author paulson Sun, 10 Mar 2019 00:09:45 +0000 changeset 69880 fe3c12990893 parent 69875 03bc14eab432 child 69881 6a6cdf34e980
tidied up HOL/ex/Primrec
 src/HOL/ex/Primrec.thy file | annotate | diff | comparison | revisions
```--- a/src/HOL/ex/Primrec.thy	Thu Mar 07 16:59:12 2019 +0000
+++ b/src/HOL/ex/Primrec.thy	Sun Mar 10 00:09:45 2019 +0000
@@ -1,12 +1,9 @@
(*  Title:      HOL/ex/Primrec.thy
Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-
-Ackermann's Function and the
-Primitive Recursive Functions.
*)

-section \<open>Primitive Recursive Functions\<close>
+section \<open>Ackermann's Function and the Primitive Recursive Functions\<close>

theory Primrec imports Main begin

@@ -25,37 +22,34 @@

subsection\<open>Ackermann's Function\<close>

-fun ack :: "nat => nat => nat" where
-"ack 0 n =  Suc n" |
-"ack (Suc m) 0 = ack m 1" |
-"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
+fun ack :: "[nat,nat] \<Rightarrow> nat" where
+  "ack 0 n =  Suc n"
+| "ack (Suc m) 0 = ack m 1"
+| "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"

text \<open>PROPERTY A 4\<close>

lemma less_ack2 [iff]: "j < ack i j"
-by (induct i j rule: ack.induct) simp_all
+  by (induct i j rule: ack.induct) simp_all

text \<open>PROPERTY A 5-, the single-step lemma\<close>

lemma ack_less_ack_Suc2 [iff]: "ack i j < ack i (Suc j)"
-by (induct i j rule: ack.induct) simp_all
+  by (induct i j rule: ack.induct) simp_all

text \<open>PROPERTY A 5, monotonicity for \<open><\<close>\<close>

-lemma ack_less_mono2: "j < k ==> ack i j < ack i k"
-using lift_Suc_mono_less[where f = "ack i"]
-by (metis ack_less_ack_Suc2)
+lemma ack_less_mono2: "j < k \<Longrightarrow> ack i j < ack i k"

text \<open>PROPERTY A 5', monotonicity for \<open>\<le>\<close>\<close>

-lemma ack_le_mono2: "j \<le> k ==> ack i j \<le> ack i k"
-apply (blast intro: ack_less_mono2)
-done
+lemma ack_le_mono2: "j \<le> k \<Longrightarrow> ack i j \<le> ack i k"
+  by (simp add: ack_less_mono2 less_mono_imp_le_mono)

text \<open>PROPERTY A 6\<close>
@@ -64,37 +58,41 @@
proof (induct j)
case 0 show ?case by simp
next
-  case (Suc j) show ?case
-    by (auto intro!: ack_le_mono2)
-      (metis Suc Suc_leI Suc_lessI less_ack2 linorder_not_less)
+  case (Suc j) show ?case
+    by (metis Suc ack.simps(3) ack_le_mono2 le_trans less_ack2 less_eq_Suc_le)
qed

text \<open>PROPERTY A 7-, the single-step lemma\<close>

lemma ack_less_ack_Suc1 [iff]: "ack i j < ack (Suc i) j"
-by (blast intro: ack_less_mono2 less_le_trans)
+  by (blast intro: ack_less_mono2 less_le_trans)

text \<open>PROPERTY A 4'? Extra lemma needed for \<^term>\<open>CONSTANT\<close> case, constant functions\<close>

lemma less_ack1 [iff]: "i < ack i j"
-apply (induct i)
- apply simp_all
-apply (blast intro: Suc_leI le_less_trans)
-done
+proof (induct i)
+  case 0
+  then show ?case
+    by simp
+next
+  case (Suc i)
+  then show ?case
+    using less_trans_Suc by blast
+qed

text \<open>PROPERTY A 8\<close>

lemma ack_1 [simp]: "ack (Suc 0) j = j + 2"
-by (induct j) simp_all
+  by (induct j) simp_all

