(* Title: HOL/Nitpick_Examples/Manual_Nits.thy
Author: Jasmin Blanchette, TU Muenchen
Copyright 2009-2011
Examples from the Nitpick manual.
*)
header {* Examples from the Nitpick Manual *}
(* The "expect" arguments to Nitpick in this theory and the other example
theories are there so that the example can also serve as a regression test
suite. *)
theory Manual_Nits
imports Main "~~/src/HOL/Library/Quotient_Product" RealDef
begin
chapter {* 2. First Steps *}
nitpick_params [sat_solver = MiniSat_JNI, max_threads = 1, timeout = 240]
subsection {* 2.1. Propositional Logic *}
lemma "P \<longleftrightarrow> Q"
nitpick [expect = genuine]
apply auto
nitpick [expect = genuine] 1
nitpick [expect = genuine] 2
oops
subsection {* 2.2. Type Variables *}
lemma "x \<in> A \<Longrightarrow> (THE y. y \<in> A) \<in> A"
nitpick [verbose, expect = genuine]
oops
subsection {* 2.3. Constants *}
lemma "x \<in> A \<Longrightarrow> (THE y. y \<in> A) \<in> A"
nitpick [show_consts, expect = genuine]
nitpick [dont_specialize, show_consts, expect = genuine]
oops
lemma "\<exists>!x. x \<in> A \<Longrightarrow> (THE y. y \<in> A) \<in> A"
nitpick [expect = none]
nitpick [card 'a = 1\<emdash>50, expect = none]
(* sledgehammer *)
sledgehammer
by (metis the_equality)
subsection {* 2.4. Skolemization *}
lemma "\<exists>g. \<forall>x. g (f x) = x \<Longrightarrow> \<forall>y. \<exists>x. y = f x"
nitpick [expect = genuine]
oops
lemma "\<exists>x. \<forall>f. f x = x"
nitpick [expect = genuine]
oops
lemma "refl r \<Longrightarrow> sym r"
nitpick [expect = genuine]
oops
subsection {* 2.5. Natural Numbers and Integers *}
lemma "\<lbrakk>i \<le> j; n \<le> (m\<Colon>int)\<rbrakk> \<Longrightarrow> i * n + j * m \<le> i * m + j * n"
nitpick [expect = genuine]
nitpick [binary_ints, bits = 16, expect = genuine]
oops
lemma "\<forall>n. Suc n \<noteq> n \<Longrightarrow> P"
nitpick [card nat = 100, check_potential, tac_timeout = 5, expect = genuine]
oops
lemma "P Suc"
nitpick [expect = none]
oops
lemma "P (op +\<Colon>nat\<Rightarrow>nat\<Rightarrow>nat)"
nitpick [card nat = 1, expect = genuine]
nitpick [card nat = 2, expect = none]
oops
subsection {* 2.6. Inductive Datatypes *}
lemma "hd (xs @ [y, y]) = hd xs"
nitpick [expect = genuine]
nitpick [show_consts, show_datatypes, expect = genuine]
oops
lemma "\<lbrakk>length xs = 1; length ys = 1\<rbrakk> \<Longrightarrow> xs = ys"
nitpick [show_datatypes, expect = genuine]
oops
subsection {* 2.7. Typedefs, Records, Rationals, and Reals *}
typedef three = "{0\<Colon>nat, 1, 2}"
by blast
definition A :: three where "A \<equiv> Abs_three 0"
definition B :: three where "B \<equiv> Abs_three 1"
definition C :: three where "C \<equiv> Abs_three 2"
lemma "\<lbrakk>A \<in> X; B \<in> X\<rbrakk> \<Longrightarrow> c \<in> X"
nitpick [show_datatypes, expect = genuine]
oops
fun my_int_rel where
"my_int_rel (x, y) (u, v) = (x + v = u + y)"
quotient_type my_int = "nat \<times> nat" / my_int_rel
by (auto simp add: equivp_def fun_eq_iff)
definition add_raw where
"add_raw \<equiv> \<lambda>(x, y) (u, v). (x + (u\<Colon>nat), y + (v\<Colon>nat))"
quotient_definition "add\<Colon>my_int \<Rightarrow> my_int \<Rightarrow> my_int" is add_raw
