(* Title: HOL/Analysis/Path_Connected.thy Authors: LC Paulson and Robert Himmelmann (TU Muenchen), based on material from HOL Light*)section \<open>Path-Connectedness\<close>theory Path_Connected imports Starlikebeginsubsection \<open>Paths and Arcs\<close>definition%important path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool" where "path g \<longleftrightarrow> continuous_on {0..1} g"definition%important pathstart :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a" where "pathstart g = g 0"definition%important pathfinish :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a" where "pathfinish g = g 1"definition%important path_image :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a set" where "path_image g = g ` {0 .. 1}"definition%important reversepath :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> real \<Rightarrow> 'a" where "reversepath g = (\<lambda>x. g(1 - x))"definition%important joinpaths :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> real \<Rightarrow> 'a" (infixr "+++" 75) where "g1 +++ g2 = (\<lambda>x. if x \<le> 1/2 then g1 (2 * x) else g2 (2 * x - 1))"definition%important simple_path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool" where "simple_path g \<longleftrightarrow> path g \<and> (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"definition%important arc :: "(real \<Rightarrow> 'a :: topological_space) \<Rightarrow> bool" where "arc g \<longleftrightarrow> path g \<and> inj_on g {0..1}"subsection%unimportant\<open>Invariance theorems\<close>lemma path_eq: "path p \<Longrightarrow> (\<And>t. t \<in> {0..1} \<Longrightarrow> p t = q t) \<Longrightarrow> path q" using continuous_on_eq path_def by blastlemma path_continuous_image: "path g \<Longrightarrow> continuous_on (path_image g) f \<Longrightarrow> path(f \<circ> g)" unfolding path_def path_image_def using continuous_on_compose by blastlemma path_translation_eq: fixes g :: "real \<Rightarrow> 'a :: real_normed_vector" shows "path((\<lambda>x. a + x) \<circ> g) = path g"proof - have g: "g = (\<lambda>x. -a + x) \<circ> ((\<lambda>x. a + x) \<circ> g)" by (rule ext) simp show ?thesis unfolding path_def apply safe apply (subst g) apply (rule continuous_on_compose) apply (auto intro: continuous_intros) doneqedlemma path_linear_image_eq: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "linear f" "inj f" shows "path(f \<circ> g) = path g"proof - from linear_injective_left_inverse [OF assms] obtain h where h: "linear h" "h \<circ> f = id" by blast then have g: "g = h \<circ> (f \<circ> g)" by (metis comp_assoc id_comp) show ?thesis unfolding path_def using h assms by (metis g continuous_on_compose linear_continuous_on linear_conv_bounded_linear)qedlemma pathstart_translation: "pathstart((\<lambda>x. a + x) \<circ> g) = a + pathstart g" by (simp add: pathstart_def)lemma pathstart_linear_image_eq: "linear f \<Longrightarrow> pathstart(f \<circ> g) = f(pathstart g)" by (simp add: pathstart_def)lemma pathfinish_translation: "pathfinish((\<lambda>x. a + x) \<circ> g) = a + pathfinish g" by (simp add: pathfinish_def)lemma pathfinish_linear_image: "linear f \<Longrightarrow> pathfinish(f \<circ> g) = f(pathfinish g)" by (simp add: pathfinish_def)lemma path_image_translation: "path_image((\<lambda>x. a + x) \<circ> g) = (\<lambda>x. a + x) ` (path_image g)" by (simp add: image_comp path_image_def)lemma path_image_linear_image: "linear f \<Longrightarrow> path_image(f \<circ> g) = f ` (path_image g)" by (simp add: image_comp path_image_def)lemma reversepath_translation: "reversepath((\<lambda>x. a + x) \<circ> g) = (\<lambda>x. a + x) \<circ> reversepath g" by (rule ext) (simp add: reversepath_def)lemma reversepath_linear_image: "linear f \<Longrightarrow> reversepath(f \<circ> g) = f \<circ> reversepath g" by (rule ext) (simp add: reversepath_def)lemma joinpaths_translation: "((\<lambda>x. a + x) \<circ> g1) +++ ((\<lambda>x. a + x) \<circ> g2) = (\<lambda>x. a + x) \<circ> (g1 +++ g2)" by (rule ext) (simp add: joinpaths_def)lemma joinpaths_linear_image: "linear f \<Longrightarrow> (f \<circ> g1) +++ (f \<circ> g2) = f \<circ> (g1 +++ g2)" by (rule ext) (simp add: joinpaths_def)lemma simple_path_translation_eq: fixes g :: "real \<Rightarrow> 'a::euclidean_space" shows "simple_path((\<lambda>x. a + x) \<circ> g) = simple_path g" by (simp add: simple_path_def path_translation_eq)lemma simple_path_linear_image_eq: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "linear f" "inj f" shows "simple_path(f \<circ> g) = simple_path g" using assms inj_on_eq_iff [of f] by (auto simp: path_linear_image_eq simple_path_def path_translation_eq)lemma arc_translation_eq: fixes g :: "real \<Rightarrow> 'a::euclidean_space" shows "arc((\<lambda>x. a + x) \<circ> g) = arc g" by (auto simp: arc_def inj_on_def path_translation_eq)lemma arc_linear_image_eq: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "linear f" "inj f" shows "arc(f \<circ> g) = arc g" using assms inj_on_eq_iff [of f] by (auto simp: arc_def inj_on_def path_linear_image_eq)subsection%unimportant\<open>Basic lemmas about paths\<close>lemma continuous_on_path: "path f \<Longrightarrow> t \<subseteq> {0..1} \<Longrightarrow> continuous_on t f" using continuous_on_subset path_def by blastlemma arc_imp_simple_path: "arc g \<Longrightarrow> simple_path g" by (simp add: arc_def inj_on_def simple_path_def)lemma arc_imp_path: "arc g \<Longrightarrow> path g" using arc_def by blastlemma arc_imp_inj_on: "arc g \<Longrightarrow> inj_on g {0..1}" by (auto simp: arc_def)lemma simple_path_imp_path: "simple_path g \<Longrightarrow> path g" using simple_path_def by blastlemma simple_path_cases: "simple_path g \<Longrightarrow> arc g \<or> pathfinish g = pathstart g" unfolding simple_path_def arc_def inj_on_def pathfinish_def pathstart_def by forcelemma simple_path_imp_arc: "simple_path g \<Longrightarrow> pathfinish g \<noteq> pathstart g \<Longrightarrow> arc g" using simple_path_cases by autolemma arc_distinct_ends: "arc g \<Longrightarrow> pathfinish g \<noteq> pathstart g" unfolding arc_def inj_on_def pathfinish_def pathstart_def by fastforcelemma arc_simple_path: "arc g \<longleftrightarrow> simple_path g \<and> pathfinish g \<noteq> pathstart g" using arc_distinct_ends arc_imp_simple_path simple_path_cases by blastlemma simple_path_eq_arc: "pathfinish g \<noteq> pathstart g \<Longrightarrow> (simple_path g = arc g)" by (simp add: arc_simple_path)lemma path_image_const [simp]: "path_image (\<lambda>t. a) = {a}" by (force simp: path_image_def)lemma path_image_nonempty [simp]: "path_image g \<noteq> {}" unfolding path_image_def image_is_empty box_eq_empty by autolemma pathstart_in_path_image[intro]: "pathstart g \<in> path_image g" unfolding pathstart_def path_image_def by autolemma pathfinish_in_path_image[intro]: "pathfinish g \<in> path_image g" unfolding pathfinish_def path_image_def by autolemma connected_path_image[intro]: "path g \<Longrightarrow> connected (path_image g)" unfolding path_def path_image_def using connected_continuous_image connected_Icc by blastlemma compact_path_image[intro]: "path g \<Longrightarrow> compact (path_image g)" unfolding path_def path_image_def using compact_continuous_image connected_Icc by blastlemma reversepath_reversepath[simp]: "reversepath (reversepath g) = g" unfolding reversepath_def by autolemma pathstart_reversepath[simp]: "pathstart (reversepath g) = pathfinish g" unfolding pathstart_def reversepath_def pathfinish_def by autolemma pathfinish_reversepath[simp]: "pathfinish (reversepath g) = pathstart g" unfolding pathstart_def reversepath_def pathfinish_def by autolemma pathstart_join[simp]: "pathstart (g1 +++ g2) = pathstart g1" unfolding pathstart_def joinpaths_def pathfinish_def by autolemma pathfinish_join[simp]: "pathfinish (g1 +++ g2) = pathfinish g2" unfolding pathstart_def joinpaths_def