(* Title: Int.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Tobias Nipkow, Florian Haftmann, TU Muenchen
Copyright 1994 University of Cambridge
*)
header {* The Integers as Equivalence Classes over Pairs of Natural Numbers *}
theory Int
imports Equiv_Relations Wellfounded_Relations Datatype Nat
uses
("Tools/numeral.ML")
("Tools/numeral_syntax.ML")
("~~/src/Provers/Arith/assoc_fold.ML")
"~~/src/Provers/Arith/cancel_numerals.ML"
"~~/src/Provers/Arith/combine_numerals.ML"
("int_arith1.ML")
begin
subsection {* The equivalence relation underlying the integers *}
definition
intrel :: "((nat \<times> nat) \<times> (nat \<times> nat)) set"
where
"intrel = {((x, y), (u, v)) | x y u v. x + v = u +y }"
typedef (Integ)
int = "UNIV//intrel"
by (auto simp add: quotient_def)
instantiation int :: "{zero, one, plus, minus, uminus, times, ord, abs, sgn}"
begin
definition
Zero_int_def [code func del]: "0 = Abs_Integ (intrel `` {(0, 0)})"
definition
One_int_def [code func del]: "1 = Abs_Integ (intrel `` {(1, 0)})"
definition
add_int_def [code func del]: "z + w = Abs_Integ
(\<Union>(x, y) \<in> Rep_Integ z. \<Union>(u, v) \<in> Rep_Integ w.
intrel `` {(x + u, y + v)})"
definition
minus_int_def [code func del]:
"- z = Abs_Integ (\<Union>(x, y) \<in> Rep_Integ z. intrel `` {(y, x)})"
definition
diff_int_def [code func del]: "z - w = z + (-w \<Colon> int)"
definition
mult_int_def [code func del]: "z * w = Abs_Integ
(\<Union>(x, y) \<in> Rep_Integ z. \<Union>(u,v ) \<in> Rep_Integ w.
intrel `` {(x*u + y*v, x*v + y*u)})"
definition
le_int_def [code func del]:
"z \<le> w \<longleftrightarrow> (\<exists>x y u v. x+v \<le> u+y \<and> (x, y) \<in> Rep_Integ z \<and> (u, v) \<in> Rep_Integ w)"
definition
less_int_def [code func del]: "(z\<Colon>int) < w \<longleftrightarrow> z \<le> w \<and> z \<noteq> w"
definition
zabs_def: "\<bar>i\<Colon>int\<bar> = (if i < 0 then - i else i)"
definition
zsgn_def: "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"
instance ..
end
subsection{*Construction of the Integers*}
lemma intrel_iff [simp]: "(((x,y),(u,v)) \<in> intrel) = (x+v = u+y)"
by (simp add: intrel_def)
lemma equiv_intrel: "equiv UNIV intrel"
by (simp add: intrel_def equiv_def refl_def sym_def trans_def)
text{*Reduces equality of equivalence classes to the @{term intrel} relation:
@{term "(intrel `` {x} = intrel `` {y}) = ((x,y) \<in> intrel)"} *}
lemmas equiv_intrel_iff [simp] = eq_equiv_class_iff [OF equiv_intrel UNIV_I UNIV_I]
text{*All equivalence classes belong to set of representatives*}
lemma [simp]: "intrel``{(x,y)} \<in> Integ"
by (auto simp add: Integ_def intrel_def quotient_def)
text{*Reduces equality on abstractions to equality on representatives:
@{prop "\<lbrakk>x \<in> Integ; y \<in> Integ\<rbrakk> \<Longrightarrow> (Abs_Integ x = Abs_Integ y) = (x=y)"} *}
declare Abs_Integ_inject [simp,noatp] Abs_Integ_inverse [simp,noatp]
text{*Case analysis on the representation of an integer as an equivalence
class of pairs of naturals.*}
lemma eq_Abs_Integ [case_names Abs_Integ, cases type: int]:
"(!!x y. z = Abs_Integ(intrel``{(x,y)}) ==> P) ==> P"
apply (rule Abs_Integ_cases [of z])
apply (auto simp add: Integ_def quotient_def)
done
subsection {* Arithmetic Operations *}
lemma minus: "- Abs_Integ(intrel``{(x,y)}) = Abs_Integ(intrel `` {(y,x)})"
proof -
have "(\<lambda>(x,y). intrel``{(y,x)}) respects intrel"
by (simp add: congruent_def)
thus ?thesis
by (simp add: minus_int_def UN_equiv_class [OF equiv_intrel])
qed
lemma add:
"Abs_Integ (intrel``{(x,y)}) + Abs_Integ (intrel``{(u,v)}) =
Abs_Integ (intrel``{(x+u, y+v)})"
proof -
have "(\<lambda>z w. (\<lambda>(x,y). (\<lambda>(u,v). intrel `` {(x+u, y+v)}) w) z)
respects2 intrel"
by (simp add: congruent2_def)
thus ?thesis
by (simp add: add_int_def UN_UN_split_split_eq
UN_equiv_class2 [OF equiv_intrel equiv_intrel])
qed
text{*Congruence property for multiplication*}
lemma mult_congruent2:
"(%p1 p2. (%(x,y). (%(u,v). intrel``{(x*u + y*v, x*v + y*u)}) p2) p1)
respects2 intrel"
apply (rule equiv_intrel [THEN congruent2_commuteI])
apply (force simp add: mult_ac, clarify)
apply (simp add: congruent_def mult_ac)
apply (rename_tac u v w x y z)
apply (subgoal_tac "u*y + x*y = w*y + v*y & u*z + x*z = w*z + v*z")
apply (simp add: mult_ac)
apply (simp add: add_mult_distrib [symmetric])
done
lemma mult:
"Abs_Integ((intrel``{(x,y)})) * Abs_Integ((intrel``{(u,v)})) =
Abs_Integ(intrel `` {(x*u + y*v, x*v + y*u)})"
by (simp add: mult_int_def UN_UN_split_split_eq mult_congruent2
UN_equiv_class2 [OF equiv_intrel equiv_intrel])
text{*The integers form a @{text comm_ring_1}*}
instance int :: comm_ring_1
proof
fix i j k :: int
show "(i + j) + k = i + (j + k)"
by (cases i, cases j, cases k) (simp add: add add_assoc)
show "i + j = j + i"
by (cases i, cases j) (simp add: add_ac add)
show "0 + i = i"
by (cases i) (simp add: Zero_int_def add)
show "- i + i = 0"
by (cases i) (simp add: Zero_int_def minus add)
show "i - j = i + - j"
by (simp add: diff_int_def)
show "(i * j) * k = i * (j * k)"
by (cases i, cases j, cases k) (simp add: mult ring_simps)
show "i * j = j * i"
by (cases i, cases j) (simp add: mult ring_simps)
show "1 * i = i"
by (cases i) (simp add: One_int_def mult)
show "(i + j) * k = i * k + j * k"
by (cases i, cases j, cases k) (simp add: add mult ring_simps)
show "0 \<noteq> (1::int)"
by (simp add: Zero_int_def One_int_def)
qed
lemma int_def: "of_nat m = Abs_Integ (intrel `` {(m, 0)})"
by (induct m, simp_all add: Zero_int_def One_int_def add)
subsection {* The @{text "\<le>"} Ordering *}
lemma le:
"(Abs_Integ(intrel``{(x,y)}) \<le> Abs_Integ(intrel``{(u,v)})) = (x+v \<le> u+y)"
by (force simp add: le_int_def)
lemma less:
"(Abs_Integ(intrel``{(x,y)}) < Abs_Integ(intrel``{(u,v)})) = (x+v < u+y)"
by (simp add: less_int_def le order_less_le)
instance int :: linorder
proof
fix i j k :: int
show "(i < j) = (i \<le> j \<and> i \<noteq> j)"
by (simp add: less_int_def)
show "i \<le> i"
by (cases i) (simp add: le)
show "i \<le> j \<Longrightarrow> j \<le> k \<Longrightarrow> i \<le> k"
by (cases i, cases j, cases k) (simp add: le)
show "i \<le> j \<Longrightarrow> j \<le> i \<Longrightarrow> i = j"
by (cases i, cases j) (simp add: le)
show "i \<le> j \<or> j \<le> i"
by (cases i, cases j) (simp add: le linorder_linear)
qed
instantiation int :: distrib_lattice
begin
definition
"(inf \<Colon> int \<Rightarrow> int \<Rightarrow> int) = min"
definition
"(sup \<Colon> int \<Rightarrow> int \<Rightarrow> int) = max"
instance