lemma "add x y = add x x"
nitpick [show_datatypes, expect = genuine]
oops
ML {*
fun my_int_postproc _ _ _ T (Const _ $ (Const _ $ t1 $ t2)) =
HOLogic.mk_number T (snd (HOLogic.dest_number t1)
- snd (HOLogic.dest_number t2))
| my_int_postproc _ _ _ _ t = t
*}
declaration {*
Nitpick_Model.register_term_postprocessor @{typ my_int} my_int_postproc
*}
lemma "add x y = add x x"
nitpick [show_datatypes]
oops
record point =
Xcoord :: int
Ycoord :: int
lemma "Xcoord (p\<Colon>point) = Xcoord (q\<Colon>point)"
nitpick [show_datatypes, expect = genuine]
oops
lemma "4 * x + 3 * (y\<Colon>real) \<noteq> 1 / 2"
nitpick [show_datatypes, expect = genuine]
oops
subsection {* 2.8. Inductive and Coinductive Predicates *}
inductive even where
"even 0" |
"even n \<Longrightarrow> even (Suc (Suc n))"
lemma "\<exists>n. even n \<and> even (Suc n)"
nitpick [card nat = 50, unary_ints, verbose, expect = potential]
oops
lemma "\<exists>n \<le> 49. even n \<and> even (Suc n)"
nitpick [card nat = 50, unary_ints, expect = genuine]
oops
inductive even' where
"even' (0\<Colon>nat)" |
"even' 2" |
"\<lbrakk>even' m; even' n\<rbrakk> \<Longrightarrow> even' (m + n)"
lemma "\<exists>n \<in> {0, 2, 4, 6, 8}. \<not> even' n"
nitpick [card nat = 10, unary_ints, verbose, show_consts, expect = genuine]
oops
lemma "even' (n - 2) \<Longrightarrow> even' n"
nitpick [card nat = 10, show_consts, expect = genuine]
oops
coinductive nats where
"nats (x\<Colon>nat) \<Longrightarrow> nats x"
lemma "nats = (\<lambda>n. n \<in> {0, 1, 2, 3, 4})"
nitpick [card nat = 10, show_consts, expect = genuine]
oops
inductive odd where
"odd 1" |
"\<lbrakk>odd m; even n\<rbrakk> \<Longrightarrow> odd (m + n)"
lemma "odd n \<Longrightarrow> odd (n - 2)"
nitpick [card nat = 4, show_consts, expect = genuine]
oops
subsection {* 2.9. Coinductive Datatypes *}
(* Lazy lists are defined in Andreas Lochbihler's "Coinductive" AFP entry. Since
we cannot rely on its presence, we expediently provide our own
axiomatization. The examples also work unchanged with Lochbihler's
"Coinductive_List" theory. *)
definition "llist = (UNIV\<Colon>('a list + (nat \<Rightarrow> 'a)) set)"
typedef (open) 'a llist = "llist\<Colon>('a list + (nat \<Rightarrow> 'a)) set"
unfolding llist_def by auto
definition LNil where
"LNil = Abs_llist (Inl [])"
definition LCons where
"LCons y ys = Abs_llist (case Rep_llist ys of
Inl ys' \<Rightarrow> Inl (y # ys')
| Inr f \<Rightarrow> Inr (\<lambda>n. case n of 0 \<Rightarrow> y | Suc m \<Rightarrow> f m))"
axiomatization iterates :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a llist"
lemma iterates_def [nitpick_simp]:
"iterates f a = LCons a (iterates f (f a))"
sorry
declaration {*
Nitpick_HOL.register_codatatype @{typ "'a llist"} ""
(map dest_Const [@{term LNil}, @{term LCons}])
*}
lemma "xs \<noteq> LCons a xs"
nitpick [expect = genuine]
oops
lemma "\<lbrakk>xs = LCons a xs; ys = iterates (\<lambda>b. a) b\<rbrakk> \<Longrightarrow> xs = ys"
nitpick [verbose, expect = genuine]
oops
lemma "\<lbrakk>xs = LCons a xs; ys = LCons a ys\<rbrakk> \<Longrightarrow> xs = ys"
nitpick [bisim_depth = -1, show_datatypes, expect = quasi_genuine]