pathfinish_def by autolemma path_image_reversepath[simp]: "path_image (reversepath g) = path_image g"proof - have *: "\<And>g. path_image (reversepath g) \<subseteq> path_image g" unfolding path_image_def subset_eq reversepath_def Ball_def image_iff by force show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by autoqedlemma path_reversepath [simp]: "path (reversepath g) \<longleftrightarrow> path g"proof - have *: "\<And>g. path g \<Longrightarrow> path (reversepath g)" unfolding path_def reversepath_def apply (rule continuous_on_compose[unfolded o_def, of _ "\<lambda>x. 1 - x"]) apply (auto intro: continuous_intros continuous_on_subset[of "{0..1}"]) done show ?thesis using *[of "reversepath g"] *[of g] unfolding reversepath_reversepath by (rule iffI)qedlemma arc_reversepath: assumes "arc g" shows "arc(reversepath g)"proof - have injg: "inj_on g {0..1}" using assms by (simp add: arc_def) have **: "\<And>x y::real. 1-x = 1-y \<Longrightarrow> x = y" by simp show ?thesis using assms by (clarsimp simp: arc_def intro!: inj_onI) (simp add: inj_onD reversepath_def **)qedlemma simple_path_reversepath: "simple_path g \<Longrightarrow> simple_path (reversepath g)" apply (simp add: simple_path_def) apply (force simp: reversepath_def) donelemmas reversepath_simps = path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepathlemma path_join[simp]: assumes "pathfinish g1 = pathstart g2" shows "path (g1 +++ g2) \<longleftrightarrow> path g1 \<and> path g2" unfolding path_def pathfinish_def pathstart_defproof safe assume cont: "continuous_on {0..1} (g1 +++ g2)" have g1: "continuous_on {0..1} g1 \<longleftrightarrow> continuous_on {0..1} ((g1 +++ g2) \<circ> (\<lambda>x. x / 2))" by (intro continuous_on_cong refl) (auto simp: joinpaths_def) have g2: "continuous_on {0..1} g2 \<longleftrightarrow> continuous_on {0..1} ((g1 +++ g2) \<circ> (\<lambda>x. x / 2 + 1/2))" using assms by (intro continuous_on_cong refl) (auto simp: joinpaths_def pathfinish_def pathstart_def) show "continuous_on {0..1} g1" and "continuous_on {0..1} g2" unfolding g1 g2 by (auto intro!: continuous_intros continuous_on_subset[OF cont] simp del: o_apply)next assume g1g2: "continuous_on {0..1} g1" "continuous_on {0..1} g2" have 01: "{0 .. 1} = {0..1/2} \<union> {1/2 .. 1::real}" by auto { fix x :: real assume "0 \<le> x" and "x \<le> 1" then have "x \<in> (\<lambda>x. x * 2) ` {0..1 / 2}" by (intro image_eqI[where x="x/2"]) auto } note 1 = this { fix x :: real assume "0 \<le> x" and "x \<le> 1" then have "x \<in> (\<lambda>x. x * 2 - 1) ` {1 / 2..1}" by (intro image_eqI[where x="x/2 + 1/2"]) auto } note 2 = this show "continuous_on {0..1} (g1 +++ g2)" using assms unfolding joinpaths_def 01 apply (intro continuous_on_cases closed_atLeastAtMost g1g2[THEN continuous_on_compose2] continuous_intros) apply (auto simp: field_simps pathfinish_def pathstart_def intro!: 1 2) doneqedsubsection%unimportant \<open>Path Images\<close>lemma bounded_path_image: "path g \<Longrightarrow> bounded(path_image g)" by (simp add: compact_imp_bounded compact_path_image)lemma closed_path_image: fixes g :: "real \<Rightarrow> 'a::t2_space" shows "path g \<Longrightarrow> closed(path_image g)" by (metis compact_path_image compact_imp_closed)lemma connected_simple_path_image: "simple_path g \<Longrightarrow> connected(path_image g)" by (metis connected_path_image simple_path_imp_path)lemma compact_simple_path_image: "simple_path g \<Longrightarrow> compact(path_image g)" by (metis compact_path_image simple_path_imp_path)lemma bounded_simple_path_image: "simple_path g \<Longrightarrow> bounded(path_image g)" by (metis bounded_path_image simple_path_imp_path)lemma closed_simple_path_image: fixes g :: "real \<Rightarrow> 'a::t2_space" shows "simple_path g \<Longrightarrow> closed(path_image g)" by (metis closed_path_image simple_path_imp_path)lemma connected_arc_image: "arc g \<Longrightarrow> connected(path_image g)" by (metis connected_path_image arc_imp_path)lemma compact_arc_image: "arc g \<Longrightarrow> compact(path_image g)" by (metis compact_path_image arc_imp_path)lemma bounded_arc_image: "arc g \<Longrightarrow> bounded(path_image g)" by (metis bounded_path_image arc_imp_path)lemma closed_arc_image: fixes g :: "real \<Rightarrow> 'a::t2_space" shows "arc g \<Longrightarrow> closed(path_image g)" by (metis closed_path_image arc_imp_path)lemma path_image_join_subset: "path_image (g1 +++ g2) \<subseteq> path_image g1 \<union> path_image g2" unfolding path_image_def joinpaths_def by autolemma subset_path_image_join: assumes "path_image g1 \<subseteq> s" and "path_image g2 \<subseteq> s" shows "path_image (g1 +++ g2) \<subseteq> s" using path_image_join_subset[of g1 g2] and assms by autolemma path_image_join: "pathfinish g1 = pathstart g2 \<Longrightarrow> path_image(g1 +++ g2) = path_image g1 \<union> path_image g2" apply (rule subset_antisym [OF path_image_join_subset]) apply (auto simp: pathfinish_def pathstart_def path_image_def joinpaths_def image_def) apply (drule sym) apply (rule_tac x="xa/2" in bexI, auto) apply (rule ccontr) apply (drule_tac x="(xa+1)/2" in bspec) apply (auto simp: field_simps) apply (drule_tac x="1/2" in bspec, auto) donelemma not_in_path_image_join: assumes "x \<notin> path_image g1" and "x \<notin> path_image g2" shows "x \<notin> path_image (g1 +++ g2)" using assms and path_image_join_subset[of g1 g2] by autolemma pathstart_compose: "pathstart(f \<circ> p) = f(pathstart p)" by (simp add: pathstart_def)lemma pathfinish_compose: "pathfinish(f \<circ> p) = f(pathfinish p)" by (simp add: pathfinish_def)lemma path_image_compose: "path_image (f \<circ> p) = f ` (path_image p)" by (simp add: image_comp path_image_def)lemma path_compose_join: "f \<circ> (p +++ q) = (f \<circ> p) +++ (f \<circ> q)" by (rule ext) (simp add: joinpaths_def)lemma path_compose_reversepath: "f \<circ> reversepath p = reversepath(f \<circ> p)" by (rule ext) (simp add: reversepath_def)lemma joinpaths_eq: "(\<And>t. t \<in> {0..1} \<Longrightarrow> p t = p' t) \<Longrightarrow> (\<And>t. t \<in> {0..1} \<Longrightarrow> q t = q' t) \<Longrightarrow> t \<in> {0..1} \<Longrightarrow> (p +++ q) t = (p' +++ q') t" by (auto simp: joinpaths_def)lemma simple_path_inj_on: "simple_path g \<Longrightarrow> inj_on g {0<..<1}" by (auto simp: simple_path_def path_image_def inj_on_def less_eq_real_def Ball_def)subsection%unimportant\<open>Simple paths with the endpoints removed\<close>lemma simple_path_endless: "simple_path c \<Longrightarrow> path_image c - {pathstart c,pathfinish c} = c ` {0<..<1}" apply (auto simp: simple_path_def path_image_def pathstart_def pathfinish_def Ball_def Bex_def image_def) apply (metis eq_iff le_less_linear) apply (metis leD linear) using less_eq_real_def zero_le_one apply blast using less_eq_real_def zero_le_one apply blast donelemma connected_simple_path_endless: "simple_path c \<Longrightarrow> connected(path_image c - {pathstart c,pathfinish c})"apply (simp add: simple_path_endless)apply (rule connected_continuous_image)apply (meson continuous_on_subset greaterThanLessThan_subseteq_atLeastAtMost_iff le_numeral_extra(3) le_numeral_extra(4) path_def simple_path_imp_path)by autolemma nonempty_simple_path_endless: "simple_path c \<Longrightarrow> path_image c - {pathstart c,pathfinish c} \<noteq> {}" by (simp add: simple_path_endless)subsection%unimportant\<open>The operations on paths\<close>lemma path_image_subset_reversepath: "path_image(reversepath g) \<le> path_image g" by (auto simp: path_image_def reversepath_def)lemma path_imp_reversepath: "path g \<Longrightarrow> path(reversepath g)" apply (auto simp: path_def reversepath_def) using continuous_on_compose [of "{0..1}" "\<lambda>x. 1 - x" g] apply (auto simp: continuous_on_op_minus) donelemma half_bounded_equal: "1 \<le> x * 2 \<Longrightarrow> x * 2 \<le> 1 \<longleftrightarrow> x = (1/2::real)" by