by intro_classes
(auto simp add: inf_int_def sup_int_def min_max.sup_inf_distrib1)
end
instance int :: pordered_cancel_ab_semigroup_add
proof
fix i j k :: int
show "i \<le> j \<Longrightarrow> k + i \<le> k + j"
by (cases i, cases j, cases k) (simp add: le add)
qed
text{*Strict Monotonicity of Multiplication*}
text{*strict, in 1st argument; proof is by induction on k>0*}
lemma zmult_zless_mono2_lemma:
"(i::int)<j ==> 0<k ==> of_nat k * i < of_nat k * j"
apply (induct "k", simp)
apply (simp add: left_distrib)
apply (case_tac "k=0")
apply (simp_all add: add_strict_mono)
done
lemma zero_le_imp_eq_int: "(0::int) \<le> k ==> \<exists>n. k = of_nat n"
apply (cases k)
apply (auto simp add: le add int_def Zero_int_def)
apply (rule_tac x="x-y" in exI, simp)
done
lemma zero_less_imp_eq_int: "(0::int) < k ==> \<exists>n>0. k = of_nat n"
apply (cases k)
apply (simp add: less int_def Zero_int_def)
apply (rule_tac x="x-y" in exI, simp)
done
lemma zmult_zless_mono2: "[| i<j; (0::int) < k |] ==> k*i < k*j"
apply (drule zero_less_imp_eq_int)
apply (auto simp add: zmult_zless_mono2_lemma)
done
text{*The integers form an ordered integral domain*}
instance int :: ordered_idom
proof
fix i j k :: int
show "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j"
by (rule zmult_zless_mono2)
show "\<bar>i\<bar> = (if i < 0 then -i else i)"
by (simp only: zabs_def)
show "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"
by (simp only: zsgn_def)
qed
instance int :: lordered_ring
proof
fix k :: int
show "abs k = sup k (- k)"
by (auto simp add: sup_int_def zabs_def max_def less_minus_self_iff [symmetric])
qed
lemma zless_imp_add1_zle: "w < z \<Longrightarrow> w + (1\<Colon>int) \<le> z"
apply (cases w, cases z)
apply (simp add: less le add One_int_def)
done
lemma zless_iff_Suc_zadd:
"(w \<Colon> int) < z \<longleftrightarrow> (\<exists>n. z = w + of_nat (Suc n))"
apply (cases z, cases w)
apply (auto simp add: less add int_def)
apply (rename_tac a b c d)
apply (rule_tac x="a+d - Suc(c+b)" in exI)
apply arith
done
lemmas int_distrib =
left_distrib [of "z1::int" "z2" "w", standard]
right_distrib [of "w::int" "z1" "z2", standard]
left_diff_distrib [of "z1::int" "z2" "w", standard]
right_diff_distrib [of "w::int" "z1" "z2", standard]
subsection {* Embedding of the Integers into any @{text ring_1}: @{text of_int}*}
context ring_1
begin
definition
of_int :: "int \<Rightarrow> 'a"
where
[code func del]: "of_int z = contents (\<Union>(i, j) \<in> Rep_Integ z. { of_nat i - of_nat j })"
lemma of_int: "of_int (Abs_Integ (intrel `` {(i,j)})) = of_nat i - of_nat j"
proof -
have "(\<lambda>(i,j). { of_nat i - (of_nat j :: 'a) }) respects intrel"
by (simp add: congruent_def compare_rls of_nat_add [symmetric]
del: of_nat_add)
thus ?thesis
by (simp add: of_int_def UN_equiv_class [OF equiv_intrel])
qed
lemma of_int_0 [simp]: "of_int 0 = 0"
by (simp add: of_int Zero_int_def)
lemma of_int_1 [simp]: "of_int 1 = 1"
by (simp add: of_int One_int_def)
lemma of_int_add [simp]: "of_int (w+z) = of_int w + of_int z"
by (cases w, cases z, simp add: compare_rls of_int OrderedGroup.compare_rls add)
lemma of_int_minus [simp]: "of_int (-z) = - (of_int z)"
by (cases z, simp add: compare_rls of_int minus)
lemma of_int_diff [simp]: "of_int (w - z) = of_int w - of_int z"
by (simp add: OrderedGroup.diff_minus diff_minus)
lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z"
apply (cases w, cases z)
apply (simp add: compare_rls of_int left_diff_distrib right_diff_distrib
mult add_ac of_nat_mult)
done
text{*Collapse nested embeddings*}
lemma of_int_of_nat_eq [simp]: "of_int (of_nat n) = of_nat n"
by (induct n) auto
end
context ordered_idom
begin
lemma of_int_le_iff [simp]:
"of_int w \<le> of_int z \<longleftrightarrow> w \<le> z"
by (cases w, cases z, simp add: of_int le minus compare_rls of_nat_add [symmetric] del: of_nat_add)
text{*Special cases where either operand is zero*}
lemmas of_int_0_le_iff [simp] = of_int_le_iff [of 0, simplified]
lemmas of_int_le_0_iff [simp] = of_int_le_iff [of _ 0, simplified]
lemma of_int_less_iff [simp]:
"of_int w < of_int z \<longleftrightarrow> w < z"
by (simp add: not_le [symmetric] linorder_not_le [symmetric])
text{*Special cases where either operand is zero*}
lemmas of_int_0_less_iff [simp] = of_int_less_iff [of 0, simplified]
lemmas of_int_less_0_iff [simp] = of_int_less_iff [of _ 0, simplified]
end
text{*Class for unital rings with characteristic zero.
Includes non-ordered rings like the complex numbers.*}
class ring_char_0 = ring_1 + semiring_char_0
begin
lemma of_int_eq_iff [simp]:
"of_int w = of_int z \<longleftrightarrow> w = z"
apply (cases w, cases z, simp add: of_int)
apply (simp only: diff_eq_eq diff_add_eq eq_diff_eq)
apply (simp only: of_nat_add [symmetric] of_nat_eq_iff)
done
text{*Special cases where either operand is zero*}
lemmas of_int_0_eq_iff [simp] = of_int_eq_iff [of 0, simplified]
lemmas of_int_eq_0_iff [simp] = of_int_eq_iff [of _ 0, simplified]
end
text{*Every @{text ordered_idom} has characteristic zero.*}
subclass (in ordered_idom) ring_char_0 by intro_locales
lemma of_int_eq_id [simp]: "of_int = id"
proof
fix z show "of_int z = id z"
by (cases z) (simp add: of_int add minus int_def diff_minus)
qed
subsection {* Magnitude of an Integer, as a Natural Number: @{text nat} *}
definition
nat :: "int \<Rightarrow> nat"
where
[code func del]: "nat z = contents (\<Union>(x, y) \<in> Rep_Integ z. {x-y})"
lemma nat: "nat (Abs_Integ (intrel``{(x,y)})) = x-y"
proof -
have "(\<lambda>(x,y). {x-y}) respects intrel"
by (simp add: congruent_def) arith
thus ?thesis
by (simp add: nat_def UN_equiv_class [OF equiv_intrel])
qed
lemma nat_int [simp]: "nat (of_nat n) = n"
by (simp add: nat int_def)
lemma nat_zero [simp]: "nat 0 = 0"
by (simp add: Zero_int_def nat)
lemma int_nat_eq [simp]: "of_nat (nat z) = (if 0 \<le> z then z else 0)"
by (cases z, simp add: nat le int_def Zero_int_def)
corollary nat_0_le: "0 \<le> z ==> of_nat (nat z) = z"
by simp
lemma nat_le_0 [simp]: "z \<le> 0 ==> nat z = 0"
by (cases z, simp add: nat le Zero_int_def)
lemma nat_le_eq_zle: "0 < w | 0 \<le> z ==> (nat w \<le> nat z) = (w\<le>z)"
apply (cases w, cases z)
apply (simp add: nat le linorder_not_le [symmetric] Zero_int_def, arith)
done
text{*An alternative condition is @{term "0 \<le> w"} *}
corollary nat_mono_iff: "0 < z ==> (nat w < nat z) = (w < z)"
by (simp add: nat_le_eq_zle linorder_not_le [symmetric])
corollary nat_less_eq_zless: "0 \<le> w ==> (nat w < nat z) = (w<z)"
