22317
|
1 |
structure ROOT =
|
|
2 |
struct
|
|
3 |
|
|
4 |
structure Nat =
|
|
5 |
struct
|
|
6 |
|
|
7 |
datatype nat = Zero_nat | Suc of nat;
|
|
8 |
|
|
9 |
end; (*struct Nat*)
|
|
10 |
|
|
11 |
structure Integer =
|
|
12 |
struct
|
|
13 |
|
22813
|
14 |
datatype bit = B0 | B1;
|
|
15 |
|
|
16 |
datatype int = Pls | Min | Bit of int * bit | Number_of_int of int;
|
|
17 |
|
|
18 |
fun pred (Bit (k, B0)) = Bit (pred k, B1)
|
|
19 |
| pred (Bit (k, B1)) = Bit (k, B0)
|
|
20 |
| pred Min = Bit (Min, B0)
|
|
21 |
| pred Pls = Min;
|
|
22 |
|
|
23 |
fun uminus_int (Number_of_int w) = Number_of_int (uminus_int w)
|
|
24 |
| uminus_int (Bit (k, B0)) = Bit (uminus_int k, B0)
|
|
25 |
| uminus_int (Bit (k, B1)) = Bit (pred (uminus_int k), B1)
|
|
26 |
| uminus_int Min = Bit (Pls, B1)
|
|
27 |
| uminus_int Pls = Pls;
|
|
28 |
|
|
29 |
fun succ (Bit (k, B0)) = Bit (k, B1)
|
|
30 |
| succ (Bit (k, B1)) = Bit (succ k, B0)
|
|
31 |
| succ Min = Pls
|
|
32 |
| succ Pls = Bit (Pls, B1);
|
|
33 |
|
|
34 |
fun plus_int (Number_of_int v) (Number_of_int w) =
|
|
35 |
Number_of_int (plus_int v w)
|
|
36 |
| plus_int k Min = pred k
|
|
37 |
| plus_int k Pls = k
|
|
38 |
| plus_int (Bit (k, B1)) (Bit (l, B1)) = Bit (plus_int k (succ l), B0)
|
|
39 |
| plus_int (Bit (k, B1)) (Bit (l, B0)) = Bit (plus_int k l, B1)
|
|
40 |
| plus_int (Bit (k, B0)) (Bit (l, b)) = Bit (plus_int k l, b)
|
|
41 |
| plus_int Min k = pred k
|
|
42 |
| plus_int Pls k = k;
|
|
43 |
|
|
44 |
fun minus_int (Number_of_int v) (Number_of_int w) =
|
|
45 |
Number_of_int (plus_int v (uminus_int w))
|
|
46 |
| minus_int z w = plus_int z (uminus_int w);
|
|
47 |
|
|
48 |
fun less_eq_int (Number_of_int k) (Number_of_int l) = less_eq_int k l
|
|
49 |
| less_eq_int (Bit (k1, B1)) (Bit (k2, B0)) = less_int k1 k2
|
|
50 |
| less_eq_int (Bit (k1, v)) (Bit (k2, B1)) = less_eq_int k1 k2
|
|
51 |
| less_eq_int (Bit (k1, B0)) (Bit (k2, v)) = less_eq_int k1 k2
|
|
52 |
| less_eq_int (Bit (k, v)) Min = less_eq_int k Min
|
|
53 |
| less_eq_int (Bit (k, B1)) Pls = less_int k Pls
|
|
54 |
| less_eq_int (Bit (k, B0)) Pls = less_eq_int k Pls
|
|
55 |
| less_eq_int Min (Bit (k, B1)) = less_eq_int Min k
|
|
56 |
| less_eq_int Min (Bit (k, B0)) = less_int Min k
|
|
57 |
| less_eq_int Min Min = true
|
|
58 |
| less_eq_int Min Pls = true
|
|
59 |
| less_eq_int Pls (Bit (k, v)) = less_eq_int Pls k
|
|
60 |
| less_eq_int Pls Min = false
|
|
61 |
| less_eq_int Pls Pls = true
|
|
62 |
and less_int (Number_of_int k) (Number_of_int l) = less_int k l
|
|
63 |
| less_int (Bit (k1, B0)) (Bit (k2, B1)) = less_eq_int k1 k2
|
|
64 |
| less_int (Bit (k1, B1)) (Bit (k2, v)) = less_int k1 k2
|
|
65 |
| less_int (Bit (k1, v)) (Bit (k2, B0)) = less_int k1 k2
|
|
66 |
| less_int (Bit (k, B1)) Min = less_int k Min
|
|
67 |
| less_int (Bit (k, B0)) Min = less_eq_int k Min
|
|
68 |
| less_int (Bit (k, v)) Pls = less_int k Pls
|
|