text \<open>PROPERTY A 9.  The unary \<open>1\<close> and \<open>2\<close> in \<^term>\<open>ack\<close> is essential for the rewriting.\<close>

lemma ack_2 [simp]: "ack (Suc (Suc 0)) j = 2 * j + 3"
-by (induct j) simp_all
+  by (induct j) simp_all

text \<open>PROPERTY A 7, monotonicity for \<open><\<close> [not clear why
@@ -103,209 +101,213 @@
lemma ack_less_mono1_aux: "ack i k < ack (Suc (i +i')) k"
proof (induct i k rule: ack.induct)
case (1 n) show ?case
-    by (simp, metis ack_less_ack_Suc1 less_ack2 less_trans_Suc)
+    using less_le_trans by auto
next
case (2 m) thus ?case by simp
next
case (3 m n) thus ?case
-    by (simp, blast intro: less_trans ack_less_mono2)
+    using ack_less_mono2 less_trans by fastforce
qed

-lemma ack_less_mono1: "i < j ==> ack i k < ack j k"
-apply (blast intro!: ack_less_mono1_aux)
-done
+lemma ack_less_mono1: "i < j \<Longrightarrow> ack i k < ack j k"
+  using ack_less_mono1_aux less_iff_Suc_add by auto

text \<open>PROPERTY A 7', monotonicity for \<open>\<le>\<close>\<close>

-lemma ack_le_mono1: "i \<le> j ==> ack i k \<le> ack j k"
-apply (blast intro: ack_less_mono1)
-done
+lemma ack_le_mono1: "i \<le> j \<Longrightarrow> ack i k \<le> ack j k"
+  using ack_less_mono1 le_eq_less_or_eq by auto

text \<open>PROPERTY A 10\<close>

lemma ack_nest_bound: "ack i1 (ack i2 j) < ack (2 + (i1 + i2)) j"
-apply simp
-apply (rule ack2_le_ack1 [THEN [2] less_le_trans])
-apply simp
-apply (rule le_add1 [THEN ack_le_mono1, THEN le_less_trans])
-apply (rule ack_less_mono1 [THEN ack_less_mono2])
-done
+proof -
+  have "ack i1 (ack i2 j) < ack (i1 + i2) (ack (Suc (i1 + i2)) j)"
+  also have "... = ack (Suc (i1 + i2)) (Suc j)"
+    by simp
+  also have "... \<le> ack (2 + (i1 + i2)) j"
+    using ack2_le_ack1 add_2_eq_Suc by presburger
+  finally show ?thesis .
+qed
+

text \<open>PROPERTY A 11\<close>

lemma ack_add_bound: "ack i1 j + ack i2 j < ack (4 + (i1 + i2)) j"
-apply (rule less_trans [of _ "ack (Suc (Suc 0)) (ack (i1 + i2) j)"])
- prefer 2
- apply (rule ack_nest_bound [THEN less_le_trans])
-apply simp
-apply (cut_tac i = i1 and m1 = i2 and k = j in le_add1 [THEN ack_le_mono1])
-apply (cut_tac i = "i2" and m1 = i1 and k = j in le_add2 [THEN ack_le_mono1])
-apply auto
-done
+proof -
+  have "ack i1 j \<le> ack (i1 + i2) j" "ack i2 j \<le> ack (i1 + i2) j"
+  then have "ack i1 j + ack i2 j < ack (Suc (Suc 0)) (ack (i1 + i2) j)"
+    by simp
+  also have "... < ack (4 + (i1 + i2)) j"
+    by (metis ack_nest_bound add.assoc numeral_2_eq_2 numeral_Bit0)
+  finally show ?thesis .
+qed

text \<open>PROPERTY A 12.  Article uses existential quantifier but the ALF proof
used \<open>k + 4\<close>.  Quantified version must be nested \<open>\<exists>k'. \<forall>i j. ...\<close>\<close>

-lemma ack_add_bound2: "i < ack k j ==> i + j < ack (4 + k) j"
-apply (rule less_trans [of _ "ack k j + ack 0 j"])
-apply simp
-done
+  assumes "i < ack k j" shows "i + j < ack (4 + k) j"
+proof -
+  have "i + j < ack k j + ack 0 j"
+    using assms by auto
+  also have "... < ack (4 + k) j"
+  finally show ?thesis .
