doc-src/TutorialI/Overview/Sets.thy
author berghofe
Thu, 20 Dec 2001 14:57:15 +0100
changeset 12555 e6d7f040fdc7
parent 11235 860c65c7388a
child 12815 1f073030b97a
permissions -rw-r--r--
"code" attribute is now managed by basic code generator module.

theory Sets = Main:

section{*Sets, Functions and Relations*}

subsection{*Set Notation*}

term "A \<union> B"
term "A \<inter> B"
term "A - B"
term "a \<in> A"
term "b \<notin> A"
term "{a,b}"
term "{x. P x}"
term "{x+y+eps |x y. x < y}"
term "\<Union> M"
term "\<Union>a \<in> A. F a"

subsection{*Functions*}

thm id_def
thm o_assoc
thm image_Int
thm vimage_Compl


subsection{*Relations*}

thm Id_def
thm converse_comp
thm Image_def
thm relpow.simps
thm rtrancl_idemp
thm trancl_converse

subsection{*Wellfoundedness*}

thm wf_def
thm wf_iff_no_infinite_down_chain


subsection{*Fixed Point Operators*}

thm lfp_def gfp_def
thm lfp_unfold
thm lfp_induct


subsection{*Case Study: Verified Model Checking*}


typedecl state

consts M :: "(state \<times> state)set";

typedecl atom

consts L :: "state \<Rightarrow> atom set"

datatype formula = Atom atom
                  | Neg formula
                  | And formula formula
                  | AX formula
                  | EF formula

consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool"   ("(_ \<Turnstile> _)" [80,80] 80)

primrec
"s \<Turnstile> Atom a  = (a \<in> L s)"
"s \<Turnstile> Neg f   = (\<not>(s \<Turnstile> f))"
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
"s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)";

consts mc :: "formula \<Rightarrow> state set";
primrec
"mc(Atom a)  = {s. a \<in> L s}"
"mc(Neg f)   = -mc f"
"mc(And f g) = mc f \<inter> mc g"
"mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
"mc(EF f)    = lfp(\<lambda>T. mc f \<union> (M\<inverse> `` T))"

lemma mono_ef: "mono(\<lambda>T. A \<union> (M\<inverse> `` T))"
apply(rule monoI)
apply blast
done

lemma EF_lemma:
  "lfp(\<lambda>T. A \<union> (M\<inverse> `` T)) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
apply(rule equalityI)
 thm lfp_lowerbound
 apply(rule lfp_lowerbound)
 apply(blast intro: rtrancl_trans);
apply(rule subsetI)
apply(simp, clarify)
apply(erule converse_rtrancl_induct)
thm lfp_unfold[OF mono_ef]
 apply(subst lfp_unfold[OF mono_ef])
 apply(blast)
apply(subst lfp_unfold[OF mono_ef])
apply(blast)
done

theorem "mc f = {s. s \<Turnstile> f}";
apply(induct_tac f);
apply(auto simp add:EF_lemma);
done;

text{*
\begin{exercise}
@{term AX} has a dual operator @{term EN}\footnote{We cannot use the customary @{text EX}
as that is the \textsc{ascii}-equivalent of @{text"\<exists>"}}
(``there exists a next state such that'') with the intended semantics
@{prop[display]"(s \<Turnstile> EN f) = (EX t. (s,t) : M & t \<Turnstile> f)"}
Fortunately, @{term"EN f"} can already be expressed as a PDL formula. How?

Show that the semantics for @{term EF} satisfies the following recursion equation:
@{prop[display]"(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> EN(EF f))"}
\end{exercise}
*}

end