nitpick [card = 1\<emdash>5, expect = none]
sorry
subsection {* 2.10. Boxing *}
datatype tm = Var nat | Lam tm | App tm tm
primrec lift where
"lift (Var j) k = Var (if j < k then j else j + 1)" |
"lift (Lam t) k = Lam (lift t (k + 1))" |
"lift (App t u) k = App (lift t k) (lift u k)"
primrec loose where
"loose (Var j) k = (j \<ge> k)" |
"loose (Lam t) k = loose t (Suc k)" |
"loose (App t u) k = (loose t k \<or> loose u k)"
primrec subst\<^isub>1 where
"subst\<^isub>1 \<sigma> (Var j) = \<sigma> j" |
"subst\<^isub>1 \<sigma> (Lam t) =
Lam (subst\<^isub>1 (\<lambda>n. case n of 0 \<Rightarrow> Var 0 | Suc m \<Rightarrow> lift (\<sigma> m) 1) t)" |
"subst\<^isub>1 \<sigma> (App t u) = App (subst\<^isub>1 \<sigma> t) (subst\<^isub>1 \<sigma> u)"
lemma "\<not> loose t 0 \<Longrightarrow> subst\<^isub>1 \<sigma> t = t"
nitpick [verbose, expect = genuine]
nitpick [eval = "subst\<^isub>1 \<sigma> t", expect = genuine]
(* nitpick [dont_box, expect = unknown] *)
oops
primrec subst\<^isub>2 where
"subst\<^isub>2 \<sigma> (Var j) = \<sigma> j" |
"subst\<^isub>2 \<sigma> (Lam t) =
Lam (subst\<^isub>2 (\<lambda>n. case n of 0 \<Rightarrow> Var 0 | Suc m \<Rightarrow> lift (\<sigma> m) 0) t)" |
"subst\<^isub>2 \<sigma> (App t u) = App (subst\<^isub>2 \<sigma> t) (subst\<^isub>2 \<sigma> u)"
lemma "\<not> loose t 0 \<Longrightarrow> subst\<^isub>2 \<sigma> t = t"
nitpick [card = 1\<emdash>5, expect = none]
sorry
subsection {* 2.11. Scope Monotonicity *}
lemma "length xs = length ys \<Longrightarrow> rev (zip xs ys) = zip xs (rev ys)"
nitpick [verbose, expect = genuine]
oops
lemma "\<exists>g. \<forall>x\<Colon>'b. g (f x) = x \<Longrightarrow> \<forall>y\<Colon>'a. \<exists>x. y = f x"
nitpick [mono, expect = none]
nitpick [expect = genuine]
oops
subsection {* 2.12. Inductive Properties *}
inductive_set reach where
"(4\<Colon>nat) \<in> reach" |
"n \<in> reach \<Longrightarrow> n < 4 \<Longrightarrow> 3 * n + 1 \<in> reach" |
"n \<in> reach \<Longrightarrow> n + 2 \<in> reach"
lemma "n \<in> reach \<Longrightarrow> 2 dvd n"
(* nitpick *)
apply (induct set: reach)
apply auto
nitpick [card = 1\<emdash>4, bits = 1\<emdash>4, expect = none]
apply (thin_tac "n \<in> reach")
nitpick [expect = genuine]
oops
lemma "n \<in> reach \<Longrightarrow> 2 dvd n \<and> n \<noteq> 0"
(* nitpick *)
apply (induct set: reach)
apply auto
nitpick [card = 1\<emdash>4, bits = 1\<emdash>4, expect = none]
apply (thin_tac "n \<in> reach")
nitpick [expect = genuine]
oops
lemma "n \<in> reach \<Longrightarrow> 2 dvd n \<and> n \<ge> 4"
by (induct set: reach) arith+
datatype 'a bin_tree = Leaf 'a | Branch "'a bin_tree" "'a bin_tree"
primrec labels where
"labels (Leaf a) = {a}" |
"labels (Branch t u) = labels t \<union> labels u"
primrec swap where
"swap (Leaf c) a b =
(if c = a then Leaf b else if c = b then Leaf a else Leaf c)" |
"swap (Branch t u) a b = Branch (swap t a b) (swap u a b)"
lemma "{a, b} \<subseteq> labels t \<Longrightarrow> labels (swap t a b) = labels t"
(* nitpick *)
proof (induct t)
case Leaf thus ?case by simp
next
case (Branch t u) thus ?case
(* nitpick *)
nitpick [non_std, show_all, expect = genuine]