+qed

subsection\<open>Primitive Recursive Functions\<close>

-primrec hd0 :: "nat list => nat" where
-"hd0 [] = 0" |
-"hd0 (m # ms) = m"
+primrec hd0 :: "nat list \<Rightarrow> nat" where
+  "hd0 [] = 0"
+| "hd0 (m # ms) = m"

-text \<open>Inductive definition of the set of primitive recursive functions of type \<^typ>\<open>nat list => nat\<close>.\<close>
+text \<open>Inductive definition of the set of primitive recursive functions of type \<^typ>\<open>nat list \<Rightarrow> nat\<close>.\<close>

-definition SC :: "nat list => nat" where
-"SC l = Suc (hd0 l)"
+definition SC :: "nat list \<Rightarrow> nat"
+  where "SC l = Suc (hd0 l)"

-definition CONSTANT :: "nat => nat list => nat" where
-"CONSTANT k l = k"
+definition CONSTANT :: "nat \<Rightarrow> nat list \<Rightarrow> nat"
+  where "CONSTANT k l = k"

-definition PROJ :: "nat => nat list => nat" where
-"PROJ i l = hd0 (drop i l)"
-
-definition
-COMP :: "(nat list => nat) => (nat list => nat) list => nat list => nat"
-where "COMP g fs l = g (map (\<lambda>f. f l) fs)"
+definition PROJ :: "nat \<Rightarrow> nat list \<Rightarrow> nat"
+  where "PROJ i l = hd0 (drop i l)"

-definition PREC :: "(nat list => nat) => (nat list => nat) => nat list => nat"
-where
-  "PREC f g l =
-    (case l of
-      [] => 0
-    | x # l' => rec_nat (f l') (\<lambda>y r. g (r # y # l')) x)"
-  \<comment> \<open>Note that \<^term>\<open>g\<close> is applied first to \<^term>\<open>PREC f g y\<close> and then to \<^term>\<open>y\<close>!\<close>
+definition COMP :: "[nat list \<Rightarrow> nat, (nat list \<Rightarrow> nat) list, nat list] \<Rightarrow> nat"
+  where "COMP g fs l = g (map (\<lambda>f. f l) fs)"

-inductive PRIMREC :: "(nat list => nat) => bool" where
-SC: "PRIMREC SC" |
-CONSTANT: "PRIMREC (CONSTANT k)" |
-PROJ: "PRIMREC (PROJ i)" |
-COMP: "PRIMREC g ==> \<forall>f \<in> set fs. PRIMREC f ==> PRIMREC (COMP g fs)" |
-PREC: "PRIMREC f ==> PRIMREC g ==> PRIMREC (PREC f g)"
+fun PREC :: "[nat list \<Rightarrow> nat, nat list \<Rightarrow> nat, nat list] \<Rightarrow> nat"
+  where
+    "PREC f g [] = 0"
+  | "PREC f g (x # l) = rec_nat (f l) (\<lambda>y r. g (r # y # l)) x"
+    \<comment> \<open>Note that \<^term>\<open>g\<close> is applied first to \<^term>\<open>PREC f g y\<close> and then to \<^term>\<open>y\<close>!\<close>
+
+inductive PRIMREC :: "(nat list \<Rightarrow> nat) \<Rightarrow> bool" where
+  SC: "PRIMREC SC"
+| CONSTANT: "PRIMREC (CONSTANT k)"
+| PROJ: "PRIMREC (PROJ i)"
+| COMP: "PRIMREC g \<Longrightarrow> \<forall>f \<in> set fs. PRIMREC f \<Longrightarrow> PRIMREC (COMP g fs)"
+| PREC: "PRIMREC f \<Longrightarrow> PRIMREC g \<Longrightarrow> PRIMREC (PREC f g)"

text \<open>Useful special cases of evaluation\<close>

lemma SC [simp]: "SC (x # l) = Suc x"
-
-lemma CONSTANT [simp]: "CONSTANT k l = k"

