(* Title: HOL/Analysis/Cartesian_Euclidean_Space.thy Some material by Jose Divasón, Tim Makarios and L C Paulson*)section \<open>Finite Cartesian Products of Euclidean Spaces\<close>theory Cartesian_Euclidean_Spaceimports Cartesian_Space Derivativebeginlemma subspace_special_hyperplane: "subspace {x. x $ k = 0}" by (simp add: subspace_def)lemma sum_mult_product: "sum h {..<A * B :: nat} = (\<Sum>i\<in>{..<A}. \<Sum>j\<in>{..<B}. h (j + i * B))" unfolding sum_nat_group[of h B A, unfolded atLeast0LessThan, symmetric]proof (rule sum.cong, simp, rule sum.reindex_cong) fix i show "inj_on (\<lambda>j. j + i * B) {..<B}" by (auto intro!: inj_onI) show "{i * B..<i * B + B} = (\<lambda>j. j + i * B) ` {..<B}" proof safe fix j assume "j \<in> {i * B..<i * B + B}" then show "j \<in> (\<lambda>j. j + i * B) ` {..<B}" by (auto intro!: image_eqI[of _ _ "j - i * B"]) qed simpqed simplemma interval_cbox_cart: "{a::real^'n..b} = cbox a b" by (auto simp add: less_eq_vec_def mem_box Basis_vec_def inner_axis)lemma differentiable_vec: fixes S :: "'a::euclidean_space set" shows "vec differentiable_on S" by (simp add: linear_linear bounded_linear_imp_differentiable_on)lemma continuous_vec [continuous_intros]: fixes x :: "'a::euclidean_space" shows "isCont vec x" apply (clarsimp simp add: continuous_def LIM_def dist_vec_def L2_set_def) apply (rule_tac x="r / sqrt (real CARD('b))" in exI) by (simp add: mult.commute pos_less_divide_eq real_sqrt_mult)lemma box_vec_eq_empty [simp]: shows "cbox (vec a) (vec b) = {} \<longleftrightarrow> cbox a b = {}" "box (vec a) (vec b) = {} \<longleftrightarrow> box a b = {}" by (auto simp: Basis_vec_def mem_box box_eq_empty inner_axis)subsection\<open>Closures and interiors of halfspaces\<close>lemma interior_halfspace_le [simp]: assumes "a \<noteq> 0" shows "interior {x. a \<bullet> x \<le> b} = {x. a \<bullet> x < b}"proof - have *: "a \<bullet> x < b" if x: "x \<in> S" and S: "S \<subseteq> {x. a \<bullet> x \<le> b}" and "open S" for S x proof - obtain e where "e>0" and e: "cball x e \<subseteq> S" using \<open>open S\<close> open_contains_cball x by blast then have "x + (e / norm a) *\<^sub>R a \<in> cball x e" by (simp add: dist_norm) then have "x + (e / norm a) *\<^sub>R a \<in> S" using e by blast then have "x + (e / norm a) *\<^sub>R a \<in> {x. a \<bullet> x \<le> b}" using S by blast moreover have "e * (a \<bullet> a) / norm a > 0" by (simp add: \<open>0 < e\<close> assms) ultimately show ?thesis by (simp add: algebra_simps) qed show ?thesis by (rule interior_unique) (auto simp: open_halfspace_lt *)qedlemma interior_halfspace_ge [simp]: "a \<noteq> 0 \<Longrightarrow> interior {x. a \<bullet> x \<ge> b} = {x. a \<bullet> x > b}"using interior_halfspace_le [of "-a" "-b"] by simplemma interior_halfspace_component_le [simp]: "interior {x. x$k \<le> a} = {x :: (real^'n). x$k < a}" (is "?LE") and interior_halfspace_component_ge [simp]: "interior {x. x$k \<ge> a} = {x :: (real^'n). x$k > a}" (is "?GE")proof - have "axis k (1::real) \<noteq> 0" by (simp add: axis_def vec_eq_iff) moreover have "axis k (1::real) \<bullet> x = x$k" for x by (simp add: cart_eq_inner_axis inner_commute) ultimately show ?LE ?GE using interior_halfspace_le [of "axis k (1::real)" a] interior_halfspace_ge [of "axis k (1::real)" a] by autoqedlemma closure_halfspace_lt [simp]: assumes "a \<noteq> 0" shows "closure {x. a \<bullet> x < b} = {x. a \<bullet> x \<le> b}"proof - have [simp]: "-{x. a \<bullet> x < b} = {x. a \<bullet> x \<ge> b}" by (force simp:) then show ?thesis using interior_halfspace_ge [of a b] assms by (force simp: closure_interior)qedlemma closure_halfspace_gt [simp]: "a \<noteq> 0 \<Longrightarrow> closure {x. a \<bullet> x > b} = {x. a \<bullet> x \<ge> b}"using closure_halfspace_lt [of "-a" "-b"] by simplemma closure_halfspace_component_lt [simp]: "closure {x. x$k < a} = {x :: (real^'n). x$k \<le> a}" (is "?LE") and closure_halfspace_component_gt [simp]: "closure {x. x$k > a} = {x :: (real^'n). x$k \<ge> a}" (is "?GE")proof - have "axis k (1::real) \<noteq> 0" by (simp add: axis_def vec_eq_iff) moreover have "axis k (1::real) \<bullet> x = x$k" for x by (simp add: cart_eq_inner_axis inner_commute) ultimately show ?LE ?GE using closure_halfspace_lt [of "axis k (1::real)" a] closure_halfspace_gt [of "axis k (1::real)" a] by autoqedlemma interior_hyperplane [simp]: assumes "a \<noteq> 0" shows "interior {x. a \<bullet> x = b} = {}"proof - have [simp]: "{x. a \<bullet> x = b} = {x. a \<bullet> x \<le> b} \<inter> {x. a \<bullet> x \<ge> b}" by (force simp:) then show ?thesis by (auto simp: assms)qedlemma frontier_halfspace_le: assumes "a \<noteq> 0 \<or> b \<noteq> 0" shows "frontier {x. a \<bullet> x \<le> b} = {x. a \<bullet> x = b}"proof (cases "a = 0") case True with assms show ?thesis by simpnext case False then show ?thesis by (force simp: frontier_def closed_halfspace_le)qedlemma frontier_halfspace_ge: assumes "a \<noteq> 0 \<or> b \<noteq> 0" shows "frontier {x. a \<bullet> x \<ge> b} = {x. a \<bullet> x = b}"proof (cases "a = 0") case True with assms show ?thesis by simpnext case False then show ?thesis by (force simp: frontier_def closed_halfspace_ge)qedlemma frontier_halfspace_lt: assumes "a \<noteq> 0 \<or> b \<noteq> 0" shows "frontier {x. a \<bullet> x < b} = {x. a \<bullet> x = b}"proof (cases "a = 0") case True with assms show ?thesis by simpnext case False then show ?thesis by (force simp: frontier_def interior_open open_halfspace_lt)qedlemma frontier_halfspace_gt: assumes "a \<noteq> 0 \<or> b \<noteq> 0" shows "frontier {x. a \<bullet> x > b} = {x. a \<bullet> x = b}"proof (cases "a = 0") case True with assms show ?thesis by simpnext case False then show ?thesis by (force simp: frontier_def interior_open open_halfspace_gt)qedlemma interior_standard_hyperplane: "interior {x :: (real^'n). x$k = a} = {}"proof - have "axis k (1::real) \<noteq> 0" by (simp add: axis_def vec_eq_iff) moreover have "axis k (1::real) \<bullet> x = x$k" for x by (simp add: cart_eq_inner_axis inner_commute) ultimately show ?thesis using interior_hyperplane [of "axis k (1::real)" a] by forceqedlemma matrix_vector_mul_bounded_linear[intro, simp]: "bounded_linear ((*v) A)" for A :: "'a::{euclidean_space,real_algebra_1}^'n^'m" using matrix_vector_mul_linear[of A] by (simp add: linear_conv_bounded_linear linear_matrix_vector_mul_eq)lemma fixes A :: "'a::{euclidean_space,real_algebra_1}^'n^'m" shows matrix_vector_mult_linear_continuous_at [continuous_intros]: "isCont ((*v) A) z" and matrix_vector_mult_linear_continuous_on [continuous_intros]: "continuous_on S ((*v) A)" by (simp_all add: linear_continuous_at linear_continuous_on)subsection\<open>Bounds on components etc.