lambda_def eq_lambdaI

subsection {* Try0 *}

use "Tools/try0.ML"

setup {* Try0.setup *}