lemma PROJ_0 [simp]: "PROJ 0 (x # l) = x"

lemma COMP_1 [simp]: "COMP g [f] l = g [f l]"

-lemma PREC_0 [simp]: "PREC f g (0 # l) = f l"
+lemma PREC_0: "PREC f g (0 # l) = f l"
+  by simp

lemma PREC_Suc [simp]: "PREC f g (Suc x # l) = g (PREC f g (x # l) # x # l)"
+  by auto

-text \<open>MAIN RESULT\<close>
+subsection \<open>MAIN RESULT\<close>

lemma SC_case: "SC l < ack 1 (sum_list l)"
-apply (unfold SC_def)
-apply (induct l)
-done
+  unfolding SC_def

lemma CONSTANT_case: "CONSTANT k l < ack k (sum_list l)"
-by simp

lemma PROJ_case: "PROJ i l < ack 0 (sum_list l)"
-apply (induct l arbitrary:i)
- apply (auto simp add: drop_Cons split: nat.split)
-done
+  unfolding PROJ_def
+proof (induct l arbitrary: i)
+  case Nil
+  then show ?case
+    by simp
+next
+  case (Cons a l)
+  then show ?case
+    by (metis ack.simps(1) add.commute drop_Cons' hd0.simps(2) leD leI lessI not_less_eq sum_list.Cons trans_le_add2)
+qed

text \<open>\<^term>\<open>COMP\<close> case\<close>

lemma COMP_map_aux: "\<forall>f \<in> set fs. PRIMREC f \<and> (\<exists>kf. \<forall>l. f l < ack kf (sum_list l))
-  ==> \<exists>k. \<forall>l. sum_list (map (\<lambda>f. f l) fs) < ack k (sum_list l)"
-apply (induct fs)
- apply (rule_tac x = 0 in exI)
- apply simp
-apply simp
-done
+  \<Longrightarrow> \<exists>k. \<forall>l. sum_list (map (\<lambda>f. f l) fs) < ack k (sum_list l)"
+proof (induct fs)
+  case Nil
+  then show ?case
+    by auto
+next
+  case (Cons a fs)
+  then show ?case
+qed

lemma COMP_case:
-  "\<forall>l. g l < ack kg (sum_list l) ==>
-  \<forall>f \<in> set fs. PRIMREC f \<and> (\<exists>kf. \<forall>l. f l < ack kf (sum_list l))
-  ==> \<exists>k. \<forall>l. COMP g fs  l < ack k (sum_list l)"
-apply (unfold COMP_def)
-apply (drule COMP_map_aux)
-apply (meson ack_less_mono2 ack_nest_bound less_trans)
-done
-
+  assumes 1: "\<forall>l. g l < ack kg (sum_list l)"
+      and 2: "\<forall>f \<in> set fs. PRIMREC f \<and> (\<exists>kf. \<forall>l. f l < ack kf (sum_list l))"
+  shows "\<exists>k. \<forall>l. COMP g fs  l < ack k (sum_list l)"
+  unfolding COMP_def
+  using 1 COMP_map_aux [OF 2] by (meson ack_less_mono2 ack_nest_bound less_trans)

text \<open>\<^term>\<open>PREC\<close> case\<close>

lemma PREC_case_aux:
-  "\<forall>l. f l + sum_list l < ack kf (sum_list l) ==>
-    \<forall>l. g l + sum_list l < ack kg (sum_list l) ==>
-    PREC f g l + sum_list l < ack (Suc (kf + kg)) (sum_list l)"
-apply (unfold PREC_def)
-apply (case_tac l)
- apply simp_all
- apply (blast intro: less_trans)
-apply (erule ssubst) \<comment> \<open>get rid of the needless assumption\<close>
-apply (induct_tac a)
- apply simp_all
- txt \<open>base case\<close>
- apply (blast intro: le_add1 [THEN le_imp_less_Suc, THEN ack_less_mono1] less_trans)
-txt \<open>induction step\<close>