by (simp add: nat_le_eq_zle linorder_not_le [symmetric])
lemma zless_nat_conj [simp]: "(nat w < nat z) = (0 < z & w < z)"
apply (cases w, cases z)
apply (simp add: nat le Zero_int_def linorder_not_le [symmetric], arith)
done
lemma nonneg_eq_int:
fixes z :: int
assumes "0 \<le> z" and "\<And>m. z = of_nat m \<Longrightarrow> P"
shows P
using assms by (blast dest: nat_0_le sym)
lemma nat_eq_iff: "(nat w = m) = (if 0 \<le> w then w = of_nat m else m=0)"
by (cases w, simp add: nat le int_def Zero_int_def, arith)
corollary nat_eq_iff2: "(m = nat w) = (if 0 \<le> w then w = of_nat m else m=0)"
by (simp only: eq_commute [of m] nat_eq_iff)
lemma nat_less_iff: "0 \<le> w ==> (nat w < m) = (w < of_nat m)"
apply (cases w)
apply (simp add: nat le int_def Zero_int_def linorder_not_le [symmetric], arith)
done
lemma int_eq_iff: "(of_nat m = z) = (m = nat z & 0 \<le> z)"
by (auto simp add: nat_eq_iff2)
lemma zero_less_nat_eq [simp]: "(0 < nat z) = (0 < z)"
by (insert zless_nat_conj [of 0], auto)
lemma nat_add_distrib:
"[| (0::int) \<le> z; 0 \<le> z' |] ==> nat (z+z') = nat z + nat z'"
by (cases z, cases z', simp add: nat add le Zero_int_def)
lemma nat_diff_distrib:
"[| (0::int) \<le> z'; z' \<le> z |] ==> nat (z-z') = nat z - nat z'"
by (cases z, cases z',
simp add: nat add minus diff_minus le Zero_int_def)
lemma nat_zminus_int [simp]: "nat (- (of_nat n)) = 0"
by (simp add: int_def minus nat Zero_int_def)
lemma zless_nat_eq_int_zless: "(m < nat z) = (of_nat m < z)"
by (cases z, simp add: nat less int_def, arith)
context ring_1
begin
lemma of_nat_nat: "0 \<le> z \<Longrightarrow> of_nat (nat z) = of_int z"
by (cases z rule: eq_Abs_Integ)
(simp add: nat le of_int Zero_int_def of_nat_diff)
end
subsection{*Lemmas about the Function @{term of_nat} and Orderings*}
lemma negative_zless_0: "- (of_nat (Suc n)) < (0 \<Colon> int)"
by (simp add: order_less_le del: of_nat_Suc)
lemma negative_zless [iff]: "- (of_nat (Suc n)) < (of_nat m \<Colon> int)"
by (rule negative_zless_0 [THEN order_less_le_trans], simp)
lemma negative_zle_0: "- of_nat n \<le> (0 \<Colon> int)"
by (simp add: minus_le_iff)
lemma negative_zle [iff]: "- of_nat n \<le> (of_nat m \<Colon> int)"
by (rule order_trans [OF negative_zle_0 of_nat_0_le_iff])
lemma not_zle_0_negative [simp]: "~ (0 \<le> - (of_nat (Suc n) \<Colon> int))"
by (subst le_minus_iff, simp del: of_nat_Suc)
lemma int_zle_neg: "((of_nat n \<Colon> int) \<le> - of_nat m) = (n = 0 & m = 0)"
by (simp add: int_def le minus Zero_int_def)
lemma not_int_zless_negative [simp]: "~ ((of_nat n \<Colon> int) < - of_nat m)"
by (simp add: linorder_not_less)
lemma negative_eq_positive [simp]: "((- of_nat n \<Colon> int) = of_nat m) = (n = 0 & m = 0)"
by (force simp add: order_eq_iff [of "- of_nat n"] int_zle_neg)
lemma zle_iff_zadd: "(w\<Colon>int) \<le> z \<longleftrightarrow> (\<exists>n. z = w + of_nat n)"
proof -
have "(w \<le> z) = (0 \<le> z - w)"
by (simp only: le_diff_eq add_0_left)
also have "\<dots> = (\<exists>n. z - w = of_nat n)"
by (auto elim: zero_le_imp_eq_int)
also have "\<dots> = (\<exists>n. z = w + of_nat n)"
by (simp only: group_simps)
finally show ?thesis .
qed
lemma zadd_int_left: "of_nat m + (of_nat n + z) = of_nat (m + n) + (z\<Colon>int)"
by simp
lemma int_Suc0_eq_1: "of_nat (Suc 0) = (1\<Colon>int)"
by simp
text{*This version is proved for all ordered rings, not just integers!
It is proved here because attribute @{text arith_split} is not available
in theory @{text Ring_and_Field}.
But is it really better than just rewriting with @{text abs_if}?*}
lemma abs_split [arith_split,noatp]:
"P(abs(a::'a::ordered_idom)) = ((0 \<le> a --> P a) & (a < 0 --> P(-a)))"
by (force dest: order_less_le_trans simp add: abs_if linorder_not_less)
lemma negD: "(x \<Colon> int) < 0 \<Longrightarrow> \<exists>n. x = - (of_nat (Suc n))"
apply (cases x)
apply (auto simp add: le minus Zero_int_def int_def order_less_le)
apply (rule_tac x="y - Suc x" in exI, arith)
done
subsection {* Cases and induction *}
text{*Now we replace the case analysis rule by a more conventional one:
whether an integer is negative or not.*}
theorem int_cases [cases type: int, case_names nonneg neg]:
"[|!! n. (z \<Colon> int) = of_nat n ==> P; !! n. z = - (of_nat (Suc n)) ==> P |] ==> P"
apply (cases "z < 0", blast dest!: negD)
apply (simp add: linorder_not_less del: of_nat_Suc)
apply auto
apply (blast dest: nat_0_le [THEN sym])
done
theorem int_induct [induct type: int, case_names nonneg neg]:
"[|!! n. P (of_nat n \<Colon> int); !!n. P (- (of_nat (Suc n))) |] ==> P z"
by (cases z rule: int_cases) auto
text{*Contributed by Brian Huffman*}
theorem int_diff_cases:
obtains (diff) m n where "(z\<Colon>int) = of_nat m - of_nat n"
apply (cases z rule: eq_Abs_Integ)
apply (rule_tac m=x and n=y in diff)
apply (simp add: int_def diff_def minus add)
done
subsection {* Binary representation *}
text {*
This formalization defines binary arithmetic in terms of the integers
rather than using a datatype. This avoids multiple representations (leading
zeroes, etc.) See @{text "ZF/Tools/twos-compl.ML"}, function @{text
int_of_binary}, for the numerical interpretation.
The representation expects that @{text "(m mod 2)"} is 0 or 1,
even if m is negative;
For instance, @{text "-5 div 2 = -3"} and @{text "-5 mod 2 = 1"}; thus
@{text "-5 = (-3)*2 + 1"}.
This two's complement binary representation derives from the paper
"An Efficient Representation of Arithmetic for Term Rewriting" by
Dave Cohen and Phil Watson, Rewriting Techniques and Applications,
Springer LNCS 488 (240-251), 1991.
*}
datatype bit = B0 | B1
text{*
Type @{typ bit} avoids the use of type @{typ bool}, which would make
all of the rewrite rules higher-order.
*}
definition
Pls :: int where
[code func del]: "Pls = 0"
definition
Min :: int where
[code func del]: "Min = - 1"
definition
Bit :: "int \<Rightarrow> bit \<Rightarrow> int" (infixl "BIT" 90) where
[code func del]: "k BIT b = (case b of B0 \<Rightarrow> 0 | B1 \<Rightarrow> 1) + k + k"
class number = type + -- {* for numeric types: nat, int, real, \dots *}
fixes number_of :: "int \<Rightarrow> 'a"
use "Tools/numeral.ML"
syntax
"_Numeral" :: "num_const \<Rightarrow> 'a" ("_")
use "Tools/numeral_syntax.ML"
setup NumeralSyntax.setup
abbreviation
"Numeral0 \<equiv> number_of Pls"
abbreviation
"Numeral1 \<equiv> number_of (Pls BIT B1)"
lemma Let_number_of [simp]: "Let (number_of v) f = f (number_of v)"
-- {* Unfold all @{text let}s involving constants *}
unfolding Let_def ..