69 |
| less_int Min (Bit (k, v)) = less_int Min k
|
|
70 |
| less_int Min Min = false
|
|
71 |
| less_int Min Pls = true
|
|
72 |
| less_int Pls (Bit (k, B1)) = less_eq_int Pls k
|
|
73 |
| less_int Pls (Bit (k, B0)) = less_int Pls k
|
|
74 |
| less_int Pls Min = false
|
|
75 |
| less_int Pls Pls = false;
|
|
76 |
|
22317
|
77 |
fun nat_aux n i =
|
22813
|
78 |
(if less_eq_int i (Number_of_int Pls) then n
|
|
79 |
else nat_aux (Nat.Suc n)
|
|
80 |
(minus_int i (Number_of_int (Bit (Pls, B1)))));
|
22317
|
81 |
|
|
82 |
fun nat i = nat_aux Nat.Zero_nat i;
|
|
83 |
|
|
84 |
end; (*struct Integer*)
|
|
85 |
|
|
86 |
structure Classes =
|
|
87 |
struct
|
|
88 |
|
22479
|
89 |
type 'a semigroup = {mult : 'a -> 'a -> 'a};
|
|
90 |
fun mult (A_:'a semigroup) = #mult A_;
|
22317
|
91 |
|
|
92 |
type 'a monoidl =
|
22479
|
93 |
{Classes__monoidl_semigroup : 'a semigroup, neutral : 'a};
|
22317
|
94 |
fun monoidl_semigroup (A_:'a monoidl) = #Classes__monoidl_semigroup A_;
|
22479
|
95 |
fun neutral (A_:'a monoidl) = #neutral A_;
|
22317
|
96 |
|
22479
|
97 |
type 'a group = {Classes__group_monoidl : 'a monoidl, inverse : 'a -> 'a};
|
22317
|
98 |
fun group_monoidl (A_:'a group) = #Classes__group_monoidl A_;
|
22479
|
99 |
fun inverse (A_:'a group) = #inverse A_;
|
22317
|
100 |
|
22813
|
101 |
fun inverse_int i = Integer.uminus_int i;
|
22317
|
102 |
|
22813
|
103 |
val neutral_int : Integer.int = Integer.Number_of_int Integer.Pls;
|
22317
|
104 |
|
22813
|
105 |
fun mult_int i j = Integer.plus_int i j;
|
22317
|
106 |
|
22813
|
107 |
val semigroup_int = {mult = mult_int} : Integer.int semigroup;
|
22317
|
108 |
|
|
109 |
val monoidl_int =
|
22479
|
110 |
{Classes__monoidl_semigroup = semigroup_int, neutral = neutral_int} :
|
22813
|
111 |
Integer.int monoidl;
|
22317
|
112 |
|
|
113 |
val group_int =
|
22479
|
114 |
{Classes__group_monoidl = monoidl_int, inverse = inverse_int} :
|
22813
|
115 |
Integer.int group;
|
22317
|
116 |
|
22813
|
117 |
fun pow_nat B_ (Nat.Suc n) x =
|
|
118 |
mult (monoidl_semigroup B_) x (pow_nat B_ n x)
|
|
119 |
| pow_nat B_ Nat.Zero_nat x = neutral B_;
|
22317
|
120 |
|
|
121 |
fun pow_int A_ k x =
|
22813
|
122 |
(if Integer.less_eq_int (Integer.Number_of_int Integer.Pls) k
|
22317
|
123 |
then pow_nat (group_monoidl A_) (Integer.nat k) x
|
|
124 |
else inverse A_
|
22813
|
125 |
(pow_nat (group_monoidl A_)
|
|
126 |
(Integer.nat (Integer.uminus_int k)) x));
|
22317
|
127 |
|
22813
|
128 |
val example : Integer.int =
|
|
129 |
pow_int group_int
|
|
130 |
(Integer.Number_of_int
|
|
131 |
(Integer.Bit
|
|
132 |
(Integer.Bit
|
|
133 |
(Integer.Bit
|
|
134 |
(Integer.Bit (Integer.Pls, Integer.B1), Integer.B0),
|
|
135 |
Integer.B1),
|
|
136 |
Integer.B0)))
|
|
137 |
(Integer.Number_of_int (Integer.Bit (Integer.Min, Integer.B0)));
|
22317
|
138 |
|
|
139 |
end; (*struct Classes*)
|
|
140 |
|
|
141 |
end; (*struct ROOT*)
|