\ relative to operator norm\<close>lemma norm_column_le_onorm: fixes A :: "real^'n^'m" shows "norm(column i A) \<le> onorm((*v) A)"proof - have "norm (\<chi> j. A $ j $ i) \<le> norm (A *v axis i 1)" by (simp add: matrix_mult_dot cart_eq_inner_axis) also have "\<dots> \<le> onorm ((*v) A)" using onorm [OF matrix_vector_mul_bounded_linear, of A "axis i 1"] by auto finally have "norm (\<chi> j. A $ j $ i) \<le> onorm ((*v) A)" . then show ?thesis unfolding column_def .qedlemma matrix_component_le_onorm: fixes A :: "real^'n^'m" shows "\<bar>A $ i $ j\<bar> \<le> onorm((*v) A)"proof - have "\<bar>A $ i $ j\<bar> \<le> norm (\<chi> n. (A $ n $ j))" by (metis (full_types, lifting) component_le_norm_cart vec_lambda_beta) also have "\<dots> \<le> onorm ((*v) A)" by (metis (no_types) column_def norm_column_le_onorm) finally show ?thesis .qedlemma component_le_onorm: fixes f :: "real^'m \<Rightarrow> real^'n" shows "linear f \<Longrightarrow> \<bar>matrix f $ i $ j\<bar> \<le> onorm f" by (metis linear_matrix_vector_mul_eq matrix_component_le_onorm matrix_vector_mul)lemma onorm_le_matrix_component_sum: fixes A :: "real^'n^'m" shows "onorm((*v) A) \<le> (\<Sum>i\<in>UNIV. \<Sum>j\<in>UNIV. \<bar>A $ i $ j\<bar>)"proof (rule onorm_le) fix x have "norm (A *v x) \<le> (\<Sum>i\<in>UNIV. \<bar>(A *v x) $ i\<bar>)" by (rule norm_le_l1_cart) also have "\<dots> \<le> (\<Sum>i\<in>UNIV. \<Sum>j\<in>UNIV. \<bar>A $ i $ j\<bar> * norm x)" proof (rule sum_mono) fix i have "\<bar>(A *v x) $ i\<bar> \<le> \<bar>\<Sum>j\<in>UNIV. A $ i $ j * x $ j\<bar>" by (simp add: matrix_vector_mult_def) also have "\<dots> \<le> (\<Sum>j\<in>UNIV. \<bar>A $ i $ j * x $ j\<bar>)" by (rule sum_abs) also have "\<dots> \<le> (\<Sum>j\<in>UNIV. \<bar>A $ i $ j\<bar> * norm x)" by (rule sum_mono) (simp add: abs_mult component_le_norm_cart mult_left_mono) finally show "\<bar>(A *v x) $ i\<bar> \<le> (\<Sum>j\<in>UNIV. \<bar>A $ i $ j\<bar> * norm x)" . qed finally show "norm (A *v x) \<le> (\<Sum>i\<in>UNIV. \<Sum>j\<in>UNIV. \<bar>A $ i $ j\<bar>) * norm x" by (simp add: sum_distrib_right)qedlemma onorm_le_matrix_component: fixes A :: "real^'n^'m" assumes "\<And>i j. abs(A$i$j) \<le> B" shows "onorm((*v) A) \<le> real (CARD('m)) * real (CARD('n)) * B"proof (rule onorm_le) fix x :: "real^'n::_" have "norm (A *v x) \<le> (\<Sum>i\<in>UNIV. \<bar>(A *v x) $ i\<bar>)" by (rule norm_le_l1_cart) also have "\<dots> \<le> (\<Sum>i::'m \<in>UNIV. real (CARD('n)) * B * norm x)" proof (rule sum_mono) fix i have "\<bar>(A *v x) $ i\<bar> \<le> norm(A $ i) * norm x" by (simp add: matrix_mult_dot Cauchy_Schwarz_ineq2) also have "\<dots> \<le> (\<Sum>j\<in>UNIV. \<bar>A $ i $ j\<bar>) * norm x" by (simp add: mult_right_mono norm_le_l1_cart) also have "\<dots> \<le> real (CARD('n)) * B * norm x" by (simp add: assms sum_bounded_above mult_right_mono) finally show "\<bar>(A *v x) $ i\<bar> \<le> real (CARD('n)) * B * norm x" . qed also have "\<dots> \<le> CARD('m) * real (CARD('n)) * B * norm x" by simp finally show "norm (A *v x) \<le> CARD('m) * real (CARD('n)) * B * norm x" .qedlemma