definition
succ :: "int \<Rightarrow> int" where
[code func del]: "succ k = k + 1"
definition
pred :: "int \<Rightarrow> int" where
[code func del]: "pred k = k - 1"
lemmas
max_number_of [simp] = max_def
[of "number_of u" "number_of v", standard, simp]
and
min_number_of [simp] = min_def
[of "number_of u" "number_of v", standard, simp]
-- {* unfolding @{text minx} and @{text max} on numerals *}
lemmas numeral_simps =
succ_def pred_def Pls_def Min_def Bit_def
text {* Removal of leading zeroes *}
lemma Pls_0_eq [simp, code post]:
"Pls BIT B0 = Pls"
unfolding numeral_simps by simp
lemma Min_1_eq [simp, code post]:
"Min BIT B1 = Min"
unfolding numeral_simps by simp
subsection {* The Functions @{term succ}, @{term pred} and @{term uminus} *}
lemma succ_Pls [simp]:
"succ Pls = Pls BIT B1"
unfolding numeral_simps by simp
lemma succ_Min [simp]:
"succ Min = Pls"
unfolding numeral_simps by simp
lemma succ_1 [simp]:
"succ (k BIT B1) = succ k BIT B0"
unfolding numeral_simps by simp
lemma succ_0 [simp]:
"succ (k BIT B0) = k BIT B1"
unfolding numeral_simps by simp
lemma pred_Pls [simp]:
"pred Pls = Min"
unfolding numeral_simps by simp
lemma pred_Min [simp]:
"pred Min = Min BIT B0"
unfolding numeral_simps by simp
lemma pred_1 [simp]:
"pred (k BIT B1) = k BIT B0"
unfolding numeral_simps by simp
lemma pred_0 [simp]:
"pred (k BIT B0) = pred k BIT B1"
unfolding numeral_simps by simp
lemma minus_Pls [simp]:
"- Pls = Pls"
unfolding numeral_simps by simp
lemma minus_Min [simp]:
"- Min = Pls BIT B1"
unfolding numeral_simps by simp
lemma minus_1 [simp]:
"- (k BIT B1) = pred (- k) BIT B1"
unfolding numeral_simps by simp
lemma minus_0 [simp]:
"- (k BIT B0) = (- k) BIT B0"
unfolding numeral_simps by simp
subsection {*
Binary Addition and Multiplication: @{term "op + \<Colon> int \<Rightarrow> int \<Rightarrow> int"}
and @{term "op * \<Colon> int \<Rightarrow> int \<Rightarrow> int"}
*}
lemma add_Pls [simp]:
"Pls + k = k"
unfolding numeral_simps by simp
lemma add_Min [simp]:
"Min + k = pred k"
unfolding numeral_simps by simp
lemma add_BIT_11 [simp]:
"(k BIT B1) + (l BIT B1) = (k + succ l) BIT B0"
unfolding numeral_simps by simp
lemma add_BIT_10 [simp]:
"(k BIT B1) + (l BIT B0) = (k + l) BIT B1"
unfolding numeral_simps by simp
lemma add_BIT_0 [simp]:
"(k BIT B0) + (l BIT b) = (k + l) BIT b"
unfolding numeral_simps by simp
lemma add_Pls_right [simp]:
"k + Pls = k"
unfolding numeral_simps by simp
lemma add_Min_right [simp]:
"k + Min = pred k"
unfolding numeral_simps by simp
lemma mult_Pls [simp]:
"Pls * w = Pls"
unfolding numeral_simps by simp
lemma mult_Min [simp]:
"Min * k = - k"
unfolding numeral_simps by simp
lemma mult_num1 [simp]:
"(k BIT B1) * l = ((k * l) BIT B0) + l"
unfolding numeral_simps int_distrib by simp
lemma mult_num0 [simp]:
"(k BIT B0) * l = (k * l) BIT B0"
unfolding numeral_simps int_distrib by simp
subsection {* Converting Numerals to Rings: @{term number_of} *}
class number_ring = number + comm_ring_1 +
assumes number_of_eq: "number_of k = of_int k"
text {* self-embedding of the integers *}
instantiation int :: number_ring
begin
definition
int_number_of_def [code func del]: "number_of w = (of_int w \<Colon> int)"
instance
by intro_classes (simp only: int_number_of_def)
end
lemma number_of_is_id:
"number_of (k::int) = k"
unfolding int_number_of_def by simp
lemma number_of_succ:
"number_of (succ k) = (1 + number_of k ::'a::number_ring)"
unfolding number_of_eq numeral_simps by simp
lemma number_of_pred:
"number_of (pred w) = (- 1 + number_of w ::'a::number_ring)"
unfolding number_of_eq numeral_simps by simp
lemma number_of_minus:
"number_of (uminus w) = (- (number_of w)::'a::number_ring)"
unfolding number_of_eq numeral_simps by simp
lemma number_of_add:
"number_of (v + w) = (number_of v + number_of w::'a::number_ring)"
unfolding number_of_eq numeral_simps by simp
lemma number_of_mult:
"number_of (v * w) = (number_of v * number_of w::'a::number_ring)"
unfolding number_of_eq numeral_simps by simp
text {*
The correctness of shifting.
But it doesn't seem to give a measurable speed-up.
*}
lemma double_number_of_BIT:
"(1 + 1) * number_of w = (number_of (w BIT B0) ::'a::number_ring)"
unfolding number_of_eq numeral_simps left_distrib by simp
text {*
Converting numerals 0 and 1 to their abstract versions.
*}
lemma numeral_0_eq_0 [simp]:
"Numeral0 = (0::'a::number_ring)"
unfolding number_of_eq numeral_simps by simp
lemma numeral_1_eq_1 [simp]:
"Numeral1 = (1::'a::number_ring)"
unfolding number_of_eq numeral_simps by simp
text {*
Special-case simplification for small constants.
*}
text{*
Unary minus for the abstract constant 1. Cannot be inserted
as a simprule until later: it is @{text number_of_Min} re-oriented!
*}
lemma numeral_m1_eq_minus_1:
"(-1::'a::number_ring) = - 1"
unfolding number_of_eq numeral_simps by simp
lemma mult_minus1 [simp]:
"-1 * z = -(z::'a::number_ring)"
unfolding number_of_eq numeral_simps by simp
lemma mult_minus1_right [simp]:
"z * -1 = -(z::'a::number_ring)"
unfolding number_of_eq numeral_simps by simp
(*Negation of a coefficient*)
lemma minus_number_of_mult [simp]:
"- (number_of w) * z = number_of (uminus w) * (z::'a::number_ring)"
unfolding number_of_eq by simp
text {* Subtraction *}
lemma diff_number_of_eq:
"number_of v - number_of w =
(number_of (v + uminus w)::'a::number_ring)"
unfolding number_of_eq by simp
lemma number_of_Pls:
"number_of Pls = (0::'a::number_ring)"
unfolding number_of_eq numeral_simps by simp
lemma number_of_Min:
"number_of Min = (- 1::'a::number_ring)"
unfolding number_of_eq numeral_simps by simp
lemma number_of_BIT:
"number_of(w BIT x) = (case x of B0 => 0 | B1 => (1::'a::number_ring))
+ (number_of w) + (number_of w)"
unfolding number_of_eq numeral_simps by (simp split: bit.split)
subsection {* Equality of Binary Numbers *}
text {* First version by Norbert Voelker *}
definition
neg :: "'a\<Colon>ordered_idom \<Rightarrow> bool"
where
"neg Z \<longleftrightarrow> Z < 0"
definition (*for simplifying equalities*)
iszero :: "'a\<Colon>semiring_1 \<Rightarrow> bool"
where
"iszero z \<longleftrightarrow> z = 0"
lemma not_neg_int [simp]: "~ neg (of_nat n)"
by (simp add: neg_def)
lemma neg_zminus_int [simp]: "neg (- (of_nat (Suc n)))"
by (simp add: neg_def neg_less_0_iff_less del: of_nat_Suc)
lemmas neg_eq_less_0 = neg_def
lemma not_neg_eq_ge_0: "(~neg x) = (0 \<le> x)"
by (simp add: neg_def linorder_not_less)
text{*To simplify inequalities when Numeral1 can get simplified to 1*}
lemma not_neg_0: "~ neg 0"
by (simp add: One_int_def neg_def)
lemma not_neg_1: "~ neg 1"
by (simp add: neg_def linorder_not_less zero_le_one)
lemma iszero_0: "iszero 0"
by (simp add: iszero_def)
lemma not_iszero_1: "~ iszero 1"
by (simp add: iszero_def eq_commute)
lemma neg_nat: "neg z ==> nat z = 0"
by (simp add: neg_def order_less_imp_le)
lemma not_neg_nat: "~ neg z ==> of_nat (nat z) = z"
by (simp add: linorder_not_less neg_def)
lemma eq_number_of_eq:
"((number_of x::'a::number_ring) = number_of y) =
iszero (number_of (x + uminus y) :: 'a)"
unfolding iszero_def number_of_add number_of_minus
by (simp add: compare_rls)
lemma iszero_number_of_Pls:
"iszero ((number_of Pls)::'a::number_ring)"
unfolding iszero_def numeral_0_eq_0 ..
lemma nonzero_number_of_Min:
"~ iszero ((number_of Min)::'a::number_ring)"
unfolding iszero_def numeral_m1_eq_minus_1 by simp
subsection {* Comparisons, for Ordered Rings *}
lemmas double_eq_0_iff = double_zero
lemma le_imp_0_less:
assumes le: "0 \<le> z"
shows "(0::int) < 1 + z"
proof -
have "0 \<le> z" by fact
also have "... < z + 1" by (rule less_add_one)
also have "... = 1 + z" by (simp add: add_ac)
finally show "0 < 1 + z" .
qed
lemma odd_nonzero:
"1 + z + z \<noteq> (0::int)";
proof (cases z rule: int_cases)
case (nonneg n)
have le: "0 \<le> z+z" by (simp add: nonneg add_increasing)
thus ?thesis using le_imp_0_less [OF le]
by (auto simp add: add_assoc)
next
case (neg n)
show ?thesis
proof
assume eq: "1 + z + z = 0"
have "(0::int) < 1 + (of_nat n + of_nat n)"
by (simp add: le_imp_0_less add_increasing)
also have "... = - (1 + z + z)"
by (simp add: neg add_assoc [symmetric])
also have "... = 0" by (simp add: eq)
finally have "0<0" ..