-apply (rule Suc_leI [THEN le_less_trans])
- apply (rule le_refl [THEN add_le_mono, THEN le_less_trans])
-  prefer 2
-  apply (erule spec)
-txt \<open>final part of the simplification\<close>
-apply simp
-apply (rule le_add2 [THEN ack_le_mono1, THEN le_less_trans])
-apply (erule ack_less_mono2)
-done
+  assumes f: "\<And>l. f l + sum_list l < ack kf (sum_list l)"
+      and g: "\<And>l. g l + sum_list l < ack kg (sum_list l)"
+  shows "PREC f g l + sum_list l < ack (Suc (kf + kg)) (sum_list l)"
+proof (cases l)
+  case Nil
+  then show ?thesis
+next
+  case (Cons m l)
+  have "rec_nat (f l) (\<lambda>y r. g (r # y # l)) m + (m + sum_list l) < ack (Suc (kf + kg)) (m + sum_list l)"
+  proof (induct m)
+    case 0
+    then show ?case
+      using ack_less_mono1_aux f less_trans by fastforce
+  next
+    case (Suc m)
+    let ?r = "rec_nat (f l) (\<lambda>y r. g (r # y # l)) m"
+    have "\<not> g (?r # m # l) + sum_list (?r # m # l) < g (?r # m # l) + (m + sum_list l)"
+      by force
+    then have "g (?r # m # l) + (m + sum_list l) < ack kg (sum_list (?r # m # l))"
+      by (meson assms(2) leI less_le_trans)
+    moreover
+    have "... < ack (kf + kg) (ack (Suc (kf + kg)) (m + sum_list l))"
+      using Suc.hyps by simp (meson ack_le_mono1 ack_less_mono2 le_add2 le_less_trans)
+    ultimately show ?case
+      by auto
+  qed
+  then show ?thesis
+qed

-lemma PREC_case:
-  "\<forall>l. f l < ack kf (sum_list l) ==>
-    \<forall>l. g l < ack kg (sum_list l) ==>
-    \<exists>k. \<forall>l. PREC f g l < ack k (sum_list l)"
+proposition PREC_case:
+  "\<lbrakk>\<And>l. f l < ack kf (sum_list l); \<And>l. g l < ack kg (sum_list l)\<rbrakk>
+  \<Longrightarrow> \<exists>k. \<forall>l. PREC f g l < ack k (sum_list l)"

-lemma ack_bounds_PRIMREC: "PRIMREC f ==> \<exists>k. \<forall>l. f l < ack k (sum_list l)"
-apply (erule PRIMREC.induct)
-    apply (blast intro: SC_case CONSTANT_case PROJ_case COMP_case PREC_case)+
-done
+lemma ack_bounds_PRIMREC: "PRIMREC f \<Longrightarrow> \<exists>k. \<forall>l. f l < ack k (sum_list l)"
+  by (erule PRIMREC.induct) (blast intro: SC_case CONSTANT_case PROJ_case COMP_case PREC_case)+

theorem ack_not_PRIMREC:
-  "\<not> PRIMREC (\<lambda>l. case l of [] => 0 | x # l' => ack x x)"
-apply (rule notI)
-apply (erule ack_bounds_PRIMREC [THEN exE])
-apply (rule less_irrefl [THEN notE])
-apply (drule_tac x = "[x]" in spec)
-apply simp
-done
+  "\<not> PRIMREC (\<lambda>l. case l of [] \<Rightarrow> 0 | x # l' \<Rightarrow> ack x x)"
+proof
+  assume *: "PRIMREC (\<lambda>l. case l of [] \<Rightarrow> 0 | x # l' \<Rightarrow> ack x x)"
+  then obtain m where m: "\<And>l. (case l of [] \<Rightarrow> 0 | x # l' \<Rightarrow> ack x x) < ack m (sum_list l)"
+    using ack_bounds_PRIMREC by metis
+  show False
+    using m [of "[m]"] by simp
+qed

end```