rational_approximation: assumes "e > 0" obtains r::real where "r \<in> \<rat>" "\<bar>r - x\<bar> < e" using Rats_dense_in_real [of "x - e/2" "x + e/2"] assms by autoproposition matrix_rational_approximation: fixes A :: "real^'n^'m" assumes "e > 0" obtains B where "\<And>i j. B$i$j \<in> \<rat>" "onorm(\<lambda>x. (A - B) *v x) < e"proof - have "\<forall>i j. \<exists>q \<in> \<rat>. \<bar>q - A $ i $ j\<bar> < e / (2 * CARD('m) * CARD('n))" using assms by (force intro: rational_approximation [of "e / (2 * CARD('m) * CARD('n))"]) then obtain B where B: "\<And>i j. B$i$j \<in> \<rat>" and Bclo: "\<And>i j. \<bar>B$i$j - A $ i $ j\<bar> < e / (2 * CARD('m) * CARD('n))" by (auto simp: lambda_skolem Bex_def) show ?thesis proof have "onorm ((*v) (A - B)) \<le> real CARD('m) * real CARD('n) * (e / (2 * real CARD('m) * real CARD('n)))" apply (rule onorm_le_matrix_component) using Bclo by (simp add: abs_minus_commute less_imp_le) also have "\<dots> < e" using \<open>0 < e\<close> by (simp add: divide_simps) finally show "onorm ((*v) (A - B)) < e" . qed (use B in auto)qedlemma vector_sub_project_orthogonal_cart: "(b::real^'n) \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *s b) = 0" unfolding inner_simps scalar_mult_eq_scaleR by autolemma infnorm_cart:"infnorm (x::real^'n) = Sup {\<bar>x$i\<bar> |i. i\<in>UNIV}" by (simp add: infnorm_def inner_axis Basis_vec_def) (metis (lifting) inner_axis real_inner_1_right)lemma component_le_infnorm_cart: "\<bar>x$i\<bar> \<le> infnorm (x::real^'n)" using Basis_le_infnorm[of "axis i 1" x] by (simp add: Basis_vec_def axis_eq_axis inner_axis)lemma continuous_component[continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x $ i)" unfolding continuous_def by (rule tendsto_vec_nth)lemma continuous_on_component[continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x $ i)" unfolding continuous_on_def by (fast intro: tendsto_vec_nth)lemma continuous_on_vec_lambda[continuous_intros]: "(\<And>i. continuous_on S (f i)) \<Longrightarrow> continuous_on S (\<lambda>x. \<chi> i. f i x)" unfolding continuous_on_def by (auto intro: tendsto_vec_lambda)lemma closed_positive_orthant: "closed {x::real^'n. \<forall>i. 0 \<le>x$i}" by (simp add: Collect_all_eq closed_INT closed_Collect_le continuous_on_const continuous_on_id continuous_on_component)lemma bounded_component_cart: "bounded s \<Longrightarrow> bounded ((\<lambda>x. x $ i) ` s)" unfolding bounded_def apply clarify apply (rule_tac x="x $ i" in exI) apply (rule_tac x="e" in exI) apply clarify apply (rule order_trans [OF dist_vec_nth_le], simp) donelemma compact_lemma_cart: fixes f :: "nat \<Rightarrow> 'a::heine_borel ^ 'n" assumes f: "bounded (range f)" shows "\<exists>l r. strict_mono r \<and> (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $ i) (l $ i) < e) sequentially)" (is "?th d")proof - have "\<forall>d' \<subseteq> d. ?th d'" by (rule compact_lemma_general[where unproj=vec_lambda]) (auto intro!: f bounded_component_cart simp: vec_lambda_eta) then show "?th d" by simpqedinstance vec :: (heine_borel, finite) heine_borelproof fix f :: "nat \<Rightarrow> 'a ^ 'b" assume f: "bounded (range f)" then obtain l r where r: "strict_mono r" and l: "\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>UNIV. dist (f (r