simplemma continuous_on_joinpaths: assumes "continuous_on {0..1} g1" "continuous_on {0..1} g2" "pathfinish g1 = pathstart g2" shows "continuous_on {0..1} (g1 +++ g2)"proof - have *: "{0..1::real} = {0..1/2} \<union> {1/2..1}" by auto have gg: "g2 0 = g1 1" by (metis assms(3) pathfinish_def pathstart_def) have 1: "continuous_on {0..1/2} (g1 +++ g2)" apply (rule continuous_on_eq [of _ "g1 \<circ> (\<lambda>x. 2*x)"]) apply (rule continuous_intros | simp add: joinpaths_def assms)+ done have "continuous_on {1/2..1} (g2 \<circ> (\<lambda>x. 2*x-1))" apply (rule continuous_on_subset [of "{1/2..1}"]) apply (rule continuous_intros | simp add: image_affinity_atLeastAtMost_diff assms)+ done then have 2: "continuous_on {1/2..1} (g1 +++ g2)" apply (rule continuous_on_eq [of "{1/2..1}" "g2 \<circ> (\<lambda>x. 2*x-1)"]) apply (rule assms continuous_intros | simp add: joinpaths_def mult.commute half_bounded_equal gg)+ done show ?thesis apply (subst *) apply (rule continuous_on_closed_Un) using 1 2 apply auto doneqedlemma path_join_imp: "\<lbrakk>path g1; path g2; pathfinish g1 = pathstart g2\<rbrakk> \<Longrightarrow> path(g1 +++ g2)" by (simp add: path_join)lemma simple_path_join_loop: assumes "arc g1" "arc g2" "pathfinish g1 = pathstart g2" "pathfinish g2 = pathstart g1" "path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g1, pathstart g2}" shows "simple_path(g1 +++ g2)"proof - have injg1: "inj_on g1 {0..1}" using assms by (simp add: arc_def) have injg2: "inj_on g2 {0..1}" using assms by (simp add: arc_def) have g12: "g1 1 = g2 0" and g21: "g2 1 = g1 0" and sb: "g1 ` {0..1} \<inter> g2 ` {0..1} \<subseteq> {g1 0, g2 0}" using assms by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def) { fix x and y::real assume xyI: "x = 1 \<longrightarrow> y \<noteq> 0" and xy: "x \<le> 1" "0 \<le> y" " y * 2 \<le> 1" "\<not> x * 2 \<le> 1" "g2 (2 * x - 1) = g1 (2 * y)" have g1im: "g1 (2 * y) \<in> g1 ` {0..1} \<inter> g2 ` {0..1}" using xy apply simp apply (rule_tac x="2 * x - 1" in image_eqI, auto) done have False using subsetD [OF sb g1im] xy apply auto apply (drule inj_onD [OF injg1]) using g21 [symmetric] xyI apply (auto dest: inj_onD [OF injg2]) done } note * = this { fix x and y::real assume xy: "y \<le> 1" "0 \<le> x" "\<not> y * 2 \<le> 1" "x * 2 \<le> 1" "g1 (2 * x) = g2 (2 * y - 1)" have g1im: "g1 (2 * x) \<in> g1 ` {0..1} \<inter> g2 ` {0..1}" using xy apply simp apply (rule_tac x="2 * x" in image_eqI, auto) done have "x = 0 \<and> y = 1" using subsetD [OF sb g1im] xy apply auto apply (force dest: inj_onD [OF injg1]) using g21 [symmetric] apply (auto dest: inj_onD [OF injg2]) done } note ** = this show ?thesis using assms apply (simp add: arc_def simple_path_def path_join, clarify) apply (simp add: joinpaths_def split: if_split_asm) apply (force dest: inj_onD [OF injg1]) apply (metis *) apply (metis **) apply (force dest: inj_onD [OF injg2]) doneqedlemma arc_join: assumes "arc g1" "arc g2" "pathfinish g1 = pathstart g2" "path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g2}" shows "arc(g1 +++ g2)"proof - have injg1: "inj_on g1 {0..1}" using assms by (simp add: arc_def) have injg2: "inj_on g2 {0..1}" using assms by (simp add: arc_def) have g11: "g1 1 = g2 0" and sb: "g1 ` {0..1} \<inter> g2 ` {0..1} \<subseteq> {g2 0}" using assms by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def) { fix x and y::real assume xy: "x \<le> 1" "0 \<le> y" " y * 2 \<le> 1" "\<not> x * 2 \<le> 1" "g2 (2 * x - 1) = g1 (2 * y)" have g1im: "g1 (2 * y) \<in> g1 ` {0..1} \<inter> g2 ` {0..1}" using xy apply simp apply (rule_tac x="2 * x - 1" in image_eqI, auto) done have False using subsetD [OF sb g1im] xy by (auto dest: inj_onD [OF injg2]) } note * = this show ?thesis apply (simp add: arc_def inj_on_def) apply (clarsimp simp add: arc_imp_path assms path_join) apply (simp add: joinpaths_def split: if_split_asm) apply (force dest: inj_onD [OF injg1]) apply (metis *) apply (metis *) apply (force dest: inj_onD [OF injg2]) doneqedlemma reversepath_joinpaths: "pathfinish g1 = pathstart g2 \<Longrightarrow> reversepath(g1 +++ g2) = reversepath g2 +++ reversepath g1" unfolding reversepath_def pathfinish_def pathstart_def joinpaths_def by (rule ext) (auto simp: mult.commute)subsection%unimportant\<open>Some reversed and "if and only if" versions of joining theorems\<close>lemma path_join_path_ends: fixes g1 :: "real \<Rightarrow> 'a::metric_space" assumes "path(g1 +++ g2)" "path g2" shows "pathfinish g1 = pathstart g2"proof (rule ccontr) define e where "e = dist (g1 1) (g2 0)" assume Neg: "pathfinish g1 \<noteq> pathstart g2" then have "0 < dist (pathfinish g1) (pathstart g2)" by auto then have "e > 0" by (metis e_def pathfinish_def pathstart_def) then obtain d1 where "d1 > 0" and d1: "\<And>x'. \<lbrakk>x'\<in>{0..1}; norm x' < d1\<rbrakk> \<Longrightarrow> dist (g2 x') (g2 0) < e/2" using assms(2) unfolding path_def continuous_on_iff apply (drule_tac x=0 in bspec, simp) by (metis half_gt_zero_iff norm_conv_dist) obtain d2 where "d2 > 0" and d2: "\<And>x'. \<lbrakk>x'\<in>{0..1}; dist x' (1/2) < d2\<rbrakk> \<Longrightarrow> dist ((g1 +++ g2) x') (g1 1) < e/2" using assms(1) \<open>e > 0\<close> unfolding path_def continuous_on_iff apply (drule_tac x="1/2" in bspec, simp) apply (drule_tac x="e/2" in spec) apply (force simp: joinpaths_def) done have int01_1: "min (1/2) (min d1 d2) / 2 \<in> {0..1}" using \<open>d1 > 0\<close> \<open>d2 > 0\<close> by (simp add: min_def) have dist1: "norm (min (1 / 2) (min d1 d2) / 2) < d1" using \<open>d1 > 0\<close> \<open>d2 > 0\<close> by (simp add: min_def dist_norm) have int01_2: "1/2 + min (1/2) (min d1 d2) / 4 \<in> {0..1}" using \<open>d1 > 0\<close> \<open>d2 > 0\<close> by (simp add: min_def) have dist2: "dist (1 / 2 + min (1 / 2) (min d1 d2) / 4) (1 / 2) < d2" using \<open>d1 > 0\<close> \<open>d2 > 0\<close> by (simp add: min_def dist_norm) have [simp]: "\<not> min (1 / 2) (min d1 d2) \<le> 0" using \<open>d1 > 0\<close> \<open>d2 > 0\<close> by (simp add: min_def) have "dist (g2 (min (1 / 2) (min d1 d2) / 2)) (g1 1) < e/2" "dist (g2 (min (1 / 2) (min d1 d2) / 2)) (g2 0) < e/2" using d1 [OF int01_1 dist1] d2 [OF int01_2 dist2] by (simp_all add: joinpaths_def) then have "dist (g1 1) (g2 0) < e/2 + e/2" using dist_triangle_half_r e_def by blast then show False by (simp add: e_def [symmetric])qedlemma path_join_eq [simp]: fixes g1 :: "real \<Rightarrow> 'a::metric_space" assumes "path g1" "path g2" shows "path(g1 +++ g2) \<longleftrightarrow> pathfinish g1 = pathstart g2" using assms by (metis path_join_path_ends path_join_imp)lemma simple_path_joinE: assumes "simple_path(g1 +++ g2)" and "pathfinish g1 = pathstart g2" obtains "arc g1" "arc g2" "path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g1, pathstart g2}"proof - have *: "\<And>x y. \<lbrakk>0 \<le> x; x \<le> 1; 0 \<le> y; y \<le> 1; (g1 +++ g2) x = (g1 +++ g2) y\<rbrakk> \<Longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0" using assms by (simp add: simple_path_def) have "path g1" using assms path_join simple_path_imp_path by blast moreover have "inj_on g1 {0..1}" proof (clarsimp simp: inj_on_def) fix x y assume "g1 x = g1 y" "0 \<le> x" "x \<le> 1" "0 \<le> y" "y \<le> 1" then show "x = y" using * [of "x/2" "y/2"] by (simp add: joinpaths_def split_ifs) qed ultimately have "arc g1" using assms by (simp add: arc_def) have [simp]: "g2 0 = g1 1" using assms by (metis pathfinish_def pathstart_def) have "path g2" using assms path_join simple_path_imp_path by blast moreover have "inj_on g2 {0..1}" proof (clarsimp simp: inj_on_def) fix x y assume "g2 x = g2 y" "0 \<le> x" "x \<le> 1" "0 \<le> y" "y \<le> 1" then show "x = y" using * [of "(x + 1) / 2" "(y + 1) / 2"] by (force simp: joinpaths_def split_ifs divide_simps) qed ultimately have "arc g2" using assms by (simp add: arc_def) have "g2 y = g1 0 \<or> g2 y = g1 1" if "g1 x = g2 y" "0 \<le> x" "x \<le> 1" "0 \<le> y" "y \<le> 1" for x y using * [of "x / 2" "(y + 1) / 2"] that by (auto simp: joinpaths_def split_ifs divide_simps) then have "path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g1, pathstart g2}" by (fastforce simp: pathstart_def pathfinish_def path_image_def) with \<open>arc g1\<close> \<open>arc g2\<close> show ?thesis using that by blastqedlemma simple_path_join_loop_eq: assumes "pathfinish g2 = pathstart g1" "pathfinish g1 = pathstart g2" shows "simple_path(g1 +++ g2) \<longleftrightarrow> arc g1 \<and> arc g2 \<and> path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g1, pathstart g2}"by (metis assms simple_path_joinE simple_path_join_loop)lemma arc_join_eq: assumes "pathfinish g1 = pathstart g2" shows "arc(g1 +++ g2) \<longleftrightarrow> arc g1 \<and> arc g2 \<and> path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g2}" (is "?lhs = ?rhs")proof assume ?lhs then have "simple_path(g1 +++ g2)" by (rule arc_imp_simple_path) then have *: "\<And>x y. \<lbrakk>0 \<le> x; x \<le> 1; 0 \<le> y; y \<le> 1; (g1 +++ g2) x = (g1 +++ g2) y\<rbrakk> \<Longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0" using assms by (simp add: simple_path_def) have False if "g1 0 = g2 u" "0 \<le> u" "u \<le> 1" for u using * [of 0 "(u + 1) / 2"] that assms arc_distinct_ends [OF \<open>?lhs\<close>] by (auto simp: joinpaths_def pathstart_def pathfinish_def split_ifs divide_simps) then have n1: "pathstart g1 \<notin> path_image g2" unfolding pathstart_def path_image_def using atLeastAtMost_iff by blast show ?rhs using \<open>?lhs\<close> apply (rule simple_path_joinE [OF arc_imp_simple_path assms]) using n1 by forcenext assume ?rhs then show ?lhs using assms by (fastforce simp: pathfinish_def pathstart_def intro!: arc_join)qedlemma arc_join_eq_alt: "pathfinish g1 = pathstart g2 \<Longrightarrow> (arc(g1 +++ g2) \<longleftrightarrow> arc g1 \<and> arc g2 \<and> path_image g1 \<inter> path_image g2 = {pathstart g2})"using pathfinish_in_path_image by (fastforce simp: arc_join_eq)subsection%unimportant\<open>The joining of paths is associative\<close>lemma path_assoc: "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart r\<rbrakk> \<Longrightarrow> path(p +++ (q +++ r)) \<longleftrightarrow> path((p +++ q) +++ r)"by simplemma simple_path_assoc: assumes "pathfinish p = pathstart q" "pathfinish q = pathstart r" shows "simple_path (p +++ (q +++ r)) \<longleftrightarrow> simple_path ((p +++ q) +++ r)"proof (cases "pathstart p = pathfinish r") case True show ?thesis proof assume "simple_path (p +++ q +++ r)" with assms True show "simple_path ((p +++ q) +++ r)" by (fastforce simp add: simple_path_join_loop_eq arc_join_eq path_image_join dest: arc_distinct_ends [of r]) next assume 0: "simple_path ((p +++ q) +++ r)" with assms True have q: "pathfinish r \<notin> path_image q" using arc_distinct_ends by (fastforce simp add: simple_path_join_loop_eq arc_join_eq path_image_join) have "pathstart r \<notin> path_image p" using assms by (metis 0 IntI arc_distinct_ends arc_join_eq_alt empty_iff insert_iff pathfinish_in_path_image pathfinish_join simple_path_joinE) with assms 0 q True show "simple_path (p +++ q +++ r)" by (auto simp: simple_path_join_loop_eq arc_join_eq path_image_join dest!: subsetD [OF _ IntI]) qednext case False { fix x :: 'a assume a: "path_image p \<inter> path_image q \<subseteq> {pathstart q}" "(path_image p \<union> path_image q) \<inter> path_image r \<subseteq> {pathstart r}" "x \<in> path_image p" "x \<in> path_image r" have "pathstart r \<in> path_image q" by (metis assms(2) pathfinish_in_path_image) with a have "x = pathstart q" by blast } with False assms show ?thesis by (auto simp: simple_path_eq_arc simple_path_join_loop_eq arc_join_eq path_image_join)qedlemma arc_assoc: "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart r\<rbrakk> \<Longrightarrow> arc(p +++ (q +++ r)) \<longleftrightarrow> arc((p +++ q) +++ r)"by (simp add: arc_simple_path simple_path_assoc)subsubsection%unimportant\<open>Symmetry and loops\<close>lemma path_sym: "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart p\<rbrakk> \<Longrightarrow> path(p +++ q) \<longleftrightarrow> path(q +++ p)" by autolemma simple_path_sym: "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart p\<rbrakk> \<Longrightarrow> simple_path(p +++ q) \<longleftrightarrow> simple_path(q +++ p)"by (metis (full_types) inf_commute insert_commute simple_path_joinE simple_path_join_loop)lemma path_image_sym: "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart p\<rbrakk> \<Longrightarrow> path_image(p +++ q) = path_image(q +++ p)"by (simp add: path_image_join sup_commute)subsection\<open>Subpath\<close>definition%important subpath :: "real \<Rightarrow> real \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> real \<Rightarrow> 'a::real_normed_vector" where "subpath a b g \<equiv> \<lambda>x. g((b - a) * x + a)"lemma path_image_subpath_gen: fixes g :: "_ \<Rightarrow> 'a::real_normed_vector" shows "path_image(subpath u v g) = g ` (closed_segment u v)" by (auto simp add: closed_segment_real_eq path_image_def subpath_def)lemma path_image_subpath: fixes g :: "real \<Rightarrow> 'a::real_normed_vector" shows "path_image(subpath u v g) = (if u \<le> v then g ` {u..v} else g ` {v..u})" by (simp add: path_image_subpath_gen closed_segment_eq_real_ivl)lemma path_image_subpath_commute: fixes g :: "real \<Rightarrow> 'a::real_normed_vector" shows "path_image(subpath u v g) = path_image(subpath v u g)" by (simp add: path_image_subpath_gen closed_segment_eq_real_ivl)lemma path_subpath [simp]: fixes g :: "real \<Rightarrow> 'a::real_normed_vector" assumes "path g" "u \<in> {0..1}" "v \<in> {0..1}" shows "path(subpath u v g)"proof - have "continuous_on {0..1} (g \<circ> (\<lambda>x. ((v-u) * x+ u)))" apply (rule continuous_intros | simp)+ apply (simp add: image_affinity_atLeastAtMost [where c=u]) using assms apply (auto simp: path_def continuous_on_subset) done then show ?thesis by (simp add: path_def subpath_def)qedlemma pathstart_subpath [simp]: "pathstart(subpath u v g) = g(u)" by (simp add: pathstart_def subpath_def)lemma pathfinish_subpath [simp]: "pathfinish(subpath u v g) = g(v)" by (simp add: pathfinish_def subpath_def)lemma subpath_trivial [simp]: "subpath 0 1 g = g" by (simp add: subpath_def)lemma subpath_reversepath: "subpath 1 0 g = reversepath g" by (simp add: reversepath_def subpath_def)lemma reversepath_subpath: "reversepath(subpath u v g) = subpath v u g" by (simp add: reversepath_def subpath_def algebra_simps)lemma subpath_translation: "subpath u v ((\<lambda>x. a + x) \<circ> g) = (\<lambda>x. a + x) \<circ> subpath u v g" by (rule ext) (simp add: subpath_def)lemma subpath_linear_image: "linear f \<Longrightarrow> subpath u v (f \<circ> g) = f \<circ> subpath u v g" by (rule ext) (simp add: subpath_def)lemma affine_ineq: fixes x :: "'a::linordered_idom" assumes "x \<le> 1" "v \<le> u" shows "v + x * u \<le> u + x * v"proof - have "(1-x)*(u-v) \<ge> 0" using assms by auto then show ?thesis by (simp add: algebra_simps)qedlemma sum_le_prod1: fixes a::real shows "\<lbrakk>a \<le> 1; b \<le> 1\<rbrakk> \<Longrightarrow> a + b \<le> 1 + a * b"by (metis add.commute affine_ineq less_eq_real_def mult.right_neutral)lemma simple_path_subpath_eq: "simple_path(subpath u v g) \<longleftrightarrow> path(subpath u v g) \<and> u\<noteq>v \<and> (\<forall>x y. x \<in> closed_segment u v \<and> y \<in> closed_segment u v \<and> g x = g y \<longrightarrow> x = y \<or> x = u \<and> y = v \<or> x = v \<and> y = u)" (is "?lhs = ?rhs")proof (rule iffI) assume ?lhs then have p: "path (\<lambda>x. g ((v - u) * x + u))" and sim: "(\<And>x y. \<lbrakk>x\<in>{0..1}; y\<in>{0..1}; g ((v - u) * x + u) = g ((v - u) * y + u)\<rbrakk> \<Longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)" by (auto simp: simple_path_def subpath_def) { fix x y assume "x \<in> closed_segment u v" "y \<in> closed_segment u v" "g x = g y" then have "x = y \<or> x = u \<and> y = v \<or> x = v \<and> y = u" using sim [of "(x-u)/(v-u)" "(y-u)/(v-u)"] p by (auto simp: closed_segment_real_eq image_affinity_atLeastAtMost divide_simps split: if_split_asm) } moreover have "path(subpath u v g) \<and> u\<noteq>v" using sim [of "1/3" "2/3"] p by (auto simp: subpath_def) ultimately show ?rhs by metisnext assume ?rhs then have d1: "\<And>x y. \<lbrakk>g x = g y; u \<le> x; x \<le> v; u \<le> y; y \<le> v\<rbrakk> \<Longrightarrow> x = y \<or> x = u \<and> y = v \<or> x = v \<and> y = u" and d2: "\<And>x y. \<lbrakk>g x = g y; v \<le> x; x \<le> u; v \<le> y; y \<le> u\<rbrakk> \<Longrightarrow> x = y \<or> x = u \<and> y = v \<or> x = v \<and> y = u" and ne: "u < v \<or> v < u" and psp: "path (subpath u v g)" by (auto simp: closed_segment_real_eq image_affinity_atLeastAtMost) have [simp]: "\<And>x. u + x * v = v + x * u \<longleftrightarrow> u=v \<or> x=1" by algebra show ?lhs using psp ne unfolding simple_path_def subpath_def by (fastforce simp add: algebra_simps affine_ineq mult_left_mono crossproduct_eq dest: d1 d2)qedlemma arc_subpath_eq: "arc(subpath u v g) \<longleftrightarrow> path(subpath u v g) \<and> u\<noteq>v \<and> inj_on g (closed_segment u v)" (is "?lhs = ?rhs")proof (rule iffI) assume ?lhs then have p: "path (\<lambda>x. g ((v - u) * x + u))" and sim: "(\<And>x y. \<lbrakk>x\<in>{0..1}; y\<in>{0..1}; g ((v - u) * x + u) = g ((v - u) * y + u)\<rbrakk> \<Longrightarrow> x = y)" by (auto simp: arc_def inj_on_def subpath_def) { fix x y assume "x \<in> closed_segment u v" "y \<in> closed_segment u v" "g x = g y" then have "x = y" using sim [of "(x-u)/(v-u)" "(y-u)/(v-u)"] p by (force simp: inj_on_def closed_segment_real_eq image_affinity_atLeastAtMost divide_simps split: if_split_asm) } moreover have "path(subpath u v g) \<and> u\<noteq>v" using sim [of "1/3" "2/3"] p by (auto simp: subpath_def) ultimately show ?rhs unfolding inj_on_def by metisnext assume ?rhs then have d1: "\<And>x y. \<lbrakk>g x = g y; u \<le> x; x \<le> v; u \<le> y; y \<le> v\<rbrakk> \<Longrightarrow> x = y" and d2: "\<And>x y. \<lbrakk>g x = g y; v \<le> x; x \<le> u; v \<le> y; y \<le> u\<rbrakk> \<Longrightarrow> x = y" and ne: "u < v \<or> v < u" and psp: "path (subpath u v g)" by (auto simp: inj_on_def closed_segment_real_eq image_affinity_atLeastAtMost) show ?lhs using psp ne unfolding arc_def subpath_def inj_on_def by (auto simp: algebra_simps affine_ineq mult_left_mono crossproduct_eq dest: d1 d2)qedlemma simple_path_subpath: assumes "simple_path g" "u \<in> {0..1}" "v \<in> {0..1}" "u \<noteq> v" shows "simple_path(subpath u v g)" using assms apply (simp add: simple_path_subpath_eq simple_path_imp_path) apply (simp add: simple_path_def closed_segment_real_eq image_affinity_atLeastAtMost, fastforce) donelemma arc_simple_path_subpath: "\<lbrakk>simple_path g; u \<in> {0..1}; v \<in> {0..1}; g u \<noteq> g v\<rbrakk> \<Longrightarrow> arc(subpath u v g)" by (force intro: simple_path_subpath simple_path_imp_arc)lemma arc_subpath_arc: "\<lbrakk>arc g; u \<in> {0..1}; v \<in> {0..1}; u \<noteq> v\<rbrakk> \<Longrightarrow> arc(subpath u v g)" by (meson arc_def arc_imp_simple_path arc_simple_path_subpath inj_onD)lemma arc_simple_path_subpath_interior: "\<lbrakk>simple_path g; u \<in> {0..1}; v \<in> {0..1}; u \<noteq> v; \<bar>u-v\<bar> < 1\<rbrakk> \<Longrightarrow> arc(subpath u v g)" apply (rule arc_simple_path_subpath) apply (force simp: simple_path_def)+ donelemma path_image_subpath_subset: "\<lbrakk>u \<in> {0..1}; v \<in> {0..1}\<rbrakk> \<Longrightarrow> path_image(subpath u v g) \<subseteq> path_image g" apply (simp add: closed_segment_real_eq image_affinity_atLeastAtMost path_image_subpath) apply (auto simp: path_image_def) done lemma join_subpaths_middle: "subpath (0) ((1 / 2)) p +++ subpath ((1 / 2)) 1 p = p" by (rule ext) (simp add: joinpaths_def subpath_def divide_simps)subsection%unimportant\<open>There is a subpath to the frontier\<close>lemma subpath_to_frontier_explicit: fixes S :: "'a::metric_space set" assumes g: "path g" and "pathfinish g \<notin> S" obtains u where "0 \<le> u" "u \<le> 1" "\<And>x. 0 \<le> x \<and> x < u \<Longrightarrow> g x \<in> interior S" "(g u \<notin> interior S)" "(u = 0 \<or> g u \<in> closure S)"proof - have gcon: "continuous_on {0..1} g" using g by (simp add: path_def) then have com: "compact ({0..1} \<inter> {u. g u \<in> closure (- S)})" apply (simp add: Int_commute [of "{0..1}"] compact_eq_bounded_closed closed_vimage_Int [unfolded vimage_def]) using compact_eq_bounded_closed apply fastforce done have "1 \<in> {u. g u \<in> closure (- S)}" using assms by (simp add: pathfinish_def closure_def) then have dis: "{0..1} \<inter> {u. g u \<in> closure (- S)} \<noteq> {}" using atLeastAtMost_iff zero_le_one by blast then obtain u where "0 \<le> u" "u \<le> 1" and gu: "g u \<in> closure (- S)" and umin: "\<And>t. \<lbrakk>0 \<le> t; t \<le> 1; g t \<in> closure (- S)\<rbrakk> \<Longrightarrow> u \<le> t" using compact_attains_inf [OF com dis] by fastforce then have umin': "\<And>t. \<lbrakk>0 \<le> t; t \<le> 1; t < u\<rbrakk> \<Longrightarrow> g t \<in> S" using closure_def by fastforce { assume "u \<noteq> 0" then have "u > 0" using \<open>0 \<le> u\<close> by auto { fix e::real assume "e > 0" obtain d where "d>0" and d: "\<And>x'. \<lbrakk>x' \<in> {0..1}; dist x' u \<le> d\<rbrakk> \<Longrightarrow> dist (g x') (g u) < e" using continuous_onE [OF gcon _ \<open>e > 0\<close>] \<open>0 \<le> _\<close> \<open>_ \<le> 1\<close> atLeastAtMost_iff by auto have *: "dist (max 0 (u - d / 2)) u \<le> d" using \<open>0 \<le> u\<close> \<open>u \<le> 1\<close> \<open>d > 0\<close> by (simp add: dist_real_def) have "\<exists>y\<in>S. dist y (g u) < e" using \<open>0 < u\<close> \<open>u \<le> 1\<close> \<open>d > 0\<close> by (force intro: d [OF _ *] umin') } then have "g u \<in> closure S" by (simp add: frontier_def closure_approachable) } then show ?thesis apply (rule_tac u=u in that) apply (auto simp: \<open>0 \<le> u\<close> \<open>u \<le> 1\<close> gu interior_closure umin) using \<open>_ \<le> 1\<close> interior_closure umin apply fastforce doneqedlemma subpath_to_frontier_strong: assumes g: "path g" and "pathfinish g \<notin> S" obtains u where "0 \<le> u" "u \<le> 1" "g u \<notin> interior S" "u = 0 \<or> (\<forall>x. 0 \<le> x \<and> x < 1 \<longrightarrow> subpath 0 u g x \<in> interior S) \<and> g u \<in> closure S"proof - obtain u where "0 \<le> u" "u \<le> 1" and gxin: "\<And>x. 0 \<le> x \<and> x < u \<Longrightarrow> g x \<in> interior S" and gunot: "(g u \<notin> interior S)" and u0: "(u = 0 \<or> g u \<in> closure S)" using subpath_to_frontier_explicit [OF assms] by blast show ?thesis apply (rule that [OF \<open>0 \<le> u\<close> \<open>u \<le> 1\<close>]) apply (simp add: gunot) using \<open>0 \<le> u\<close> u0 by (force simp: subpath_def gxin)qedlemma subpath_to_frontier: assumes g: "path g" and g0: "pathstart g \<in> closure S" and g1: "pathfinish g \<notin> S" obtains u where "0 \<le> u" "u \<le> 1" "g u \<in> frontier S" "(path_image(subpath 0 u g) - {g u}) \<subseteq> interior S"proof - obtain u where "0 \<le> u" "u \<le> 1" and notin: "g u \<notin> interior S" and disj: "u = 0 \<or> (\<forall>x. 0 \<le> x \<and> x < 1 \<longrightarrow> subpath 0 u g x \<in> interior S) \<and> g u \<in> closure S" using subpath_to_frontier_strong [OF g g1] by blast show ?thesis apply (rule that [OF \<open>0 \<le> u\<close> \<open>u \<le> 1\<close>]) apply (metis DiffI disj frontier_def g0 notin pathstart_def) using \<open>0 \<le> u\<close> g0 disj apply (simp add: path_image_subpath_gen) apply (auto simp: closed_segment_eq_real_ivl pathstart_def pathfinish_def subpath_def) apply (rename_tac y) apply (drule_tac