doc-src/IsarAdvanced/Classes/Thy/code_examples/classes.ML
author wenzelm
Thu, 26 Apr 2007 15:41:49 +0200
changeset 22813 882513df2472
parent 22479 de15ea8fb348
child 23956 48494ccfabaf
permissions -rw-r--r--
updated;

structure ROOT = 
struct

structure Nat = 
struct

datatype nat = Zero_nat | Suc of nat;

end; (*struct Nat*)

structure Integer = 
struct

datatype bit = B0 | B1;

datatype int = Pls | Min | Bit of int * bit | Number_of_int of int;

fun pred (Bit (k, B0)) = Bit (pred k, B1)
  | pred (Bit (k, B1)) = Bit (k, B0)
  | pred Min = Bit (Min, B0)
  | pred Pls = Min;

fun uminus_int (Number_of_int w) = Number_of_int (uminus_int w)
  | uminus_int (Bit (k, B0)) = Bit (uminus_int k, B0)
  | uminus_int (Bit (k, B1)) = Bit (pred (uminus_int k), B1)
  | uminus_int Min = Bit (Pls, B1)
  | uminus_int Pls = Pls;

fun succ (Bit (k, B0)) = Bit (k, B1)
  | succ (Bit (k, B1)) = Bit (succ k, B0)
  | succ Min = Pls
  | succ Pls = Bit (Pls, B1);

fun plus_int (Number_of_int v) (Number_of_int w) =
  Number_of_int (plus_int v w)
  | plus_int k Min = pred k
  | plus_int k Pls = k
  | plus_int (Bit (k, B1)) (Bit (l, B1)) = Bit (plus_int k (succ l), B0)
  | plus_int (Bit (k, B1)) (Bit (l, B0)) = Bit (plus_int k l, B1)
  | plus_int (Bit (k, B0)) (Bit (l, b)) = Bit (plus_int k l, b)
  | plus_int Min k = pred k
  | plus_int Pls k = k;

fun minus_int (Number_of_int v) (Number_of_int w) =
  Number_of_int (plus_int v (uminus_int w))
  | minus_int z w = plus_int z (uminus_int w);

fun less_eq_int (Number_of_int k) (Number_of_int l) = less_eq_int k l
  | less_eq_int (Bit (k1, B1)) (Bit (k2, B0)) = less_int k1 k2
  | less_eq_int (Bit (k1, v)) (Bit (k2, B1)) = less_eq_int k1 k2
  | less_eq_int (Bit (k1, B0)) (Bit (k2, v)) = less_eq_int k1 k2
  | less_eq_int (Bit (k, v)) Min = less_eq_int k Min
  | less_eq_int (Bit (k, B1)) Pls = less_int k Pls
  | less_eq_int (Bit (k, B0)) Pls = less_eq_int k Pls
  | less_eq_int Min (Bit (k, B1)) = less_eq_int Min k
  | less_eq_int Min (Bit (k, B0)) = less_int Min k
  | less_eq_int Min Min = true
  | less_eq_int Min Pls = true
  | less_eq_int Pls (Bit (k, v)) = less_eq_int Pls k
  | less_eq_int Pls Min = false
  | less_eq_int Pls Pls = true
and less_int (Number_of_int k) (Number_of_int l) = less_int k l
  | less_int (Bit (k1, B0)) (Bit (k2, B1)) = less_eq_int k1 k2
  | less_int (Bit (k1, B1)) (Bit (k2, v)) = less_int k1 k2
  | less_int (Bit (k1, v)) (Bit (k2, B0)) = less_int k1 k2
  | less_int (Bit (k, B1)) Min = less_int k Min
  | less_int (Bit (k, B0)) Min = less_eq_int k Min
  | less_int (Bit (k, v)) Pls = less_int k Pls
  | less_int Min (Bit (k, v)) = less_int Min k
  | less_int Min Min = false
  | less_int Min Pls = true
  | less_int Pls (Bit (k, B1)) = less_eq_int Pls k
  | less_int Pls (Bit (k, B0)) = less_int Pls k
  | less_int Pls Min = false
  | less_int Pls Pls = false;

fun nat_aux n i =
  (if less_eq_int i (Number_of_int Pls) then n
    else nat_aux (Nat.Suc n)
           (minus_int i (Number_of_int (Bit (Pls, B1)))));

fun nat i = nat_aux Nat.Zero_nat i;

end; (*struct Integer*)

structure Classes = 
struct

type 'a semigroup = {mult : 'a -> 'a -> 'a};
fun mult (A_:'a semigroup) = #mult A_;

type 'a monoidl =
  {Classes__monoidl_semigroup : 'a semigroup, neutral : 'a};
fun monoidl_semigroup (A_:'a monoidl) = #Classes__monoidl_semigroup A_;
fun neutral (A_:'a monoidl) = #neutral A_;

type 'a group = {Classes__group_monoidl : 'a monoidl, inverse : 'a -> 'a};
fun group_monoidl (A_:'a group) = #Classes__group_monoidl A_;
fun inverse (A_:'a group) = #inverse A_;

fun inverse_int i = Integer.uminus_int i;

val neutral_int : Integer.int = Integer.Number_of_int Integer.Pls;

fun mult_int i j = Integer.plus_int i j;

val semigroup_int = {mult = mult_int} : Integer.int semigroup;

val monoidl_int =
  {Classes__monoidl_semigroup = semigroup_int, neutral = neutral_int} :
  Integer.int monoidl;

val group_int =
  {Classes__group_monoidl = monoidl_int, inverse = inverse_int} :
  Integer.int group;

fun pow_nat B_ (Nat.Suc n) x =
  mult (monoidl_semigroup B_) x (pow_nat B_ n x)
  | pow_nat B_ Nat.Zero_nat x = neutral B_;

fun pow_int A_ k x =
  (if Integer.less_eq_int (Integer.Number_of_int Integer.Pls) k
    then pow_nat (group_monoidl A_) (Integer.nat k) x
    else inverse A_
           (pow_nat (group_monoidl A_)
             (Integer.nat (Integer.uminus_int k)) x));

val example : Integer.int =
  pow_int group_int
    (Integer.Number_of_int
      (Integer.Bit
        (Integer.Bit
           (Integer.Bit
              (Integer.Bit (Integer.Pls, Integer.B1), Integer.B0),
             Integer.B1),
          Integer.B0)))
    (Integer.Number_of_int (Integer.Bit (Integer.Min, Integer.B0)));

end; (*struct Classes*)

end; (*struct ROOT*)