thus False by blast
qed
qed
lemma iszero_number_of_BIT:
"iszero (number_of (w BIT x)::'a) =
(x = B0 \<and> iszero (number_of w::'a::{ring_char_0,number_ring}))"
proof -
have "(of_int w + of_int w = (0::'a)) \<Longrightarrow> (w = 0)"
proof -
assume eq: "of_int w + of_int w = (0::'a)"
then have "of_int (w + w) = (of_int 0 :: 'a)" by simp
then have "w + w = 0" by (simp only: of_int_eq_iff)
then show "w = 0" by (simp only: double_eq_0_iff)
qed
moreover have "1 + of_int w + of_int w \<noteq> (0::'a)"
proof
assume eq: "1 + of_int w + of_int w = (0::'a)"
hence "of_int (1 + w + w) = (of_int 0 :: 'a)" by simp
hence "1 + w + w = 0" by (simp only: of_int_eq_iff)
with odd_nonzero show False by blast
qed
ultimately show ?thesis
by (auto simp add: iszero_def number_of_eq numeral_simps
split: bit.split)
qed
lemma iszero_number_of_0:
"iszero (number_of (w BIT B0) :: 'a::{ring_char_0,number_ring}) =
iszero (number_of w :: 'a)"
by (simp only: iszero_number_of_BIT simp_thms)
lemma iszero_number_of_1:
"~ iszero (number_of (w BIT B1)::'a::{ring_char_0,number_ring})"
by (simp add: iszero_number_of_BIT)
subsection {* The Less-Than Relation *}
lemma less_number_of_eq_neg:
"((number_of x::'a::{ordered_idom,number_ring}) < number_of y)
= neg (number_of (x + uminus y) :: 'a)"
apply (subst less_iff_diff_less_0)
apply (simp add: neg_def diff_minus number_of_add number_of_minus)
done
text {*
If @{term Numeral0} is rewritten to 0 then this rule can't be applied:
@{term Numeral0} IS @{term "number_of Pls"}
*}
lemma not_neg_number_of_Pls:
"~ neg (number_of Pls ::'a::{ordered_idom,number_ring})"
by (simp add: neg_def numeral_0_eq_0)
lemma neg_number_of_Min:
"neg (number_of Min ::'a::{ordered_idom,number_ring})"
by (simp add: neg_def zero_less_one numeral_m1_eq_minus_1)
lemma double_less_0_iff:
"(a + a < 0) = (a < (0::'a::ordered_idom))"
proof -
have "(a + a < 0) = ((1+1)*a < 0)" by (simp add: left_distrib)
also have "... = (a < 0)"
by (simp add: mult_less_0_iff zero_less_two
order_less_not_sym [OF zero_less_two])
finally show ?thesis .
qed
lemma odd_less_0:
"(1 + z + z < 0) = (z < (0::int))";
proof (cases z rule: int_cases)
case (nonneg n)
thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing
le_imp_0_less [THEN order_less_imp_le])
next
case (neg n)
thus ?thesis by (simp del: of_nat_Suc of_nat_add
add: compare_rls of_nat_1 [symmetric] of_nat_add [symmetric])
qed
lemma neg_number_of_BIT:
"neg (number_of (w BIT x)::'a) =
neg (number_of w :: 'a::{ordered_idom,number_ring})"
proof -
have "((1::'a) + of_int w + of_int w < 0) = (of_int (1 + w + w) < (of_int 0 :: 'a))"
by simp
also have "... = (w < 0)" by (simp only: of_int_less_iff odd_less_0)
finally show ?thesis
by ( simp add: neg_def number_of_eq numeral_simps double_less_0_iff
split: bit.split)
qed
text {* Less-Than or Equals *}
text {* Reduces @{term "a\<le>b"} to @{term "~ (b<a)"} for ALL numerals. *}
lemmas le_number_of_eq_not_less =
linorder_not_less [of "number_of w" "number_of v", symmetric,
standard]
lemma le_number_of_eq:
"((number_of x::'a::{ordered_idom,number_ring}) \<le> number_of y)
= (~ (neg (number_of (y + uminus x) :: 'a)))"
by (simp add: le_number_of_eq_not_less less_number_of_eq_neg)
text {* Absolute value (@{term abs}) *}
lemma abs_number_of:
"abs(number_of x::'a::{ordered_idom,number_ring}) =
(if number_of x < (0::'a) then -number_of x else number_of x)"
by (simp add: abs_if)
text {* Re-orientation of the equation nnn=x *}
lemma number_of_reorient:
"(number_of w = x) = (x = number_of w)"
by auto
subsection {* Simplification of arithmetic operations on integer constants. *}
lemmas arith_extra_simps [standard, simp] =
number_of_add [symmetric]
number_of_minus [symmetric] numeral_m1_eq_minus_1 [symmetric]
number_of_mult [symmetric]
diff_number_of_eq abs_number_of
text {*
For making a minimal simpset, one must include these default simprules.
Also include @{text simp_thms}.
*}
lemmas arith_simps =
bit.distinct
Pls_0_eq Min_1_eq
pred_Pls pred_Min pred_1 pred_0
succ_Pls succ_Min succ_1 succ_0
add_Pls add_Min add_BIT_0 add_BIT_10 add_BIT_11
minus_Pls minus_Min minus_1 minus_0
mult_Pls mult_Min mult_num1 mult_num0
add_Pls_right add_Min_right
abs_zero abs_one arith_extra_simps
text {* Simplification of relational operations *}
lemmas rel_simps [simp] =
eq_number_of_eq iszero_0 nonzero_number_of_Min
iszero_number_of_0 iszero_number_of_1
less_number_of_eq_neg
not_neg_number_of_Pls not_neg_0 not_neg_1 not_iszero_1
neg_number_of_Min neg_number_of_BIT
le_number_of_eq
(* iszero_number_of_Pls would never be used
because its lhs simplifies to "iszero 0" *)
subsection {* Simplification of arithmetic when nested to the right. *}
lemma add_number_of_left [simp]:
"number_of v + (number_of w + z) =
(number_of(v + w) + z::'a::number_ring)"
by (simp add: add_assoc [symmetric])
lemma mult_number_of_left [simp]:
"number_of v * (number_of w * z) =
(number_of(v * w) * z::'a::number_ring)"
by (simp add: mult_assoc [symmetric])
lemma add_number_of_diff1:
"number_of v + (number_of w - c) =
number_of(v + w) - (c::'a::number_ring)"
by (simp add: diff_minus add_number_of_left)
lemma add_number_of_diff2 [simp]:
"number_of v + (c - number_of w) =
number_of (v + uminus w) + (c::'a::number_ring)"
apply (subst diff_number_of_eq [symmetric])
apply (simp only: compare_rls)
done
subsection {* The Set of Integers *}
context ring_1
begin
definition
Ints :: "'a set"
where
"Ints = range of_int"
end
notation (xsymbols)
Ints ("\<int>")
context ring_1
begin
lemma Ints_0 [simp]: "0 \<in> \<int>"
apply (simp add: Ints_def)
apply (rule range_eqI)
apply (rule of_int_0 [symmetric])
done
lemma Ints_1 [simp]: "1 \<in> \<int>"
apply (simp add: Ints_def)
apply (rule range_eqI)
apply (rule of_int_1 [symmetric])
done
lemma Ints_add [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a + b \<in> \<int>"
apply (auto simp add: Ints_def)
apply (rule range_eqI)
apply (rule of_int_add [symmetric])
done
lemma Ints_minus [simp]: "a \<in> \<int> \<Longrightarrow> -a \<in> \<int>"
apply (auto simp add: Ints_def)
apply (rule range_eqI)
apply (rule of_int_minus [symmetric])
done
lemma Ints_mult [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a * b \<in> \<int>"
apply (auto simp add: Ints_def)
apply (rule range_eqI)
apply (rule of_int_mult [symmetric])
done
lemma Ints_cases [cases set: Ints]:
assumes "q \<in> \<int>"
obtains (of_int) z where "q = of_int z"
unfolding Ints_def
proof -
from `q \<in> \<int>` have "q \<in> range of_int" unfolding Ints_def .
then obtain z where "q = of_int z" ..
then show thesis ..
qed
lemma Ints_induct [case_names of_int, induct set: Ints]:
"q \<in> \<int> \<Longrightarrow> (\<And>z. P (of_int z)) \<Longrightarrow> P q"
by (rule Ints_cases) auto
end
lemma Ints_diff [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a-b \<in> \<int>"
apply (auto simp add: Ints_def)
apply (rule range_eqI)
apply (rule of_int_diff [symmetric])
done
text {* The premise involving @{term Ints} prevents @{term "a = 1/2"}. *}
lemma Ints_double_eq_0_iff:
assumes in_Ints: "a \<in> Ints"
shows "(a + a = 0) = (a = (0::'a::ring_char_0))"
proof -
from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
then obtain z where a: "a = of_int z" ..
show ?thesis
proof
assume "a = 0"
thus "a + a = 0" by simp
next
assume eq: "a + a = 0"
hence "of_int (z + z) = (of_int 0 :: 'a)" by (simp add: a)
hence "z + z = 0" by (simp only: of_int_eq_iff)
hence "z = 0" by (simp only: double_eq_0_iff)
thus "a = 0" by (simp add: a)
qed
qed
lemma Ints_odd_nonzero:
assumes in_Ints: "a \<in> Ints"
shows "1 + a + a \<noteq> (0::'a::ring_char_0)"
proof -
from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
then obtain z where a: "a = of_int z" ..
