| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 46691 | 72d81e789106 |
| child 46882 | 6242b4bc05bc |
| permissions | -rw-r--r-- |
(* Title: HOL/Orderings.thy Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson *) header {* Abstract orderings *} theory Orderings imports HOL uses "~~/src/Provers/order.ML" "~~/src/Provers/quasi.ML" (* FIXME unused? *) begin subsection {* Syntactic orders *} class ord = fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" begin notation less_eq ("op <=") and less_eq ("(_/ <= _)" [51, 51] 50) and less ("op <") and less ("(_/ < _)" [51, 51] 50) notation (xsymbols) less_eq ("op \<le>") and less_eq ("(_/ \<le> _)" [51, 51] 50) notation (HTML output) less_eq ("op \<le>") and less_eq ("(_/ \<le> _)" [51, 51] 50) abbreviation (input) greater_eq (infix ">=" 50) where "x >= y \<equiv> y <= x" notation (input) greater_eq (infix "\<ge>" 50) abbreviation (input) greater (infix ">" 50) where "x > y \<equiv> y < x" end subsection {* Quasi orders *} class preorder = ord + assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" and order_refl [iff]: "x \<le> x" and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" begin text {* Reflexivity. *} lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" -- {* This form is useful with the classical reasoner. *} by (erule ssubst) (rule order_refl) lemma less_irrefl [iff]: "\<not> x < x" by (simp add: less_le_not_le) lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" unfolding less_le_not_le by blast text {* Asymmetry. *} lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" by (simp add: less_le_not_le) lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" by (drule less_not_sym, erule contrapos_np) simp text {* Transitivity. *} lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" by (auto simp add: less_le_not_le intro: order_trans) lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" by (auto simp add: less_le_not_le intro: order_trans) lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" by (auto simp add: less_le_not_le intro: order_trans) text {* Useful for simplification, but too risky to include by default. *} lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" by (blast elim: less_asym) lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" by (blast elim: less_asym) text {* Transitivity rules for calculational reasoning *} lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" by (rule less_asym) text {* Dual order *} lemma dual_preorder: "class.preorder (op \<ge>) (op >)" proof qed (auto simp add: less_le_not_le intro: order_trans) end subsection {* Partial orders *} class order = preorder + assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" begin text {* Reflexivity. *} lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" by (auto simp add: less_le_not_le intro: antisym) lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" -- {* NOT suitable for iff, since it can cause PROOF FAILED. *} by (simp add: less_le) blast lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" unfolding less_le by blast text {* Useful for simplification, but too risky to include by default. *} lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" by auto lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" by auto text {* Transitivity rules for calculational reasoning *} lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" by (simp add: less_le) lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" by (simp add: less_le) text {* Asymmetry. *} lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" by (blast intro: antisym) lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" by (blast intro: antisym) lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" by (erule contrapos_pn, erule subst, rule less_irrefl) text {* Least value operator *} definition (in ord) Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" lemma Least_equality: assumes "P x" and "\<And>y. P y \<Longrightarrow> x \<le> y" shows "Least P = x" unfolding Least_def by (rule the_equality) (blast intro: assms antisym)+ lemma LeastI2_order: assumes "P x" and "\<And>y. P y \<Longrightarrow> x \<le> y" and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" shows "Q (Least P)" unfolding Least_def by (rule theI2) (blast intro: assms antisym)+ text {* Dual order *} lemma dual_order: "class.order (op \<ge>) (op >)" by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym) end