oops
lemma "labels (swap t a b) =
(if a \<in> labels t then
if b \<in> labels t then labels t else (labels t - {a}) \<union> {b}
else
if b \<in> labels t then (labels t - {b}) \<union> {a} else labels t)"
(* nitpick *)
proof (induct t)
case Leaf thus ?case by simp
next
case (Branch t u) thus ?case
nitpick [non_std, card = 1\<emdash>4, expect = none]
by auto
qed
section {* 3. Case Studies *}
nitpick_params [max_potential = 0]
subsection {* 3.1. A Context-Free Grammar *}
datatype alphabet = a | b
inductive_set S\<^isub>1 and A\<^isub>1 and B\<^isub>1 where
"[] \<in> S\<^isub>1"
| "w \<in> A\<^isub>1 \<Longrightarrow> b # w \<in> S\<^isub>1"
| "w \<in> B\<^isub>1 \<Longrightarrow> a # w \<in> S\<^isub>1"
| "w \<in> S\<^isub>1 \<Longrightarrow> a # w \<in> A\<^isub>1"
| "w \<in> S\<^isub>1 \<Longrightarrow> b # w \<in> S\<^isub>1"
| "\<lbrakk>v \<in> B\<^isub>1; v \<in> B\<^isub>1\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^isub>1"
theorem S\<^isub>1_sound:
"w \<in> S\<^isub>1 \<longrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
nitpick [expect = genuine]
oops
inductive_set S\<^isub>2 and A\<^isub>2 and B\<^isub>2 where
"[] \<in> S\<^isub>2"
| "w \<in> A\<^isub>2 \<Longrightarrow> b # w \<in> S\<^isub>2"
| "w \<in> B\<^isub>2 \<Longrightarrow> a # w \<in> S\<^isub>2"
| "w \<in> S\<^isub>2 \<Longrightarrow> a # w \<in> A\<^isub>2"
| "w \<in> S\<^isub>2 \<Longrightarrow> b # w \<in> B\<^isub>2"
| "\<lbrakk>v \<in> B\<^isub>2; v \<in> B\<^isub>2\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^isub>2"
theorem S\<^isub>2_sound:
"w \<in> S\<^isub>2 \<longrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
nitpick [expect = genuine]
oops
inductive_set S\<^isub>3 and A\<^isub>3 and B\<^isub>3 where
"[] \<in> S\<^isub>3"
| "w \<in> A\<^isub>3 \<Longrightarrow> b # w \<in> S\<^isub>3"
| "w \<in> B\<^isub>3 \<Longrightarrow> a # w \<in> S\<^isub>3"
| "w \<in> S\<^isub>3 \<Longrightarrow> a # w \<in> A\<^isub>3"
| "w \<in> S\<^isub>3 \<Longrightarrow> b # w \<in> B\<^isub>3"
| "\<lbrakk>v \<in> B\<^isub>3; w \<in> B\<^isub>3\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^isub>3"
theorem S\<^isub>3_sound:
"w \<in> S\<^isub>3 \<longrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
nitpick [card = 1\<emdash>5, expect = none]
sorry
theorem S\<^isub>3_complete:
"length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b] \<longrightarrow> w \<in> S\<^isub>3"
nitpick [expect = genuine]
oops
inductive_set S\<^isub>4 and A\<^isub>4 and B\<^isub>4 where
"[] \<in> S\<^isub>4"
| "w \<in> A\<^isub>4 \<Longrightarrow> b # w \<in> S\<^isub>4"
| "w \<in> B\<^isub>4 \<Longrightarrow> a # w \<in> S\<^isub>4"
| "w \<in> S\<^isub>4 \<Longrightarrow> a # w \<in> A\<^isub>4"
| "\<lbrakk>v \<in> A\<^isub>4; w \<in> A\<^isub>4\<rbrakk> \<Longrightarrow> b # v @ w \<in> A\<^isub>4"
| "w \<in> S\<^isub>4 \<Longrightarrow> b # w \<in> B\<^isub>4"
| "\<lbrakk>v \<in> B\<^isub>4; w \<in> B\<^isub>4\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^isub>4"
theorem S\<^isub>4_sound:
"w \<in> S\<^isub>4 \<longrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