show ?thesis
proof
assume eq: "1 + a + a = 0"
hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a)
hence "1 + z + z = 0" by (simp only: of_int_eq_iff)
with odd_nonzero show False by blast
qed
qed
lemma Ints_number_of:
"(number_of w :: 'a::number_ring) \<in> Ints"
unfolding number_of_eq Ints_def by simp
lemma Ints_odd_less_0:
assumes in_Ints: "a \<in> Ints"
shows "(1 + a + a < 0) = (a < (0::'a::ordered_idom))";
proof -
from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
then obtain z where a: "a = of_int z" ..
hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))"
by (simp add: a)
also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0)
also have "... = (a < 0)" by (simp add: a)
finally show ?thesis .
qed
subsection {* @{term setsum} and @{term setprod} *}
text {*By Jeremy Avigad*}
lemma of_nat_setsum: "of_nat (setsum f A) = (\<Sum>x\<in>A. of_nat(f x))"
apply (cases "finite A")
apply (erule finite_induct, auto)
done
lemma of_int_setsum: "of_int (setsum f A) = (\<Sum>x\<in>A. of_int(f x))"
apply (cases "finite A")
apply (erule finite_induct, auto)
done
lemma of_nat_setprod: "of_nat (setprod f A) = (\<Prod>x\<in>A. of_nat(f x))"
apply (cases "finite A")
apply (erule finite_induct, auto simp add: of_nat_mult)
done
lemma of_int_setprod: "of_int (setprod f A) = (\<Prod>x\<in>A. of_int(f x))"
apply (cases "finite A")
apply (erule finite_induct, auto)
done
lemma setprod_nonzero_nat:
"finite A ==> (\<forall>x \<in> A. f x \<noteq> (0::nat)) ==> setprod f A \<noteq> 0"
by (rule setprod_nonzero, auto)
lemma setprod_zero_eq_nat:
"finite A ==> (setprod f A = (0::nat)) = (\<exists>x \<in> A. f x = 0)"
by (rule setprod_zero_eq, auto)
lemma setprod_nonzero_int:
"finite A ==> (\<forall>x \<in> A. f x \<noteq> (0::int)) ==> setprod f A \<noteq> 0"
by (rule setprod_nonzero, auto)
lemma setprod_zero_eq_int:
"finite A ==> (setprod f A = (0::int)) = (\<exists>x \<in> A. f x = 0)"
by (rule setprod_zero_eq, auto)
lemmas int_setsum = of_nat_setsum [where 'a=int]
lemmas int_setprod = of_nat_setprod [where 'a=int]
subsection{*Inequality Reasoning for the Arithmetic Simproc*}
lemma add_numeral_0: "Numeral0 + a = (a::'a::number_ring)"
by simp
lemma add_numeral_0_right: "a + Numeral0 = (a::'a::number_ring)"
by simp
lemma mult_numeral_1: "Numeral1 * a = (a::'a::number_ring)"
by simp
lemma mult_numeral_1_right: "a * Numeral1 = (a::'a::number_ring)"
by simp
lemma divide_numeral_1: "a / Numeral1 = (a::'a::{number_ring,field})"
by simp
lemma inverse_numeral_1:
"inverse Numeral1 = (Numeral1::'a::{number_ring,field})"
by simp
text{*Theorem lists for the cancellation simprocs. The use of binary numerals
for 0 and 1 reduces the number of special cases.*}
lemmas add_0s = add_numeral_0 add_numeral_0_right
lemmas mult_1s = mult_numeral_1 mult_numeral_1_right
mult_minus1 mult_minus1_right
subsection{*Special Arithmetic Rules for Abstract 0 and 1*}
text{*Arithmetic computations are defined for binary literals, which leaves 0
and 1 as special cases. Addition already has rules for 0, but not 1.
Multiplication and unary minus already have rules for both 0 and 1.*}
lemma binop_eq: "[|f x y = g x y; x = x'; y = y'|] ==> f x' y' = g x' y'"
by simp
lemmas add_number_of_eq = number_of_add [symmetric]
text{*Allow 1 on either or both sides*}
lemma one_add_one_is_two: "1 + 1 = (2::'a::number_ring)"
by (simp del: numeral_1_eq_1 add: numeral_1_eq_1 [symmetric] add_number_of_eq)
lemmas add_special =
one_add_one_is_two
binop_eq [of "op +", OF add_number_of_eq numeral_1_eq_1 refl, standard]
binop_eq [of "op +", OF add_number_of_eq refl numeral_1_eq_1, standard]
text{*Allow 1 on either or both sides (1-1 already simplifies to 0)*}
lemmas diff_special =
binop_eq [of "op -", OF diff_number_of_eq numeral_1_eq_1 refl, standard]
binop_eq [of "op -", OF diff_number_of_eq refl numeral_1_eq_1, standard]
text{*Allow 0 or 1 on either side with a binary numeral on the other*}
lemmas eq_special =
binop_eq [of "op =", OF eq_number_of_eq numeral_0_eq_0 refl, standard]
binop_eq [of "op =", OF eq_number_of_eq numeral_1_eq_1 refl, standard]
binop_eq [of "op =", OF eq_number_of_eq refl numeral_0_eq_0, standard]
binop_eq [of "op =", OF eq_number_of_eq refl numeral_1_eq_1, standard]
text{*Allow 0 or 1 on either side with a binary numeral on the other*}
lemmas less_special =
binop_eq [of "op <", OF less_number_of_eq_neg numeral_0_eq_0 refl, standard]
binop_eq [of "op <", OF less_number_of_eq_neg numeral_1_eq_1 refl, standard]
binop_eq [of "op <", OF less_number_of_eq_neg refl numeral_0_eq_0, standard]
binop_eq [of "op <", OF less_number_of_eq_neg refl numeral_1_eq_1, standard]
text{*Allow 0 or 1 on either side with a binary numeral on the other*}
lemmas le_special =
binop_eq [of "op \<le>", OF le_number_of_eq numeral_0_eq_0 refl, standard]
binop_eq [of "op \<le>", OF le_number_of_eq numeral_1_eq_1 refl, standard]
binop_eq [of "op \<le>", OF le_number_of_eq refl numeral_0_eq_0, standard]
binop_eq [of "op \<le>", OF le_number_of_eq refl numeral_1_eq_1, standard]
lemmas arith_special[simp] =
add_special diff_special eq_special less_special le_special
lemma min_max_01: "min (0::int) 1 = 0 & min (1::int) 0 = 0 &
max (0::int) 1 = 1 & max (1::int) 0 = 1"
by(simp add:min_def max_def)
lemmas min_max_special[simp] =
min_max_01
max_def[of "0::int" "number_of v", standard, simp]
min_def[of "0::int" "number_of v", standard, simp]
max_def[of "number_of u" "0::int", standard, simp]
min_def[of "number_of u" "0::int", standard, simp]
max_def[of "1::int" "number_of v", standard, simp]
min_def[of "1::int" "number_of v", standard, simp]
max_def[of "number_of u" "1::int", standard, simp]
min_def[of "number_of u" "1::int", standard, simp]
text {* Legacy theorems *}
lemmas zle_int = of_nat_le_iff [where 'a=int]
lemmas int_int_eq = of_nat_eq_iff [where 'a=int]
use "~~/src/Provers/Arith/assoc_fold.ML"
use "int_arith1.ML"
declaration {* K int_arith_setup *}
subsection{*Lemmas About Small Numerals*}
lemma of_int_m1 [simp]: "of_int -1 = (-1 :: 'a :: number_ring)"
proof -
have "(of_int -1 :: 'a) = of_int (- 1)" by simp
also have "... = - of_int 1" by (simp only: of_int_minus)
also have "... = -1" by simp
finally show ?thesis .
qed
lemma abs_minus_one [simp]: "abs (-1) = (1::'a::{ordered_idom,number_ring})"
by (simp add: abs_if)
lemma abs_power_minus_one [simp]:
"abs(-1 ^ n) = (1::'a::{ordered_idom,number_ring,recpower})"
by (simp add: power_abs)
lemma of_int_number_of_eq:
"of_int (number_of v) = (number_of v :: 'a :: number_ring)"
by (simp add: number_of_eq)
text{*Lemmas for specialist use, NOT as default simprules*}
lemma mult_2: "2 * z = (z+z::'a::number_ring)"
proof -
have "2*z = (1 + 1)*z" by simp
also have "... = z+z" by (simp add: left_distrib)
finally show ?thesis .