subsection {* Linear (total) orders *} class linorder = order + assumes linear: "x \<le> y \<or> y \<le> x" begin lemma less_linear: "x < y \<or> x = y \<or> y < x" unfolding less_le using less_le linear by blast lemma le_less_linear: "x \<le> y \<or> y < x" by (simp add: le_less less_linear) lemma le_cases [case_names le ge]: "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" using linear by blast lemma linorder_cases [case_names less equal greater]: "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" using less_linear by blast lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" apply (simp add: less_le) using linear apply (blast intro: antisym) done lemma not_less_iff_gr_or_eq: "\<not>(x < y) \<longleftrightarrow> (x > y | x = y)" apply(simp add:not_less le_less) apply blast done lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" apply (simp add: less_le) using linear apply (blast intro: antisym) done lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" by (cut_tac x = x and y = y in less_linear, auto) lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" by (simp add: neq_iff) blast lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" by (blast intro: antisym dest: not_less [THEN iffD1]) lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" by (blast intro: antisym dest: not_less [THEN iffD1]) lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" by (blast intro: antisym dest: not_less [THEN iffD1]) lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" unfolding not_less . lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" unfolding not_less . (*FIXME inappropriate name (or delete altogether)*) lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y" unfolding not_le . text {* Dual order *} lemma dual_linorder: "class.linorder (op \<ge>) (op >)" by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear) text {* min/max *} definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where "min a b = (if a \<le> b then a else b)" definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where "max a b = (if a \<le> b then b else a)" lemma min_le_iff_disj: "min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z" unfolding min_def using linear by (auto intro: order_trans) lemma le_max_iff_disj: "z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y" unfolding max_def using linear by (auto intro: order_trans) lemma min_less_iff_disj: "min x y < z \<longleftrightarrow> x < z \<or> y < z" unfolding min_def le_less using less_linear by (auto intro: less_trans) lemma less_max_iff_disj: "z < max x y \<longleftrightarrow> z < x \<or> z < y" unfolding max_def le_less using less_linear by (auto intro: less_trans) lemma min_less_iff_conj [simp]: "z < min x y \<longleftrightarrow> z < x \<and> z < y" unfolding min_def le_less using less_linear by (auto intro: less_trans) lemma max_less_iff_conj [simp]: "max x y < z \<longleftrightarrow> x < z \<and> y < z" unfolding max_def le_less using less_linear by (auto intro: less_trans) lemma split_min [no_atp]: "P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)" by (simp add: min_def) lemma split_max [no_atp]: "P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)" by (simp add: max_def) end subsection {* Reasoning tools setup *} ML {* signature ORDERS = sig val print_structures: Proof.context -> unit val setup: theory -> theory val order_tac: Proof.context -> thm list -> int -> tactic end; structure Orders: ORDERS = struct (** Theory and context data **) fun struct_eq ((s1: string, ts1), (s2, ts2)) = (s1 = s2) andalso eq_list (op aconv) (ts1, ts2); structure Data = Generic_Data ( type T = ((string * term list) * Order_Tac.less_arith) list; (* Order structures: identifier of the structure, list of operations and record of theorems needed to set up the transitivity reasoner, identifier and operations identify the structure uniquely. *) val empty = []; val extend = I; fun merge data = AList.join struct_eq (K fst) data; ); fun print_structures ctxt = let val structs = Data.get (Context.Proof ctxt); fun pretty_term t = Pretty.block [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, Pretty.str "::", Pretty.brk 1, Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; fun pretty_struct ((s, ts), _) = Pretty.block [Pretty.str s, Pretty.str ":", Pretty.brk 1, Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))]; in