n) $ i) (l $ i) < e) sequentially" using compact_lemma_cart [OF f] by blast let ?d = "UNIV::'b set" { fix e::real assume "e>0" hence "0 < e / (real_of_nat (card ?d))" using zero_less_card_finite divide_pos_pos[of e, of "real_of_nat (card ?d)"] by auto with l have "eventually (\<lambda>n. \<forall>i. dist (f (r n) $ i) (l $ i) < e / (real_of_nat (card ?d))) sequentially" by simp moreover { fix n assume n: "\<forall>i. dist (f (r n) $ i) (l $ i) < e / (real_of_nat (card ?d))" have "dist (f (r n)) l \<le> (\<Sum>i\<in>?d. dist (f (r n) $ i) (l $ i))" unfolding dist_vec_def using zero_le_dist by (rule L2_set_le_sum) also have "\<dots> < (\<Sum>i\<in>?d. e / (real_of_nat (card ?d)))" by (rule sum_strict_mono) (simp_all add: n) finally have "dist (f (r n)) l < e" by simp } ultimately have "eventually (\<lambda>n. dist (f (r n)) l < e) sequentially" by (rule eventually_mono) } hence "((f \<circ> r) \<longlongrightarrow> l) sequentially" unfolding o_def tendsto_iff by simp with r show "\<exists>l r. strict_mono r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially" by autoqedlemma interval_cart: fixes a :: "real^'n" shows "box a b = {x::real^'n. \<forall>i. a$i < x$i \<and> x$i < b$i}" and "cbox a b = {x::real^'n. \<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i}" by (auto simp add: set_eq_iff less_vec_def less_eq_vec_def mem_box Basis_vec_def inner_axis)lemma mem_box_cart: fixes a :: "real^'n" shows "x \<in> box a b \<longleftrightarrow> (\<forall>i. a$i < x$i \<and> x$i < b$i)" and "x \<in> cbox a b \<longleftrightarrow> (\<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i)" using interval_cart[of a b] by (auto simp add: set_eq_iff less_vec_def less_eq_vec_def)lemma interval_eq_empty_cart: fixes a :: "real^'n" shows "(box a b = {} \<longleftrightarrow> (\<exists>i. b$i \<le> a$i))" (is ?th1) and "(cbox a b = {} \<longleftrightarrow> (\<exists>i. b$i < a$i))" (is ?th2)proof - { fix i x assume as:"b$i \<le> a$i" and x:"x\<in>box a b" hence "a $ i < x $ i \<and> x $ i < b $ i" unfolding mem_box_cart by auto hence "a$i < b$i" by auto hence False using as by auto } moreover { assume as:"\<forall>i. \<not> (b$i \<le> a$i)" let ?x = "(1/2) *\<^sub>R (a + b)" { fix i have "a$i < b$i" using as[THEN spec[where x=i]] by auto hence "a$i < ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i < b$i" unfolding vector_smult_component and vector_add_component by auto } hence "box a b \<noteq> {}" using mem_box_cart(1)[of "?x" a b] by auto } ultimately show ?th1 by blast { fix i x assume as:"b$i < a$i" and x:"x\<in>cbox a b" hence "a $ i \<le> x $ i \<and> x $ i \<le> b $ i" unfolding mem_box_cart by auto hence "a$i \<le> b$i" by auto hence False using as by auto } moreover { assume as:"\<forall>i. \<not> (b$i < a$i)" let ?x = "(1/2) *\<^sub>R (a + b)" { fix i have "a$i \<le> b$i" using as[THEN spec[where x=i]] by auto hence "a$i \<le> ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i \<le> b$i" unfolding vector_smult_component and vector_add_component by auto } hence "cbox a b \<noteq> {}" using mem_box_cart(2)[of "?x" a b] by auto } ultimately show ?th2 by blastqedlemma interval_ne_empty_cart: fixes a :: "real^'n" shows "cbox a b \<noteq> {} \<longleftrightarrow> (\<forall>i. a$i \<le> b$i)" and "box a b \<noteq> {} \<longleftrightarrow> (\<forall>i. a$i < b$i)" unfolding interval_eq_empty_cart[of a b] by (auto simp add: not_less not_le) (* BH: Why doesn't just "auto" work here? *)lemma subset_interval_imp_cart: fixes a :: "real^'n" shows "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> cbox c d \<subseteq> cbox a b" and "(\<forall>i. a$i < c$i \<and> d$i < b$i) \<Longrightarrow> cbox c d \<subseteq> box a b" and "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> box c d \<subseteq> cbox a b" and "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> box c d \<subseteq> box a b" unfolding subset_eq[unfolded Ball_def] unfolding mem_box_cart by (auto intro: order_trans less_le_trans le_less_trans less_imp_le) (* BH: Why doesn't just "auto" work here? *)lemma interval_sing: fixes a :: "'a::linorder^'n" shows "{a .. a} = {a} \<and> {a<..<a} = {}" apply (auto simp add: set_eq_iff less_vec_def less_eq_vec_def vec_eq_iff) donelemma subset_interval_cart: fixes a :: "real^'n" shows "cbox c d \<subseteq> cbox a b \<longleftrightarrow> (\<forall>i. c$i \<le> d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th1) and "cbox c d \<subseteq> box a b \<longleftrightarrow> (\<forall>i. c$i \<le> d$i) --> (\<forall>i. a$i < c$i \<and> d$i < b$i)" (is ?th2) and "box c d \<subseteq> cbox a b \<longleftrightarrow> (\<forall>i. c$i < d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th3) and "box c d \<subseteq> box a b \<longleftrightarrow> (\<forall>i. c$i < d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th4) using subset_box[of c d a b] by (simp_all add: Basis_vec_def inner_axis)lemma disjoint_interval_cart: fixes a::"real^'n" shows "cbox a b \<inter> cbox c d = {} \<longleftrightarrow> (\<exists>i. (b$i < a$i \<or> d$i < c$i \<or> b$i < c$i \<or> d$i < a$i))" (is ?th1) and "cbox a b \<inter> box c d = {} \<longleftrightarrow> (\<exists>i. (b$i < a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th2) and "box a b \<inter> cbox c d = {} \<longleftrightarrow> (\<exists>i. (b$i \<le> a$i \<or> d$i < c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th3) and "box a b \<inter> box c d = {} \<longleftrightarrow> (\<exists>i. (b$i \<le> a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th4) using disjoint_interval[of a b c d] by (simp_all add: Basis_vec_def inner_axis)lemma Int_interval_cart: fixes a :: "real^'n" shows "cbox a b \<inter> cbox c d = {(\<chi> i. max (a$i) (c$i)) .. (\<chi> i. min (b$i) (d$i))}" unfolding Int_interval by (auto simp: mem_box less_eq_vec_def) (auto simp: Basis_vec_def inner_axis)lemma closed_interval_left_cart: fixes b :: "real^'n" shows "closed {x::real^'n. \<forall>i. x$i \<le> b$i}" by (simp add: Collect_all_eq closed_INT closed_Collect_le continuous_on_const continuous_on_id continuous_on_component)lemma closed_interval_right_cart: fixes a::"real^'n" shows "closed {x::real^'n. \<forall>i. a$i \<le> x$i}" by (simp add: Collect_all_eq closed_INT closed_Collect_le continuous_on_const continuous_on_id continuous_on_component)lemma is_interval_cart: "is_interval (s::(real^'n) set) \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. \<forall>x. (\<forall>i. ((a$i \<le> x$i \<and> x$i \<le> b$i) \<or> (b$i \<le> x$i \<and> x$i \<le> a$i))) \<longrightarrow> x \<in> s)" by (simp add: is_interval_def Ball_def Basis_vec_def inner_axis imp_ex)lemma closed_halfspace_component_le_cart: "closed {x::real^'n. x$i \<le> a}" by (simp add: closed_Collect_le continuous_on_component)lemma closed_halfspace_component_ge_cart: "closed {x::real^'n. x$i \<ge> a}" by (simp add: closed_Collect_le continuous_on_component)lemma open_halfspace_component_lt_cart: "open {x::real^'n. x$i < a}" by (simp add: open_Collect_less continuous_on_component)lemma open_halfspace_component_gt_cart: "open {x::real^'n. x$i > a}" by (simp add: open_Collect_less continuous_on_component)lemma Lim_component_le_cart: fixes f :: "'a \<Rightarrow> real^'n" assumes "(f \<longlongrightarrow> l) net" "\<not> (trivial_limit net)" "eventually (\<lambda>x. f x $i \<le> b) net" shows "l$i \<le> b" by (rule tendsto_le[OF assms(2) tendsto_const tendsto_vec_nth, OF assms(1, 3)])lemma Lim_component_ge_cart: fixes f :: "'a \<Rightarrow> real^'n" assumes "(f \<longlongrightarrow> l) net" "\<not> (trivial_limit net)" "eventually (\<lambda>x. b \<le> (f x)$i) net" shows "b \<le> l$i" by (rule tendsto_le[OF assms(2) tendsto_vec_nth tendsto_const, OF assms(1, 3)])lemma Lim_component_eq_cart: fixes f :: "'a \<Rightarrow> real^'n" assumes net: "(f \<longlongrightarrow> l) net" "\<not> trivial_limit net" and ev:"eventually (\<lambda>x. f(x)$i = b) net" shows "l$i = b" using ev[unfolded order_eq_iff eventually_conj_iff] and Lim_component_ge_cart[OF net, of b i] and Lim_component_le_cart[OF net, of i b] by autolemma connected_ivt_component_cart: fixes x :: "real^'n" shows "connected s \<Longrightarrow> x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> x$k \<le> a \<Longrightarrow> a \<le> y$k \<Longrightarrow> (\<exists>z\<in>s. z$k = a)" using connected_ivt_hyperplane[of s x y "axis k 1" a] by (auto simp add: inner_axis inner_commute)lemma subspace_substandard_cart: "vec.subspace {x. (\<forall>i. P i \<longrightarrow> x$i = 0)}" unfolding vec.subspace_def by autolemma closed_substandard_cart: "closed {x::'a::real_normed_vector ^ 'n. \<forall>i. P i \<longrightarrow> x$i = 0}"proof - { fix i::'n have "closed {x::'a ^ 'n. P i \<longrightarrow> x$i = 0}" by (cases "P i") (simp_all add: closed_Collect_eq continuous_on_const continuous_on_id continuous_on_component) } thus ?thesis unfolding Collect_all_eq by (simp add: closed_INT)qedsubsection "Convex Euclidean Space"lemma Cart_1:"(1::real^'n) = \<Sum>Basis" using const_vector_cart[of 1] by (simp add: one_vec_def)declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp]declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp]lemmas vector_component_simps = vector_minus_component vector_smult_component vector_add_component less_eq_vec_def vec_lambda_beta vector_uminus_componentlemma convex_box_cart: assumes "\<And>i. convex {x. P i x}" shows "convex {x. \<forall>i. P i (x$i)}" using assms unfolding convex_def by autolemma convex_positive_orthant_cart: "convex {x::real^'n. (\<forall>i. 0 \<le> x$i)}" by (rule convex_box_cart) (simp add: atLeast_def[symmetric])lemma unit_interval_convex_hull_cart: "cbox (0::real^'n) 1 = convex hull {x. \<forall>i. (x$i = 0) \<or> (x$i = 1)}" unfolding Cart_1 unit_interval_convex_hull[where 'a="real^'n"] box_real[symmetric] by (rule arg_cong[where f="\<lambda>x. convex hull x"]) (simp add: Basis_vec_def inner_axis)proposition cube_convex_hull_cart: assumes "0 < d" obtains s::"(real^'n) set" where "finite s" "cbox (x - (\<chi> i. d)) (x + (\<chi> i. d)) = convex hull s"proof - from assms obtain s where "finite s" and "cbox (x - sum ((*\<^sub>R) d) Basis) (x + sum ((*\<^sub>R) d) Basis) = convex hull s" by (rule cube_convex_hull) with that[of s] show thesis by (simp add: const_vector_cart)qedsubsection "Derivative"definition%important "jacobian f net = matrix(frechet_derivative f net)"proposition jacobian_works: "(f::(real^'a) \<Rightarrow> (real^'b)) differentiable net \<longleftrightarrow> (f has_derivative (\<lambda>h. (jacobian f net) *v h)) net" (is "?lhs = ?rhs")proof assume ?lhs then show ?rhs by (simp add: frechet_derivative_works has_derivative_linear jacobian_def)next assume ?rhs then show ?lhs by (rule differentiableI)qedtext \<open>Component of the differential must be zero if it exists at a local maximum or minimum for that corresponding component\<close>proposition differential_zero_maxmin_cart: fixes f::"real^'a \<Rightarrow> real^'b" assumes "0 < e" "((\<forall>y \<in> ball x e. (f y)$k \<le> (f x)$k) \<or> (\<forall>y\<in>ball x e. (f x)$k \<le> (f y)$k))" "f differentiable (at x)" shows "jacobian f (at x) $ k = 0" using differential_zero_maxmin_component[of "axis k 1" e x f] assms vector_cart[of "\<lambda>j. frechet_derivative f (at x) j $ k"] by (simp add: Basis_vec_def axis_eq_axis inner_axis jacobian_def matrix_def)subsection%unimportant\<open>Routine results connecting the types \<^typ>\<open>real^1\<close> and \<^typ>\<open>real\<close>\<close>lemma vec_cbox_1_eq [simp]: shows "vec ` cbox u v = cbox (vec u) (vec v ::real^1)" by (force simp: Basis_vec_def cart_eq_inner_axis [symmetric] mem_box)lemma vec_nth_cbox_1_eq [simp]: fixes u v :: "'a::euclidean_space^1" shows "(\<lambda>x. x $ 1) ` cbox u v = cbox (u$1) (v$1)" by (auto simp: Basis_vec_def cart_eq_inner_axis [symmetric] mem_box image_iff Bex_def inner_axis) (metis vec_component)lemma vec_nth_1_iff_cbox [simp]: fixes a b :: "'a::euclidean_space" shows "(\<lambda>x::'a^1. x $ 1) ` S = cbox a b \<longleftrightarrow> S = cbox (vec a) (vec b)" (is "?lhs = ?rhs")proof assume L: ?lhs show ?rhs proof (intro equalityI subsetI) fix x assume "x \<in> S" then have "x $ 1 \<in> (\<lambda>v. v $ (1::1)) ` cbox (vec a) (vec b)" using L by auto then show "x \<in> cbox (vec a) (vec b)" by (metis (no_types, lifting) imageE vector_one_nth) next fix x :: "'a^1" assume "x \<in> cbox (vec a) (vec b)" then show "x \<in> S" by (metis (no_types, lifting) L imageE imageI vec_component vec_nth_cbox_1_eq vector_one_nth) qedqed simplemma interval_split_cart: "{a..b::real^'n} \<inter> {x. x$k \<le> c} = {a .. (\<chi> i. if i = k then min (b$k) c else b$i)}" "cbox a b \<inter> {x. x$k \<ge> c} = {(\<chi> i. if i = k then max (a$k) c else a$i) .. b}" apply (rule_tac[!] set_eqI) unfolding Int_iff mem_box_cart mem_Collect_eq interval_cbox_cart unfolding vec_lambda_beta by autolemmas cartesian_euclidean_space_uniform_limit_intros[uniform_limit_intros] = bounded_linear.uniform_limit[OF blinfun.bounded_linear_right] bounded_linear.uniform_limit[OF bounded_linear_vec_nth]end