qed
lemma mult_2_right: "z * 2 = (z+z::'a::number_ring)"
by (subst mult_commute, rule mult_2)
subsection{*More Inequality Reasoning*}
lemma zless_add1_eq: "(w < z + (1::int)) = (w<z | w=z)"
by arith
lemma add1_zle_eq: "(w + (1::int) \<le> z) = (w<z)"
by arith
lemma zle_diff1_eq [simp]: "(w \<le> z - (1::int)) = (w<z)"
by arith
lemma zle_add1_eq_le [simp]: "(w < z + (1::int)) = (w\<le>z)"
by arith
lemma int_one_le_iff_zero_less: "((1::int) \<le> z) = (0 < z)"
by arith
subsection{*The Functions @{term nat} and @{term int}*}
text{*Simplify the terms @{term "int 0"}, @{term "int(Suc 0)"} and
@{term "w + - z"}*}
declare Zero_int_def [symmetric, simp]
declare One_int_def [symmetric, simp]
lemmas diff_int_def_symmetric = diff_int_def [symmetric, simp]
lemma nat_0: "nat 0 = 0"
by (simp add: nat_eq_iff)
lemma nat_1: "nat 1 = Suc 0"
by (subst nat_eq_iff, simp)
lemma nat_2: "nat 2 = Suc (Suc 0)"
by (subst nat_eq_iff, simp)
lemma one_less_nat_eq [simp]: "(Suc 0 < nat z) = (1 < z)"
apply (insert zless_nat_conj [of 1 z])
apply (auto simp add: nat_1)
done
text{*This simplifies expressions of the form @{term "int n = z"} where
z is an integer literal.*}
lemmas int_eq_iff_number_of [simp] = int_eq_iff [of _ "number_of v", standard]
lemma split_nat [arith_split]:
"P(nat(i::int)) = ((\<forall>n. i = of_nat n \<longrightarrow> P n) & (i < 0 \<longrightarrow> P 0))"
(is "?P = (?L & ?R)")
proof (cases "i < 0")
case True thus ?thesis by auto
next
case False
have "?P = ?L"
proof
assume ?P thus ?L using False by clarsimp
next
assume ?L thus ?P using False by simp
qed
with False show ?thesis by simp
qed
context ring_1
begin
lemma of_int_of_nat:
"of_int k = (if k < 0 then - of_nat (nat (- k)) else of_nat (nat k))"
proof (cases "k < 0")
case True then have "0 \<le> - k" by simp
then have "of_nat (nat (- k)) = of_int (- k)" by (rule of_nat_nat)
with True show ?thesis by simp
next
case False then show ?thesis by (simp add: not_less of_nat_nat)
qed
end
lemma nat_mult_distrib:
fixes z z' :: int
assumes "0 \<le> z"
shows "nat (z * z') = nat z * nat z'"
proof (cases "0 \<le> z'")
case False with assms have "z * z' \<le> 0"
by (simp add: not_le mult_le_0_iff)
then have "nat (z * z') = 0" by simp
moreover from False have "nat z' = 0" by simp
ultimately show ?thesis by simp
next
case True with assms have ge_0: "z * z' \<ge> 0" by (simp add: zero_le_mult_iff)
show ?thesis
by (rule injD [of "of_nat :: nat \<Rightarrow> int", OF inj_of_nat])
(simp only: of_nat_mult of_nat_nat [OF True]
of_nat_nat [OF assms] of_nat_nat [OF ge_0], simp)
qed
lemma nat_mult_distrib_neg: "z \<le> (0::int) ==> nat(z*z') = nat(-z) * nat(-z')"
apply (rule trans)
apply (rule_tac [2] nat_mult_distrib, auto)
done
lemma nat_abs_mult_distrib: "nat (abs (w * z)) = nat (abs w) * nat (abs z)"
apply (cases "z=0 | w=0")
apply (auto simp add: abs_if nat_mult_distrib [symmetric]
nat_mult_distrib_neg [symmetric] mult_less_0_iff)
done
subsection "Induction principles for int"
text{*Well-founded segments of the integers*}
definition
int_ge_less_than :: "int => (int * int) set"
where
"int_ge_less_than d = {(z',z). d \<le> z' & z' < z}"
theorem wf_int_ge_less_than: "wf (int_ge_less_than d)"
proof -
have "int_ge_less_than d \<subseteq> measure (%z. nat (z-d))"
by (auto simp add: int_ge_less_than_def)
thus ?thesis
by (rule wf_subset [OF wf_measure])
qed
text{*This variant looks odd, but is typical of the relations suggested
by RankFinder.*}
definition
int_ge_less_than2 :: "int => (int * int) set"
where
"int_ge_less_than2 d = {(z',z). d \<le> z & z' < z}"
theorem wf_int_ge_less_than2: "wf (int_ge_less_than2 d)"
proof -
have "int_ge_less_than2 d \<subseteq> measure (%z. nat (1+z-d))"
by (auto simp add: int_ge_less_than2_def)
thus ?thesis
by (rule wf_subset [OF wf_measure])
qed
abbreviation
int :: "nat \<Rightarrow> int"
where
"int \<equiv> of_nat"
(* `set:int': dummy construction *)
theorem int_ge_induct [case_names base step, induct set: int]:
fixes i :: int
assumes ge: "k \<le> i" and
base: "P k" and
step: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)"
shows "P i"
proof -
{ fix n have "\<And>i::int. n = nat(i-k) \<Longrightarrow> k \<le> i \<Longrightarrow> P i"
proof (induct n)
case 0
hence "i = k" by arith
thus "P i" using base by simp
next
case (Suc n)
then have "n = nat((i - 1) - k)" by arith
moreover
have ki1: "k \<le> i - 1" using Suc.prems by arith
ultimately
have "P(i - 1)" by(rule Suc.hyps)
from step[OF ki1 this] show ?case by simp
qed
}
with ge show ?thesis by fast
qed
(* `set:int': dummy construction *)
theorem int_gr_induct [case_names base step, induct set: int]:
assumes gr: "k < (i::int)" and
base: "P(k+1)" and
step: "\<And>i. \<lbrakk>k < i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
shows "P i"
apply(rule int_ge_induct[of "k + 1"])
using gr apply arith
apply(rule base)
apply (rule step, simp+)
done
theorem int_le_induct[consumes 1,case_names base step]:
assumes le: "i \<le> (k::int)" and
base: "P(k)" and
step: "\<And>i. \<lbrakk>i \<le> k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
shows "P i"
proof -
{ fix n have "\<And>i::int. n = nat(k-i) \<Longrightarrow> i \<le> k \<Longrightarrow> P i"
proof (induct n)
case 0
hence "i = k" by arith
thus "P i" using base by simp
next
case (Suc n)
hence "n = nat(k - (i+1))" by arith
moreover
have ki1: "i + 1 \<le> k" using Suc.prems by arith
ultimately
have "P(i+1)" by(rule Suc.hyps)
from step[OF ki1 this] show ?case by simp
qed
}
with le show ?thesis by fast
qed
theorem int_less_induct [consumes 1,case_names base step]:
assumes less: "(i::int) < k" and
base: "P(k - 1)" and
step: "\<And>i. \<lbrakk>i < k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
shows "P i"
apply(rule int_le_induct[of _ "k - 1"])
using less apply arith
apply(rule base)
apply (rule step, simp+)
done
subsection{*Intermediate value theorems*}
lemma int_val_lemma:
"(\<forall>i<n::nat. abs(f(i+1) - f i) \<le> 1) -->
f 0 \<le> k --> k \<le> f n --> (\<exists>i \<le> n. f i = (k::int))"
apply (induct_tac "n", simp)
apply (intro strip)
apply (erule impE, simp)
apply (erule_tac x = n in allE, simp)
apply (case_tac "k = f (n+1) ")
apply force
apply (erule impE)
apply (simp add: abs_if split add: split_if_asm)
apply (blast intro: le_SucI)
done
lemmas nat0_intermed_int_val = int_val_lemma [rule_format (no_asm)]
lemma nat_intermed_int_val:
"[| \<forall>i. m \<le> i & i < n --> abs(f(i + 1::nat) - f i) \<le> 1; m < n;
f m \<le> k; k \<le> f n |] ==> ? i. m \<le> i & i \<le> n & f i = (k::int)"
apply (cut_tac n = "n-m" and f = "%i. f (i+m) " and k = k
in int_val_lemma)
apply simp
apply (erule exE)
apply (rule_tac x = "i+m" in exI, arith)
done
subsection{*Products and 1, by T. M. Rasmussen*}
lemma zabs_less_one_iff [simp]: "(\<bar>z\<bar> < 1) = (z = (0::int))"
by arith
lemma abs_zmult_eq_1: "(\<bar>m * n\<bar> = 1) ==> \<bar>m\<bar> = (1::int)"
apply (cases "\<bar>n\<bar>=1")
apply (simp add: abs_mult)
apply (rule ccontr)
apply (auto simp add: linorder_neq_iff abs_mult)
apply (subgoal_tac "2 \<le> \<bar>m\<bar> & 2 \<le> \<bar>n\<bar>")
prefer 2 apply arith
apply (subgoal_tac "2*2 \<le> \<bar>m\<bar> * \<bar>n\<bar>", simp)
apply (rule mult_mono, auto)
done
lemma pos_zmult_eq_1_iff_lemma: "(m * n = 1) ==> m = (1::int) | m = -1"
by (insert abs_zmult_eq_1 [of m n], arith)
lemma pos_zmult_eq_1_iff: "0 < (m::int) ==> (m * n = 1) = (m = 1 & n = 1)"
apply (auto dest: pos_zmult_eq_1_iff_lemma)
apply (simp add: mult_commute [of m])
apply (frule pos_zmult_eq_1_iff_lemma, auto)
done
lemma zmult_eq_1_iff: "(m*n = (1::int)) = ((m = 1 & n = 1) | (m = -1 & n = -1))"
apply (rule iffI)
apply (frule pos_zmult_eq_1_iff_lemma)
apply (simp add: mult_commute [of m])
apply (frule pos_zmult_eq_1_iff_lemma, auto)
done
(* Could be simplified but Presburger only becomes available too late *)
lemma infinite_UNIV_int: "~finite(UNIV::int set)"
proof
assume "finite(UNIV::int set)"
moreover have "~(EX i::int. 2*i = 1)"
by (auto simp: pos_zmult_eq_1_iff)
ultimately show False using finite_UNIV_inj_surj[of "%n::int. n+n"]
by (simp add:inj_on_def surj_def) (blast intro:sym)
qed
subsection{*Integer Powers*}
instantiation int :: recpower
begin
primrec power_int where
"p ^ 0 = (1\<Colon>int)"
| "p ^ (Suc n) = (p\<Colon>int) * (p ^ n)"
instance proof
fix z :: int
fix n :: nat
show "z ^ 0 = 1" by simp
show "z ^ Suc n = z * (z ^ n)" by simp
qed
end
lemma zpower_zadd_distrib: "x ^ (y + z) = ((x ^ y) * (x ^ z)::int)"
by (rule Power.power_add)
lemma zpower_zpower: "(x ^ y) ^ z = (x ^ (y * z)::int)"
by (rule Power.power_mult [symmetric])
lemma zero_less_zpower_abs_iff [simp]:
"(0 < abs x ^ n) \<longleftrightarrow> (x \<noteq> (0::int) | n = 0)"
by (induct n) (auto simp add: zero_less_mult_iff)
lemma zero_le_zpower_abs [simp]: "(0::int) \<le> abs x ^ n"
by (induct n) (auto simp add: zero_le_mult_iff)
lemma of_int_power:
"of_int (z ^ n) = (of_int z ^ n :: 'a::{recpower, ring_1})"
by (induct n) (simp_all add: power_Suc)
lemma int_power: "int (m^n) = (int m) ^ n"
by (rule of_nat_power)
lemmas zpower_int = int_power [symmetric]
subsection {* Configuration of the code generator *}
instance int :: eq ..