x="y/u" in spec) apply (auto split: if_split_asm) doneqedlemma exists_path_subpath_to_frontier: fixes S :: "'a::real_normed_vector set" assumes "path g" "pathstart g \<in> closure S" "pathfinish g \<notin> S" obtains h where "path h" "pathstart h = pathstart g" "path_image h \<subseteq> path_image g" "path_image h - {pathfinish h} \<subseteq> interior S" "pathfinish h \<in> frontier S"proof - obtain u where u: "0 \<le> u" "u \<le> 1" "g u \<in> frontier S" "(path_image(subpath 0 u g) - {g u}) \<subseteq> interior S" using subpath_to_frontier [OF assms] by blast show ?thesis apply (rule that [of "subpath 0 u g"]) using assms u apply (simp_all add: path_image_subpath) apply (simp add: pathstart_def) apply (force simp: closed_segment_eq_real_ivl path_image_def) doneqedlemma exists_path_subpath_to_frontier_closed: fixes S :: "'a::real_normed_vector set" assumes S: "closed S" and g: "path g" and g0: "pathstart g \<in> S" and g1: "pathfinish g \<notin> S" obtains h where "path h" "pathstart h = pathstart g" "path_image h \<subseteq> path_image g \<inter> S" "pathfinish h \<in> frontier S"proof - obtain h where h: "path h" "pathstart h = pathstart g" "path_image h \<subseteq> path_image g" "path_image h - {pathfinish h} \<subseteq> interior S" "pathfinish h \<in> frontier S" using exists_path_subpath_to_frontier [OF g _ g1] closure_closed [OF S] g0 by auto show ?thesis apply (rule that [OF \<open>path h\<close>]) using assms h apply auto apply (metis Diff_single_insert frontier_subset_eq insert_iff interior_subset subset_iff) doneqedsubsection \<open>Shift Path to Start at Some Given Point\<close>definition%important shiftpath :: "real \<Rightarrow> (real \<Rightarrow> 'a::topological_space) \<Rightarrow> real \<Rightarrow> 'a" where "shiftpath a f = (\<lambda>x. if (a + x) \<le> 1 then f (a + x) else f (a + x - 1))"lemma pathstart_shiftpath: "a \<le> 1 \<Longrightarrow> pathstart (shiftpath a g) = g a" unfolding pathstart_def shiftpath_def by autolemma pathfinish_shiftpath: assumes "0 \<le> a" and "pathfinish g = pathstart g" shows "pathfinish (shiftpath a g) = g a" using assms unfolding pathstart_def pathfinish_def shiftpath_def by autolemma endpoints_shiftpath: assumes "pathfinish g = pathstart g" and "a \<in> {0 .. 1}" shows "pathfinish (shiftpath a g) = g a" and "pathstart (shiftpath a g) = g a" using assms by (auto intro!: pathfinish_shiftpath pathstart_shiftpath)lemma closed_shiftpath: assumes "pathfinish g = pathstart g" and "a \<in> {0..1}" shows "pathfinish (shiftpath a g) = pathstart (shiftpath a g)" using endpoints_shiftpath[OF assms] by autolemma path_shiftpath: assumes "path g" and "pathfinish g = pathstart g" and "a \<in> {0..1}" shows "path (shiftpath a g)"proof - have *: "{0 .. 1} = {0 .. 1-a} \<union> {1-a .. 1}" using assms(3) by auto have **: "\<And>x. x + a = 1 \<Longrightarrow> g (x + a - 1) = g (x + a)" using assms(2)[unfolded pathfinish_def pathstart_def] by auto show ?thesis unfolding path_def shiftpath_def * proof (rule continuous_on_closed_Un) have contg: "continuous_on {0..1} g" using \<open>path g\<close> path_def by blast show "continuous_on {0..1-a} (\<lambda>x. if a + x \<le> 1 then g (a + x) else g (a + x - 1))" proof (rule continuous_on_eq) show "continuous_on {0..1-a} (g \<circ> (+) a)" by (intro continuous_intros continuous_on_subset [OF contg]) (use \<open>a \<in> {0..1}\<close> in auto) qed auto show "continuous_on {1-a..1} (\<lambda>x. if a + x \<le> 1 then g (a + x) else g (a + x - 1))" proof (rule continuous_on_eq) show "continuous_on {1-a..1} (g \<circ> (+) (a - 1))" by (intro continuous_intros continuous_on_subset [OF contg]) (use \<open>a \<in> {0..1}\<close> in auto) qed (auto simp: "**" add.commute add_diff_eq) qed autoqedlemma shiftpath_shiftpath: assumes "pathfinish g = pathstart g" and "a \<in> {0..1}" and "x \<in> {0..1}" shows "shiftpath (1 - a) (shiftpath a g) x = g x" using assms unfolding pathfinish_def pathstart_def shiftpath_def by autolemma path_image_shiftpath: assumes a: "a \<in> {0..1}" and "pathfinish g = pathstart g" shows "path_image (shiftpath a g) = path_image g"proof - { fix x assume g: "g 1 = g 0" "x \<in> {0..1::real}" and gne: "\<And>y. y\<in>{0..1} \<inter> {x. \<not> a + x \<le> 1} \<Longrightarrow> g x \<noteq> g (a + y - 1)" then have "\<exists>y\<in>{0..1} \<inter> {x. a + x \<le> 1}. g x = g (a + y)" proof (cases "a \<le> x") case False then show ?thesis apply (rule_tac x="1 + x - a" in bexI) using g gne[of "1 + x - a"] a apply (force simp: field_simps)+ done next case True then show ?thesis using g a by (rule_tac x="x - a" in bexI) (auto simp: field_simps) qed } then show ?thesis using assms unfolding shiftpath_def path_image_def pathfinish_def pathstart_def by (auto simp: image_iff)qedlemma simple_path_shiftpath: assumes "simple_path g" "pathfinish g = pathstart g" and a: "0 \<le> a" "a \<le> 1" shows "simple_path (shiftpath a g)" unfolding simple_path_defproof (intro conjI impI ballI) show "path (shiftpath a g)" by (simp add: assms path_shiftpath simple_path_imp_path) have *: "\<And>x y. \<lbrakk>g x = g y; x \<in> {0..1}; y \<in> {0..1}\<rbrakk> \<Longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0" using assms by (simp add: simple_path_def) show "x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0" if "x \<in> {0..1}" "y \<in> {0..1}" "shiftpath a g x = shiftpath a g y" for x y using that a unfolding shiftpath_def by (force split: if_split_asm dest!: *)qedsubsection \<open>Straight-Line Paths\<close>definition%important linepath :: "'a::real_normed_vector \<Rightarrow> 'a \<Rightarrow> real \<Rightarrow> 'a" where "linepath a b = (\<lambda>x. (1 - x) *\<^sub>R a + x *\<^sub>R b)"lemma pathstart_linepath[simp]: "pathstart (linepath a b) = a" unfolding pathstart_def linepath_def by autolemma pathfinish_linepath[simp]: "pathfinish (linepath a b) = b" unfolding pathfinish_def linepath_def by autolemma linepath_inner: "linepath a b x \<bullet> v = linepath (a \<bullet> v) (b \<bullet> v) x" by (simp add: linepath_def algebra_simps)lemma Re_linepath': "Re (linepath a b x) = linepath (Re a) (Re b) x" by (simp add: linepath_def)lemma Im_linepath': "Im (linepath a b x) = linepath (Im a) (Im b) x" by (simp add: linepath_def)lemma linepath_0': "linepath a b 0 = a" by (simp add: linepath_def)lemma linepath_1': "linepath a b 1 = b" by (simp add: linepath_def)lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)" unfolding linepath_def by (intro continuous_intros)lemma continuous_on_linepath [intro,continuous_intros]: "continuous_on s (linepath a b)" using continuous_linepath_at by (auto intro!: continuous_at_imp_continuous_on)lemma path_linepath[iff]: "path (linepath a b)" unfolding path_def by (rule continuous_on_linepath)lemma path_image_linepath[simp]: "path_image (linepath a b) = closed_segment a b" unfolding path_image_def segment linepath_def by autolemma reversepath_linepath[simp]: "reversepath (linepath a b) = linepath b a" unfolding reversepath_def linepath_def by autolemma linepath_0 [simp]: "linepath 0 b x = x *\<^sub>R b" by (simp add: linepath_def)lemma linepath_cnj: "cnj (linepath a b x) = linepath (cnj a) (cnj b) x" by (simp add: linepath_def)lemma arc_linepath: assumes "a \<noteq> b" shows [simp]: "arc (linepath a b)"proof - { fix x y :: "real" assume "x *\<^sub>R b + y *\<^sub>R a = x *\<^sub>R a + y *\<^sub>R b" then have "(x - y) *\<^sub>R a = (x - y) *\<^sub>R b" by (simp add: algebra_simps) with assms have "x = y" by simp } then show ?thesis unfolding arc_def inj_on_def by (fastforce simp: algebra_simps linepath_def)qedlemma simple_path_linepath[intro]: "a \<noteq> b \<Longrightarrow> simple_path (linepath a b)" by (simp add: arc_imp_simple_path)lemma linepath_trivial [simp]: "linepath a a x = a" by (simp add: linepath_def real_vector.scale_left_diff_distrib)lemma linepath_refl: "linepath a a = (\<lambda>x. a)" by