Pretty.writeln (Pretty.big_list "Order structures:" (map pretty_struct structs)) end; (** Method **) fun struct_tac ((s, [eq, le, less]), thms) ctxt prems = let fun decomp thy (@{const Trueprop} $ t) = let fun excluded t = (* exclude numeric types: linear arithmetic subsumes transitivity *) let val T = type_of t in T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT end; fun rel (bin_op $ t1 $ t2) = if excluded t1 then NONE else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) else NONE | rel _ = NONE; fun dec (Const (@{const_name Not}, _) $ t) = (case rel t of NONE => NONE | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | dec x = rel x; in dec t end | decomp thy _ = NONE; in case s of "order" => Order_Tac.partial_tac decomp thms ctxt prems | "linorder" => Order_Tac.linear_tac decomp thms ctxt prems | _ => error ("Unknown kind of order `" ^ s ^ "' encountered in transitivity reasoner.") end fun order_tac ctxt prems = FIRST' (map (fn s => CHANGED o struct_tac s ctxt prems) (Data.get (Context.Proof ctxt))); (** Attribute **) fun add_struct_thm s tag = Thm.declaration_attribute (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm))); fun del_struct s = Thm.declaration_attribute (fn _ => Data.map (AList.delete struct_eq s)); val attrib_setup = Attrib.setup @{binding order} (Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --| Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name -- Scan.repeat Args.term >> (fn ((SOME tag, n), ts) => add_struct_thm (n, ts) tag | ((NONE, n), ts) => del_struct (n, ts))) "theorems controlling transitivity reasoner"; (** Diagnostic command **) val _ = Outer_Syntax.improper_command "print_orders" "print order structures available to transitivity reasoner" Keyword.diag (Scan.succeed (Toplevel.no_timing o Toplevel.unknown_context o Toplevel.keep (print_structures o Toplevel.context_of))); (** Setup **) val setup = Method.setup @{binding order} (Scan.succeed (fn ctxt => SIMPLE_METHOD' (order_tac ctxt []))) "transitivity reasoner" #> attrib_setup; end; *} setup Orders.setup text {* Declarations to set up transitivity reasoner of partial and linear orders. *} context order begin (* The type constraint on @{term op =} below is necessary since the operation is not a parameter of the locale. *) declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] end context linorder begin declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]] declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] end setup {* let fun prp t thm = Thm.prop_of thm = t; (* FIXME aconv!? *) fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = let val prems = Simplifier.prems_of ss; val less = Const (@{const_name less}, T); val t = HOLogic.mk_Trueprop(le $ s $ r); in case find_first (prp t) prems of NONE => let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) in case find_first (prp t) prems of NONE => NONE | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1})) end | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv})) end handle THM _ => NONE; fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = let val prems = Simplifier.prems_of ss; val le = Const (@{const_name less_eq}, T); val t = HOLogic.mk_Trueprop(le $ r $ s); in case find_first (prp t) prems of NONE => let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) in case find_first (prp t) prems of NONE => NONE | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3})) end | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2})) end handle THM _ => NONE; fun add_simprocs procs thy = Simplifier.map_simpset_global (fn ss => ss addsimprocs (map (fn (name, raw_ts, proc) => Simplifier.simproc_global thy name raw_ts proc) procs)) thy; fun add_solver name tac = Simplifier.map_simpset_global (fn ss => ss addSolver mk_solver name (fn ss => tac (Simplifier.the_context ss) (Simplifier.prems_of ss))); in add_simprocs [ ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le), ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less) ] #> add_solver "Transitivity" Orders.order_tac (* Adding the transitivity reasoners also as safe solvers showed a slight speed up, but the reasoning strength appears to be not higher (at least no breaking of additional proofs in the entire HOL distribution, as of 5 March 2004, was observed). *) end *} subsection {* Bounded quantifiers *} syntax "_All_less" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10) "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10) "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10) "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10) "_All_greater" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10) "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10) "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10) "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10) syntax (xsymbols) "_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10) "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10) "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10) "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10) "_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10) "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10) "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10) "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10) syntax (HOL) "_All_less" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10) "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10) "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10) "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10) syntax (HTML output) "_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10) "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10) "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10) "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10) "_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10) "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10) "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10) "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10) translations "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" "EX x<y. P" => "EX x. x < y \<and> P" "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" "EX x<=y. P" => "EX x. x <= y \<and> P" "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" "EX x>y. P" => "EX x. x > y \<and> P" "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" "EX x>=y. P" => "EX x. x >= y \<and> P" print_translation {* let val All_binder = Mixfix.binder_name @{const_syntax All}; val Ex_binder = Mixfix.binder_name @{const_syntax Ex}; val impl = @{const_syntax HOL.implies}; val conj = @{const_syntax HOL.conj}; val less = @{const_syntax less}; val less_eq = @{const_syntax less_eq}; val trans = [((All_binder, impl, less), (@{syntax_const "_All_less"}, @{syntax_const "_All_greater"})), ((All_binder, impl, less_eq), (@{syntax_const "_All_less_eq"}, @{syntax_const "_All_greater_eq"})), ((Ex_binder, conj, less), (@{syntax_const "_Ex_less"}, @{syntax_const "_Ex_greater"})), ((Ex_binder, conj, less_eq), (@{syntax_const "_Ex_less_eq"}, @{syntax_const "_Ex_greater_eq"}))]; fun matches_bound v t = (case t of Const (@{syntax_const "_bound"}, _) $ Free (v', _) => v = v' | _ => false); fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false); fun mk v c n P = Syntax.const c $ Syntax_Trans.mark_bound v $ n $ P; fun tr' q = (q, fn [Const (@{syntax_const "_bound"}, _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] => (case AList.lookup (op =) trans (q, c, d) of NONE => raise Match | SOME (l, g) => if matches_bound v t andalso not (contains_var v u) then mk v l u P else if matches_bound v u andalso not (contains_var v t) then mk v g t P else raise Match) | _ => raise Match); in [tr' All_binder, tr' Ex_binder] end *} subsection {* Transitivity reasoning *} context ord begin lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" by (rule subst) lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" by (rule ssubst) lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" by (rule subst) lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" by (rule ssubst) end lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> (!!x y. x < y ==> f x < f y) ==> f a < c" proof - assume r: "!!x y. x < y ==> f x < f y" assume "a < b" hence "f a < f b" by (rule r) also assume "f b < c" finally (less_trans) show ?thesis . qed lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> (!!x y. x < y ==> f x < f y) ==> a < f c" proof - assume r: "!!x y. x < y ==> f x < f y" assume "a < f b" also assume "b < c" hence "f b < f c" by (rule r) finally (less_trans) show ?thesis . qed lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> (!!x y. x <= y ==> f x <= f y) ==> f a < c" proof - assume r: "!!x y. x <= y ==> f x <= f y" assume "a <= b" hence "f a <= f b" by (rule r) also assume "f b < c" finally (le_less_trans) show ?thesis . qed lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> (!!x y. x < y ==> f x < f y) ==> a < f c" proof - assume r: "!!x y. x < y ==> f x < f y" assume "a <= f b" also assume "b < c" hence "f b < f c" by (rule r) finally (le_less_trans) show ?thesis . qed lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> (!!x y. x < y ==> f x < f y) ==> f a < c" proof - assume r: "!!x y. x < y ==> f x < f y" assume "a < b" hence "f a < f b" by (rule r) also assume "f b <= c" finally (less_le_trans) show ?thesis . qed lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> (!!x y. x <= y ==> f x <= f y) ==> a < f c" proof - assume r: "!!x y. x <= y ==> f x <= f y" assume "a < f b" also assume "b <= c" hence "f b <= f c" by (rule r) finally (less_le_trans) show ?thesis . qed lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> (!!x y. x <= y ==> f x <= f y) ==> a <= f c" proof - assume r: "!!x y. x <= y ==> f x <= f y" assume "a <= f b" also assume "b <= c" hence "f b <= f c" by (rule r) finally (order_trans) show ?thesis . qed lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> (!!x y. x <= y ==> f x <= f y) ==> f a <= c" proof - assume r: "!!x y. x <= y ==> f x <= f y" assume "a <= b" hence "f a <= f b" by (rule r) also assume "f b <= c" finally (order_trans) show ?thesis . qed lemma ord_le_eq_subst: "a <= b ==> f b = c ==> (!!x y. x <= y ==> f x <= f y) ==> f a <= c" proof - assume r: "!!x y. x <= y ==> f x <= f y" assume "a <= b" hence "f a <= f b" by (rule r) also assume "f b = c" finally (ord_le_eq_trans) show ?thesis . qed lemma ord_eq_le_subst: "a = f b ==> b <= c ==> (!!x y. x <= y ==> f x <= f y) ==> a <= f c" proof - assume r: "!!x y. x <= y ==> f x <= f y" assume "a = f b" also assume "b <= c" hence "f b <= f c" by (rule r) finally (ord_eq_le_trans) show ?thesis . qed lemma ord_less_eq_subst: "a < b ==> f b = c ==> (!!x y. x < y ==> f x < f y) ==> f a < c" proof - assume r: "!!x y. x < y ==> f x < f y" assume "a < b" hence "f a < f b" by (rule r) also assume "f b = c" finally (ord_less_eq_trans) show ?thesis . qed lemma ord_eq_less_subst: "a = f b ==> b < c ==> (!!x y. x < y ==> f x < f y) ==> a < f c" proof - assume r: "!!x y. x < y ==> f x < f y" assume "a = f b" also assume "b < c" hence "f b < f c" by (rule r) finally (ord_eq_less_trans) show ?thesis . qed text {* Note that this list of rules is in reverse order of priorities. *} lemmas [trans] = order_less_subst2 order_less_subst1 order_le_less_subst2 order_le_less_subst1 order_less_le_subst2 order_less_le_subst1 order_subst2 order_subst1 ord_le_eq_subst ord_eq_le_subst ord_less_eq_subst ord_eq_less_subst forw_subst back_subst rev_mp mp lemmas (in order) [trans] = neq_le_trans le_neq_trans lemmas (in preorder) [trans] = less_trans less_asym' le_less_trans less_le_trans order_trans lemmas (in order) [trans] = antisym lemmas (in ord) [trans] = ord_le_eq_trans ord_eq_le_trans ord_less_eq_trans ord_eq_less_trans lemmas [trans] = trans lemmas order_trans_rules = order_less_subst2 order_less_subst1 order_le_less_subst2 order_le_less_subst1 order_less_le_subst2 order_less_le_subst1 order_subst2 order_subst1 ord_le_eq_subst ord_eq_le_subst ord_less_eq_subst ord_eq_less_subst forw_subst back_subst rev_mp mp neq_le_trans le_neq_trans less_trans less_asym' le_less_trans less_le_trans order_trans antisym ord_le_eq_trans ord_eq_le_trans ord_less_eq_trans ord_eq_less_trans trans text {* These support proving chains of decreasing inequalities a >= b >= c ... in Isar proofs. *} lemma xt1 [no_atp]: "a = b ==> b > c ==> a > c" "a > b ==> b = c ==> a > c" "a = b ==> b >= c ==> a >= c" "a >= b ==> b = c ==> a >= c" "(x::'a::order) >= y ==> y >= x ==> x = y" "(x::'a::order) >= y ==> y >= z ==> x >= z" "(x::'a::order) > y ==> y >= z ==> x > z" "(x::'a::order) >= y ==> y > z ==> x > z" "(a::'a::order) > b ==> b > a ==> P" "(x::'a::order) > y ==> y > z ==> x > z" "(a::'a::order) >= b ==> a ~= b ==> a > b" "(a::'a::order) ~= b ==> a >= b ==> a > b" "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" by auto lemma xt2 [no_atp]: "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" by (subgoal_tac "f b >= f c", force, force) lemma xt3 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> (!!x y. x >= y ==> f x >= f y) ==> f a >= c" by (subgoal_tac "f a >= f b", force, force) lemma xt4 