code_datatype Pls Min Bit "number_of \<Colon> int \<Rightarrow> int"
definition
int_aux :: "nat \<Rightarrow> int \<Rightarrow> int" where
[code func del]: "int_aux = of_nat_aux"
lemmas int_aux_code = of_nat_aux_code [where ?'a = int, simplified int_aux_def [symmetric], code]
lemma [code, code unfold, code inline del]:
"of_nat n = int_aux n 0"
by (simp add: int_aux_def of_nat_aux_def)
definition
nat_aux :: "int \<Rightarrow> nat \<Rightarrow> nat" where
"nat_aux i n = nat i + n"
lemma [code]:
"nat_aux i n = (if i \<le> 0 then n else nat_aux (i - 1) (Suc n))" -- {* tail recursive *}
by (auto simp add: nat_aux_def nat_eq_iff linorder_not_le order_less_imp_le
dest: zless_imp_add1_zle)
lemma [code]: "nat i = nat_aux i 0"
by (simp add: nat_aux_def)
hide (open) const int_aux nat_aux
lemma zero_is_num_zero [code func, code inline, symmetric, code post]:
"(0\<Colon>int) = Numeral0"
by simp
lemma one_is_num_one [code func, code inline, symmetric, code post]:
"(1\<Colon>int) = Numeral1"
by simp
code_modulename SML
Int Integer
code_modulename OCaml
Int Integer
code_modulename Haskell
Int Integer
types_code
"int" ("int")
attach (term_of) {*
val term_of_int = HOLogic.mk_number HOLogic.intT;
*}
attach (test) {*
fun gen_int i =
let val j = one_of [~1, 1] * random_range 0 i
in (j, fn () => term_of_int j) end;
*}
setup {*
let
fun strip_number_of (@{term "Int.number_of :: int => int"} $ t) = t
| strip_number_of t = t;
fun numeral_codegen thy defs gr dep module b t =
let val i = HOLogic.dest_numeral (strip_number_of t)
in
SOME (fst (Codegen.invoke_tycodegen thy defs dep module false (gr, HOLogic.intT)),
Pretty.str (string_of_int i))
end handle TERM _ => NONE;
in
Codegen.add_codegen "numeral_codegen" numeral_codegen
end
*}
consts_code
"number_of :: int \<Rightarrow> int" ("(_)")
"0 :: int" ("0")
"1 :: int" ("1")
"uminus :: int => int" ("~")
"op + :: int => int => int" ("(_ +/ _)")
"op * :: int => int => int" ("(_ */ _)")
"op \<le> :: int => int => bool" ("(_ <=/ _)")
"op < :: int => int => bool" ("(_ </ _)")
quickcheck_params [default_type = int]
(*setup continues in theory Presburger*)
hide (open) const Pls Min B0 B1 succ pred
subsection {* Legacy theorems *}
lemmas zminus_zminus = minus_minus [of "z::int", standard]
lemmas zminus_0 = minus_zero [where 'a=int]
lemmas zminus_zadd_distrib = minus_add_distrib [of "z::int" "w", standard]
lemmas zadd_commute = add_commute [of "z::int" "w", standard]
lemmas zadd_assoc = add_assoc [of "z1::int" "z2" "z3", standard]
lemmas zadd_left_commute = add_left_commute [of "x::int" "y" "z", standard]
lemmas zadd_ac = zadd_assoc zadd_commute zadd_left_commute
lemmas zmult_ac = OrderedGroup.mult_ac
lemmas zadd_0 = OrderedGroup.add_0_left [of "z::int", standard]
lemmas zadd_0_right = OrderedGroup.add_0_left [of "z::int", standard]
lemmas zadd_zminus_inverse2 = left_minus [of "z::int", standard]
lemmas zmult_zminus = mult_minus_left [of "z::int" "w", standard]
lemmas zmult_commute = mult_commute [of "z::int" "w", standard]
lemmas zmult_assoc = mult_assoc [of "z1::int" "z2" "z3", standard]
lemmas zadd_zmult_distrib = left_distrib [of "z1::int" "z2" "w", standard]
lemmas zadd_zmult_distrib2 = right_distrib [of "w::int" "z1" "z2", standard]
lemmas zdiff_zmult_distrib = left_diff_distrib [of "z1::int" "z2" "w", standard]
lemmas zdiff_zmult_distrib2 = right_diff_distrib [of "w::int" "z1" "z2", standard]
lemmas int_distrib =
zadd_zmult_distrib zadd_zmult_distrib2
zdiff_zmult_distrib zdiff_zmult_distrib2
lemmas zmult_1 = mult_1_left [of "z::int", standard]
lemmas zmult_1_right = mult_1_right [of "z::int", standard]
lemmas zle_refl = order_refl [of "w::int", standard]
lemmas zle_trans = order_trans [where 'a=int and x="i" and y="j" and z="k", standard]
lemmas zle_anti_sym = order_antisym [of "z::int" "w", standard]
lemmas zle_linear = linorder_linear [of "z::int" "w", standard]
lemmas zless_linear = linorder_less_linear [where 'a = int]
lemmas zadd_left_mono = add_left_mono [of "i::int" "j" "k", standard]
lemmas zadd_strict_right_mono = add_strict_right_mono [of "i::int" "j" "k", standard]
lemmas zadd_zless_mono = add_less_le_mono [of "w'::int" "w" "z'" "z", standard]
lemmas int_0_less_1 = zero_less_one [where 'a=int]
lemmas int_0_neq_1 = zero_neq_one [where 'a=int]
lemmas inj_int = inj_of_nat [where 'a=int]
lemmas zadd_int = of_nat_add [where 'a=int, symmetric]
lemmas int_mult = of_nat_mult [where 'a=int]
lemmas zmult_int = of_nat_mult [where 'a=int, symmetric]
lemmas int_eq_0_conv = of_nat_eq_0_iff [where 'a=int and m="n", standard]
lemmas zless_int = of_nat_less_iff [where 'a=int]
lemmas int_less_0_conv = of_nat_less_0_iff [where 'a=int and m="k", standard]
lemmas zero_less_int_conv = of_nat_0_less_iff [where 'a=int]
lemmas zero_zle_int = of_nat_0_le_iff [where 'a=int]
lemmas int_le_0_conv = of_nat_le_0_iff [where 'a=int and m="n", standard]
lemmas int_0 = of_nat_0 [where 'a=int]
lemmas int_1 = of_nat_1 [where 'a=int]
lemmas int_Suc = of_nat_Suc [where 'a=int]
lemmas abs_int_eq = abs_of_nat [where 'a=int and n="m", standard]
lemmas of_int_int_eq = of_int_of_nat_eq [where 'a=int]
lemmas zdiff_int = of_nat_diff [where 'a=int, symmetric]
lemmas zless_le = less_int_def
lemmas int_eq_of_nat = TrueI
end