nitpick [card = 1\<emdash>5, expect = none]
sorry
theorem S\<^isub>4_complete:
"length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b] \<longrightarrow> w \<in> S\<^isub>4"
nitpick [card = 1\<emdash>5, expect = none]
sorry
theorem S\<^isub>4_A\<^isub>4_B\<^isub>4_sound_and_complete:
"w \<in> S\<^isub>4 \<longleftrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
"w \<in> A\<^isub>4 \<longleftrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b] + 1"
"w \<in> B\<^isub>4 \<longleftrightarrow> length [x \<leftarrow> w. x = b] = length [x \<leftarrow> w. x = a] + 1"
nitpick [card = 1\<emdash>5, expect = none]
sorry
subsection {* 3.2. AA Trees *}
datatype 'a aa_tree = \<Lambda> | N "'a\<Colon>linorder" nat "'a aa_tree" "'a aa_tree"
primrec data where
"data \<Lambda> = undefined" |
"data (N x _ _ _) = x"
primrec dataset where
"dataset \<Lambda> = {}" |
"dataset (N x _ t u) = {x} \<union> dataset t \<union> dataset u"
primrec level where
"level \<Lambda> = 0" |
"level (N _ k _ _) = k"
primrec left where
"left \<Lambda> = \<Lambda>" |
"left (N _ _ t\<^isub>1 _) = t\<^isub>1"
primrec right where
"right \<Lambda> = \<Lambda>" |
"right (N _ _ _ t\<^isub>2) = t\<^isub>2"
fun wf where
"wf \<Lambda> = True" |
"wf (N _ k t u) =
(if t = \<Lambda> then
k = 1 \<and> (u = \<Lambda> \<or> (level u = 1 \<and> left u = \<Lambda> \<and> right u = \<Lambda>))
else
wf t \<and> wf u \<and> u \<noteq> \<Lambda> \<and> level t < k \<and> level u \<le> k \<and> level (right u) < k)"
fun skew where
"skew \<Lambda> = \<Lambda>" |
"skew (N x k t u) =
(if t \<noteq> \<Lambda> \<and> k = level t then
N (data t) k (left t) (N x k (right t) u)
else
N x k t u)"
fun split where
"split \<Lambda> = \<Lambda>" |
"split (N x k t u) =
(if u \<noteq> \<Lambda> \<and> k = level (right u) then
N (data u) (Suc k) (N x k t (left u)) (right u)
else
N x k t u)"
theorem dataset_skew_split:
"dataset (skew t) = dataset t"
"dataset (split t) = dataset t"
nitpick [card = 1\<emdash>5, expect = none]
sorry
theorem wf_skew_split:
"wf t \<Longrightarrow> skew t = t"
"wf t \<Longrightarrow> split t = t"
nitpick [card = 1\<emdash>5, expect = none]
sorry
primrec insort\<^isub>1 where
"insort\<^isub>1 \<Lambda> x = N x 1 \<Lambda> \<Lambda>" |
"insort\<^isub>1 (N y k t u) x =
(* (split \<circ> skew) *) (N y k (if x < y then insort\<^isub>1 t x else t)
(if x > y then insort\<^isub>1 u x else u))"
theorem wf_insort\<^isub>1: "wf t \<Longrightarrow> wf (insort\<^isub>1 t x)"
nitpick [expect = genuine]
oops
theorem wf_insort\<^isub>1_nat: "wf t \<Longrightarrow> wf (insort\<^isub>1 t (x\<Colon>nat))"
nitpick [eval = "insort\<^isub>1 t x", expect = genuine]
oops
primrec insort\<^isub>2 where
"insort\<^isub>2 \<Lambda> x = N x 1 \<Lambda> \<Lambda>" |
"insort\<^isub>2 (N y k t u) x =
(split \<circ> skew) (N y k (if x < y then insort\<^isub>2 t x else t)
(if x > y then insort\<^isub>2 u x else u))"
theorem wf_insort\<^isub>2: "wf t \<Longrightarrow> wf (insort\<^isub>2 t x)"
nitpick [card = 1\<emdash>5, expect = none]
sorry
theorem dataset_insort\<^isub>2: "dataset (insort\<^isub>2 t x) = {x} \<union> dataset t"
nitpick [card = 1\<emdash>5, expect = none]
sorry
end