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a > f c" by (subgoal_tac "f b >= f c", force, force) lemma xt5 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) >= c==> (!!x y. x > y ==> f x > f y) ==> f a > c" by (subgoal_tac "f a > f b", force, force) lemma xt6 [no_atp]: "(a::'a::order) >= f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" by (subgoal_tac "f b > f c", force, force) lemma xt7 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> (!!x y. x >= y ==> f x >= f y) ==> f a > c" by (subgoal_tac "f a >= f b", force, force) lemma xt8 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" by (subgoal_tac "f b > f c", force, force) lemma xt9 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) > c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" by (subgoal_tac "f a > f b", force, force) lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 [no_atp] (* Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands for the wrong thing in an Isar proof. The extra transitivity rules can be used as follows: lemma "(a::'a::order) > z" proof - have "a >= b" (is "_ >= ?rhs") sorry also have "?rhs >= c" (is "_ >= ?rhs") sorry also (xtrans) have "?rhs = d" (is "_ = ?rhs") sorry also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") sorry also (xtrans) have "?rhs > f" (is "_ > ?rhs") sorry also (xtrans) have "?rhs > z" sorry finally (xtrans) show ?thesis . qed Alternatively, one can use "declare xtrans [trans]" and then leave out the "(xtrans)" above. *) subsection {* Monotonicity, least value operator and min/max *} context order begin definition mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" lemma monoI [intro?]: fixes f :: "'a \<Rightarrow> 'b\<Colon>order" shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" unfolding mono_def by iprover lemma monoD [dest?]: fixes f :: "'a \<Rightarrow> 'b\<Colon>order" shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" unfolding mono_def by iprover definition strict_mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)" lemma strict_monoI [intro?]: assumes "\<And>x y. x < y \<Longrightarrow> f x < f y" shows "strict_mono f" using assms unfolding strict_mono_def by auto lemma strict_monoD [dest?]: "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y" unfolding strict_mono_def by auto lemma strict_mono_mono [dest?]: assumes "strict_mono f" shows "mono f" proof (rule monoI) fix x y assume "x \<le> y" show "f x \<le> f y" proof (cases "x = y") case True then show ?thesis by simp next case False with `x \<le> y` have "x < y" by simp with assms strict_monoD have "f x < f y" by auto then show ?thesis by simp qed qed end context linorder begin lemma strict_mono_eq: assumes "strict_mono f" shows "f x = f y \<longleftrightarrow> x = y" proof assume "f x = f y" show "x = y" proof (cases x y rule: linorder_cases) case less with assms strict_monoD have "f x < f y" by auto with `f x = f y` show ?thesis by simp next case equal then show ?thesis . next case greater with assms strict_monoD have "f y < f x" by auto with `f x = f y` show ?thesis by simp qed qed simp lemma strict_mono_less_eq: assumes "strict_mono f" shows "f x \<le> f y \<longleftrightarrow> x \<le> y" proof assume "x \<le> y" with assms strict_mono_mono monoD show "f x \<le> f y" by auto next assume "f x \<le> f y" show "x \<le> y" proof (rule ccontr) assume "\<not> x \<le> y" then have "y < x" by simp with assms strict_monoD have "f y < f x" by auto with `f x \<le> f y` show False by simp qed qed lemma strict_mono_less: assumes "strict_mono f" shows "f x < f y \<longleftrightarrow> x < y" using assms by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq) lemma min_of_mono: fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" shows "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)" by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym) lemma max_of_mono: fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" shows "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)" by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym) end lemma min_absorb1: "x \<le> y \<Longrightarrow> min x y = x" by (simp add: min_def) lemma max_absorb2: "x \<le> y ==> max x y = y" by (simp add: max_def) lemma min_absorb2: "(y\<Colon>'a\<Colon>order) \<le> x \<Longrightarrow> min x y = y" by (simp add:min_def) lemma max_absorb1: "(y\<Colon>'a\<Colon>order) \<le> x \<Longrightarrow> max x y = x" by (simp add: max_def) subsection {* (Unique) top and bottom elements *} class bot = order + fixes bot :: 'a ("\<bottom>") assumes bot_least [simp]: "\<bottom> \<le> a" begin lemma le_bot: "a \<le> \<bottom> \<Longrightarrow> a = \<bottom>" by (auto intro: antisym) lemma bot_unique: "a \<le> \<bottom> \<longleftrightarrow> a = \<bottom>" by (auto intro: antisym) lemma not_less_bot [simp]: "\<not> (a < \<bottom>)" using bot_least [of a] by (auto simp: le_less) lemma bot_less: "a \<noteq> \<bottom> \<longleftrightarrow> \<bottom> < a" by (auto simp add: less_le_not_le intro!: antisym) end class top = order + fixes top :: 'a ("\<top>") assumes top_greatest [simp]: "a \<le> \<top>" begin lemma top_le: "\<top> \<le> a \<Longrightarrow> a = \<top>" by (rule antisym) auto lemma top_unique: "\<top> \<le> a \<longleftrightarrow> a = \<top>" by (auto intro: antisym) lemma not_top_less [simp]: "\<not> (\<top> < a)" using top_greatest [of a] by (auto simp: le_less) lemma less_top: "a \<noteq> \<top> \<longleftrightarrow> a < \<top>" by (auto simp add: less_le_not_le intro!: antisym) end subsection {* Dense orders *} class dense_linorder = linorder + assumes gt_ex: "\<exists>y. x < y" and lt_ex: "\<exists>y. y < x" and dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" begin lemma dense_le: fixes y z :: 'a assumes "\<And>x. x < y \<Longrightarrow> x \<le> z" shows "y \<le> z" proof (rule ccontr) assume "\<not> ?thesis" hence "z < y" by simp from dense[OF this] obtain x where "x < y" and "z < x" by safe moreover have "x \<le> z" using assms[OF `x < y`] . ultimately show False by auto qed lemma dense_le_bounded: fixes x y z :: 'a assumes "x < y" assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z" shows "y \<le> z" proof (rule dense_le) fix w assume "w < y" from dense[OF `x < y`] obtain u where "x < u" "u < y" by safe from linear[of u w] show "w \<le> z" proof (rule disjE) assume "u \<le> w" from less_le_trans[OF `x < u` `u \<le> w`] `w < y` show "w \<le> z" by (rule *) next assume "w \<le> u" from `w \<le> u` *[OF `x < u` `u < y`] show "w \<le> z" by (rule order_trans) qed qed end subsection {* Wellorders *} class wellorder = linorder + assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" begin lemma wellorder_Least_lemma: fixes k :: 'a assumes "P k" shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k" proof - have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" using assms proof (induct k rule: less_induct) case (less x) then have "P x" by simp show ?case proof (rule classical) assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" have "\<And>y. P y \<Longrightarrow> x \<le> y" proof (rule classical) fix y assume "P y" and "\<not> x \<le> y" with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" by (auto simp add: not_le) with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" by auto then show "x \<le> y" by auto qed with `P x` have Least: "(LEAST a. P a) = x" by (rule Least_equality) with `P x` show ?thesis by simp qed qed then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto qed -- "The following 3 lemmas are due to Brian Huffman" lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" by (erule exE) (erule LeastI) lemma LeastI2: "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" by (blast intro: LeastI) lemma LeastI2_ex: "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" by (blast intro: LeastI_ex) lemma LeastI2_wellorder: assumes "P a" and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" shows "Q (Least P)" proof (rule LeastI2_order) show "P (Least P)" using `P a` by (rule LeastI) next fix y assume "P y" thus "Least P \<le> y" by (rule Least_le) next fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2)) qed lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" apply (simp (no_asm_use) add: not_le [symmetric]) apply (erule contrapos_nn) apply (erule Least_le) done end subsection {* Order on @{typ bool} *} instantiation bool :: "{bot, top, linorder}" begin definition le_bool_def [simp]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" definition [simp]: "(P\<Colon>bool) < Q \<longleftrightarrow> \<not> P \<and> Q" definition [simp]: "\<bottom> \<longleftrightarrow> False" definition [simp]: "\<top> \<longleftrightarrow> True" instance proof qed auto end lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" by simp lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" by simp lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" by simp lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" by simp lemma bot_boolE: "\<bottom> \<Longrightarrow> P" by simp lemma top_boolI: \<top> by simp lemma [code]: "False \<le> b \<longleftrightarrow> True" "True \<le> b \<longleftrightarrow> b" "False < b \<longleftrightarrow> b" "True < b \<longleftrightarrow> False" by simp_all subsection {* Order on @{typ "_ \<Rightarrow> _"} *} instantiation "fun" :: (type, ord) ord begin definition le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" definition "(f\<Colon>'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" instance .. end instance "fun" :: (type, preorder) preorder proof qed (auto simp add: le_fun_def less_fun_def intro: order_trans antisym) instance "fun" :: (type, order) order proof qed (auto simp add: le_fun_def intro: antisym) instantiation "fun" :: (type, bot) bot begin definition "\<bottom> = (\<lambda>x. \<bottom>)" lemma bot_apply (* CANDIDATE [simp, code] *): "\<bottom> x = \<bottom>" by (simp add: bot_fun_def) instance proof qed (simp add: le_fun_def bot_apply) end instantiation "fun" :: (type, top) top begin definition [no_atp]: "\<top> = (\<lambda>x. \<top>)" declare top_fun_def_raw [no_atp] lemma top_apply (* CANDIDATE [simp, code] *): "\<top> x = \<top>" by (simp add: top_fun_def) instance proof qed (simp add: le_fun_def top_apply) end lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" unfolding le_fun_def by simp lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" unfolding le_fun_def by simp lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" unfolding le_fun_def by simp subsection {* Order on unary and binary predicates *} lemma predicate1I: assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" shows "P \<le> Q" apply (rule le_funI) apply (rule le_boolI) apply (rule PQ) apply assumption done lemma predicate1D: "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" apply (erule le_funE) apply (erule le_boolE) apply assumption+ done lemma rev_predicate1D: "P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x" by (rule predicate1D) lemma predicate2I: assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" shows "P \<le> Q" apply (rule le_funI)+ apply (rule le_boolI) apply (rule PQ) apply assumption done lemma predicate2D: "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" apply (erule le_funE)+ apply (erule le_boolE) apply assumption+ done lemma rev_predicate2D: "P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y" by (rule predicate2D) lemma bot1E [no_atp]: "\<bottom> x \<Longrightarrow> P" by (simp add: bot_fun_def) lemma bot2E: "\<bottom> x y \<Longrightarrow> P" by (simp add: bot_fun_def) lemma top1I: "\<top> x" by (simp add: top_fun_def) lemma top2I: "\<top> x y" by (simp add: top_fun_def) subsection {* Name duplicates *} lemmas order_eq_refl = preorder_class.eq_refl lemmas order_less_irrefl = preorder_class.less_irrefl lemmas order_less_imp_le = preorder_class.less_imp_le lemmas order_less_not_sym = preorder_class.less_not_sym lemmas order_less_asym = preorder_class.less_asym lemmas order_less_trans = preorder_class.less_trans lemmas order_le_less_trans = preorder_class.le_less_trans lemmas order_less_le_trans = preorder_class.less_le_trans lemmas order_less_imp_not_less = preorder_class.less_imp_not_less lemmas order_less_imp_triv = preorder_class.less_imp_triv lemmas order_less_asym' = preorder_class.less_asym' lemmas order_less_le = order_class.less_le lemmas order_le_less = order_class.le_less lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq lemmas order_less_imp_not_eq = order_class.less_imp_not_eq lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 lemmas order_neq_le_trans = order_class.neq_le_trans lemmas order_le_neq_trans = order_class.le_neq_trans lemmas order_antisym = order_class.antisym lemmas order_eq_iff = order_class.eq_iff lemmas order_antisym_conv = order_class.antisym_conv lemmas linorder_linear = linorder_class.linear lemmas linorder_less_linear = linorder_class.less_linear lemmas linorder_le_less_linear = linorder_class.le_less_linear lemmas linorder_le_cases = linorder_class.le_cases lemmas linorder_not_less = linorder_class.not_less lemmas linorder_not_le = linorder_class.not_le lemmas linorder_neq_iff = linorder_class.neq_iff lemmas linorder_neqE = linorder_class.neqE lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 end