autolemma subpath_refl: "subpath a a g = linepath (g a) (g a)" by (simp add: subpath_def linepath_def algebra_simps)lemma linepath_of_real: "(linepath (of_real a) (of_real b) x) = of_real ((1 - x)*a + x*b)" by (simp add: scaleR_conv_of_real linepath_def)lemma of_real_linepath: "of_real (linepath a b x) = linepath (of_real a) (of_real b) x" by (metis linepath_of_real mult.right_neutral of_real_def real_scaleR_def)lemma inj_on_linepath: assumes "a \<noteq> b" shows "inj_on (linepath a b) {0..1}"proof (clarsimp simp: inj_on_def linepath_def) fix x y assume "(1 - x) *\<^sub>R a + x *\<^sub>R b = (1 - y) *\<^sub>R a + y *\<^sub>R b" "0 \<le> x" "x \<le> 1" "0 \<le> y" "y \<le> 1" then have "x *\<^sub>R (a - b) = y *\<^sub>R (a - b)" by (auto simp: algebra_simps) then show "x=y" using assms by autoqedlemma linepath_le_1: fixes a::"'a::linordered_idom" shows "\<lbrakk>a \<le> 1; b \<le> 1; 0 \<le> u; u \<le> 1\<rbrakk> \<Longrightarrow> (1 - u) * a + u * b \<le> 1" using mult_left_le [of a "1-u"] mult_left_le [of b u] by autosubsection%unimportant\<open>Segments via convex hulls\<close>lemma segments_subset_convex_hull: "closed_segment a b \<subseteq> (convex hull {a,b,c})" "closed_segment a c \<subseteq> (convex hull {a,b,c})" "closed_segment b c \<subseteq> (convex hull {a,b,c})" "closed_segment b a \<subseteq> (convex hull {a,b,c})" "closed_segment c a \<subseteq> (convex hull {a,b,c})" "closed_segment c b \<subseteq> (convex hull {a,b,c})"by (auto simp: segment_convex_hull linepath_of_real elim!: rev_subsetD [OF _ hull_mono])lemma midpoints_in_convex_hull: assumes "x \<in> convex hull s" "y \<in> convex hull s" shows "midpoint x y \<in> convex hull s"proof - have "(1 - inverse(2)) *\<^sub>R x + inverse(2) *\<^sub>R y \<in> convex hull s" by (rule convexD_alt) (use assms in auto) then show ?thesis by (simp add: midpoint_def algebra_simps)qedlemma not_in_interior_convex_hull_3: fixes a :: "complex" shows "a \<notin> interior(convex hull {a,b,c})" "b \<notin> interior(convex hull {a,b,c})" "c \<notin> interior(convex hull {a,b,c})" by (auto simp: card_insert_le_m1 not_in_interior_convex_hull)lemma midpoint_in_closed_segment [simp]: "midpoint a b \<in> closed_segment a b" using midpoints_in_convex_hull segment_convex_hull by blastlemma midpoint_in_open_segment [simp]: "midpoint a b \<in> open_segment a b \<longleftrightarrow> a \<noteq> b" by (simp add: open_segment_def)lemma continuous_IVT_local_extremum: fixes f :: "'a::euclidean_space \<Rightarrow> real" assumes contf: "continuous_on (closed_segment a b) f" and "a \<noteq> b" "f a = f b" obtains z where "z \<in> open_segment a b" "(\<forall>w \<in> closed_segment a b. (f w) \<le> (f z)) \<or> (\<forall>w \<in> closed_segment a b. (f z) \<le> (f w))"proof - obtain c where "c \<in> closed_segment a b" and c: "\<And>y. y \<in> closed_segment a b \<Longrightarrow> f y \<le> f c" using continuous_attains_sup [of "closed_segment a b" f] contf by auto obtain d where "d \<in> closed_segment a b" and d: "\<And>y. y \<in> closed_segment a b \<Longrightarrow> f d \<le> f y" using continuous_attains_inf [of "closed_segment a b" f] contf by auto show ?thesis proof (cases "c \<in> open_segment a b \<or> d \<in> open_segment a b") case True then show ?thesis using c d that by blast next case False then have "(c = a \<or> c = b) \<and> (d = a \<or> d = b)" by (simp add: \<open>c \<in> closed_segment a b\<close> \<open>d \<in> closed_segment a b\<close> open_segment_def) with \<open>a \<noteq> b\<close> \<open>f a = f b\<close> c d show ?thesis by (rule_tac z = "midpoint a b" in that) (fastforce+) qedqedtext\<open>An injective map into R is also an open map w.r.T. the universe, and conversely. \<close>proposition injective_eq_1d_open_map_UNIV: fixes f :: "real \<Rightarrow> real" assumes contf: "continuous_on S f" and S: "is_interval S" shows "inj_on f S \<longleftrightarrow> (\<forall>T. open T \<and> T \<subseteq> S \<longrightarrow> open(f ` T))" (is "?lhs = ?rhs")proof safe fix T assume injf: ?lhs and "open T" and "T \<subseteq> S" have "\<exists>U. open U \<and> f x \<in> U \<and> U \<subseteq> f ` T" if "x \<in> T" for x proof - obtain \<delta> where "\<delta> > 0" and \<delta>: "cball x \<delta> \<subseteq> T" using \<open>open T\<close> \<open>x \<in> T\<close> open_contains_cball_eq by blast show ?thesis proof (intro exI conjI) have "closed_segment (x-\<delta>) (x+\<delta>) = {x-\<delta>..x+\<delta>}" using \<open>0 < \<delta>\<close> by (auto simp: closed_segment_eq_real_ivl) also have "\<dots> \<subseteq> S" using \<delta> \<open>T \<subseteq> S\<close> by (auto simp: dist_norm subset_eq) finally have "f ` (open_segment (x-\<delta>) (x+\<delta>)) = open_segment (f (x-\<delta>)) (f (x+\<delta>))" using continuous_injective_image_open_segment_1 by (metis continuous_on_subset [OF contf] inj_on_subset [OF injf]) then show "open (f ` {x-\<delta><..<x+\<delta>})" using \<open>0 < \<delta>\<close> by (simp add: open_segment_eq_real_ivl) show "f x \<in> f ` {x - \<delta><..<x + \<delta>}" by (auto simp: \<open>\<delta> > 0\<close>) show "f ` {x - \<delta><..<x + \<delta>} \<subseteq> f ` T" using \<delta> by (auto simp: dist_norm subset_iff) qed qed with open_subopen show "open (f ` T)" by blastnext assume R: ?rhs have False if xy: "x \<in> S" "y \<in> S" and "f x = f y" "x \<noteq> y" for x y proof - have "open (f ` open_segment x y)" using R by (metis S convex_contains_open_segment is_interval_convex open_greaterThanLessThan open_segment_eq_real_ivl xy) moreover have "continuous_on (closed_segment x y) f" by (meson S closed_segment_subset contf continuous_on_subset is_interval_convex that) then obtain \<xi> where "\<xi> \<in> open_segment x y" and \<xi>: "(\<forall>w \<in> closed_segment x y. (f w) \<le> (f \<xi>)) \<or> (\<forall>w \<in> closed_segment x y. (f \<xi>) \<le> (f w))" using continuous_IVT_local_extremum [of x y f] \<open>f x = f y\<close> \<open>x \<noteq> y\<close> by blast ultimately obtain e where "e>0" and e: "\<And>u. dist u (f \<xi>) < e \<Longrightarrow> u \<in> f ` open_segment x y" using open_dist by (metis image_eqI) have fin: "f \<xi> + (e/2) \<in> f ` open_segment x y" "f \<xi> - (e/2) \<in> f ` open_segment x y" using e [of "f \<xi> + (e/2)"] e [of "f \<xi> - (e/2)"] \<open>e > 0\<close> by (auto simp: dist_norm) show ?thesis using \<xi> \<open>0 < e\<close> fin open_closed_segment by fastforce qed then show ?lhs by (force simp: inj_on_def)qedsubsection%unimportant \<open>Bounding a point away from a path\<close>lemma not_on_path_ball: fixes g :: "real \<Rightarrow> 'a::heine_borel" assumes "path g" and z: "z \<notin> path_image g" shows "\<exists>e > 0. ball z e \<inter> path_image g = {}"proof - have "closed (path_image g)" by (simp add: \<open>path g\<close> closed_path_image) then obtain a where "a \<in> path_image g" "\<forall>y \<in> path_image g. dist z a \<le> dist z y" by (auto intro: distance_attains_inf[OF _ path_image_nonempty, of g z]) then show ?thesis by (rule_tac x="dist z a" in exI) (use dist_commute z in auto)qedlemma not_on_path_cball: fixes g :: "real \<Rightarrow> 'a::heine_borel" assumes "path g" and "z \<notin> path_image g" shows "\<exists>e>0. cball z e \<inter> (path_image g) = {}"proof - obtain e where "ball z e \<inter> path_image g = {}" "e > 0" using not_on_path_ball[OF assms] by auto moreover have "cball z (e/2) \<subseteq> ball z e" using \<open>e > 0\<close> by auto ultimately show ?thesis by (rule_tac x="e/2" in exI) autoqedsubsection \<open>Path component\<close>text \<open>Original formalization by Tom Hales\<close>definition%important "path_component s x y \<longleftrightarrow> (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)"abbreviation%important "path_component_set s x \<equiv> Collect (path_component s x)"lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_deflemma path_component_mem: assumes "path_component s x y" shows "x \<in> s" and "y \<in> s" using assms unfolding path_defs by autolemma path_component_refl: assumes "x \<in> s" shows "path_component s x x" unfolding path_defs apply (rule_tac x="\<lambda>u. x" in exI) using assms apply (auto intro!: continuous_intros) donelemma path_component_refl_eq: "path_component s x x \<longleftrightarrow> x \<in> s" by (auto intro!: path_component_mem path_component_refl)lemma path_component_sym: "path_component s x y \<Longrightarrow> path_component s y x" unfolding path_component_def apply (erule exE) apply (rule_tac x="reversepath g" in exI, auto) donelemma path_component_trans: assumes "path_component s x y" and "path_component s y z" shows "path_component s x z" using assms unfolding path_component_def apply (elim exE) apply (rule_tac x="g +++ ga" in exI) apply (auto simp: path_image_join) donelemma path_component_of_subset: "s \<subseteq> t \<Longrightarrow> path_component s x y \<Longrightarrow> path_component t x y" unfolding path_component_def by autolemma path_connected_linepath: fixes s :: "'a::real_normed_vector set" shows "closed_segment a b \<subseteq> s \<Longrightarrow> path_component s a b" unfolding path_component_def by (rule_tac x="linepath a b" in exI, auto)subsubsection%unimportant \<open>Path components as sets\<close>lemma path_component_set: "path_component_set s x = {y. (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)}" by (auto simp: path_component_def)lemma path_component_subset: "path_component_set s x \<subseteq> s" by (auto simp: path_component_mem(2))lemma path_component_eq_empty: "path_component_set s x = {} \<longleftrightarrow> x \<notin> s" using path_component_mem path_component_refl_eq by fastforcelemma path_component_mono: "s \<subseteq> t \<Longrightarrow> (path_component_set s x) \<subseteq> (path_component_set t x)" by (simp add: Collect_mono path_component_of_subset)lemma path_component_eq: "y \<in> path_component_set s x \<Longrightarrow> path_component_set s y = path_component_set s x"by (metis (no_types, lifting) Collect_cong mem_Collect_eq path_component_sym path_component_trans)subsection \<open>Path connectedness of a space\<close>definition%important "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)"lemma path_connected_component: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. path_component s x y)" unfolding path_connected_def path_component_def by autolemma path_connected_component_set: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. path_component_set s x = s)" unfolding path_connected_component path_component_subset using path_component_mem by blastlemma path_component_maximal: "\<lbrakk>x \<in> t; path_connected t; t \<subseteq> s\<rbrakk> \<Longrightarrow> t \<subseteq> (path_component_set s x)" by (metis path_component_mono path_connected_component_set)lemma convex_imp_path_connected: fixes s :: "'a::real_normed_vector set" assumes "convex s" shows "path_connected s" unfolding path_connected_def using assms convex_contains_segment by fastforcelemma path_connected_UNIV [iff]: "path_connected (UNIV :: 'a::real_normed_vector set)" by (simp add: convex_imp_path_connected)lemma path_component_UNIV: "path_component_set UNIV x = (UNIV :: 'a::real_normed_vector set)" using path_connected_component_set by autolemma path_connected_imp_connected: assumes "path_connected S" shows "connected S"proof (rule connectedI) fix e1 e2 assume as: "open e1" "open e2" "S \<subseteq> e1 \<union> e2" "e1 \<inter> e2 \<inter> S = {}" "e1 \<inter> S \<noteq> {}" "e2 \<inter> S \<noteq> {}" then obtain x1 x2 where obt:"x1 \<in> e1 \<inter> S" "x2 \<in> e2 \<inter> S" by auto then obtain g where g: "path g" "path_image g \<subseteq> S" "pathstart g = x1" "pathfinish g = x2" using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto have *: "connected {0..1::real}" by (auto intro!: convex_connected convex_real_interval) have "{0..1} \<subseteq> {x \<in> {0..1}. g x \<in> e1} \<union> {x \<in> {0..1}. g x \<in> e2}" using as(3) g(2)[unfolded path_defs] by blast moreover have "{x \<in> {0..1}. g x \<in> e1} \<inter> {x \<in> {0..1}. g x \<in> e2} = {}" using as(4) g(2)[unfolded path_defs] unfolding subset_eq by auto moreover have "{x \<in> {0..1}. g x \<in> e1} \<noteq> {} \<and> {x \<in> {0..1}. g x \<in> e2} \<noteq> {}" using g(3,4)[unfolded path_defs] using obt by (simp add: ex_in_conv [symmetric], metis zero_le_one order_refl) ultimately show False using *[unfolded connected_local not_ex, rule_format, of "{0..1} \<inter> g -` e1" "{0..1} \<inter> g -` e2"] using continuous_openin_preimage_gen[OF g(1)[unfolded path_def] as(1)] using continuous_openin_preimage_gen[OF g(1)[unfolded path_def] as(2)] by autoqedlemma open_path_component: fixes S :: "'a::real_normed_vector set" assumes "open S" shows "open (path_component_set S x)" unfolding open_contains_ballproof fix y assume as: "y \<in> path_component_set S x" then have "y \<in> S" by (simp add: path_component_mem(2)) then obtain e where e: "e > 0" "ball y e \<subseteq> S" using assms[unfolded open_contains_ball] by autohave "\<And>u. dist y u < e \<Longrightarrow> path_component S x u" by (metis (full_types) as centre_in_ball convex_ball convex_imp_path_connected e mem_Collect_eq mem_ball path_component_eq path_component_of_subset path_connected_component) then show "\<exists>e > 0. ball y e \<subseteq> path_component_set S x" using \<open>e>0\<close> by autoqedlemma open_non_path_component: fixes S :: "'a::real_normed_vector set" assumes "open S" shows "open (S - path_component_set S x)" unfolding open_contains_ballproof fix y assume y: "y \<in> S - path_component_set S x" then obtain e where e: "e > 0" "ball y e \<subseteq> S" using assms openE by auto show "\<exists>e>0. ball y e \<subseteq> S - path_component_set S x" proof (intro exI conjI subsetI DiffI notI) show "\<And>x. x \<in> ball y e \<Longrightarrow> x \<in> S" using e by blast show False if "z \<in> ball y e" "z \<in> path_component_set S x" for z proof - have "y \<in> path_component_set S z" by (meson assms convex_ball convex_imp_path_connected e open_contains_ball_eq open_path_component path_component_maximal that(1)) then have "y \<in> path_component_set S x" using path_component_eq that(2) by blast then show False using y by blast qed qed (use e in auto)qedlemma connected_open_path_connected: fixes S :: "'a::real_normed_vector set" assumes "open S" and "connected S" shows "path_connected S" unfolding path_connected_component_setproof (rule, rule, rule path_component_subset, rule) fix x y assume "x \<in> S" and "y \<in> S" show "y \<in> path_component_set S x" proof (rule ccontr) assume "\<not> ?thesis" moreover have "path_component_set S x \<inter> S \<noteq> {}" using \<open>x \<in> S\<close> path_component_eq_empty path_component_subset[of S x] by auto ultimately show False using \<open>y \<in> S\<close> open_non_path_component[OF assms(1)] open_path_component[OF assms(1)] using assms(2)[unfolded connected_def not_ex, rule_format, of "path_component_set S x" "S - path_component_set S x"] by auto qedqedlemma path_connected_continuous_image: assumes "continuous_on S f" and "path_connected S" shows "path_connected (f ` S)" unfolding path_connected_defproof (rule, rule) fix x' y' assume "x' \<in> f ` S" "y' \<in> f ` S" then obtain x y where x: "x \<in> S" and y: "y \<in> S" and x': "x' = f x" and y': "y' = f y" by auto from x y obtain g where "path g \<and> path_image g \<subseteq> S \<and> pathstart g = x \<and> pathfinish g = y" using assms(2)[unfolded path_connected_def] by fast then show "\<exists>g. path g \<and> path_image g \<subseteq> f ` S \<and> pathstart g = x' \<and> pathfinish g = y'" unfolding x' y' apply (rule_tac x="f \<circ> g" in exI) unfolding path_defs apply (intro conjI continuous_on_compose continuous_on_subset[OF assms(1)]) apply auto doneqedlemma path_connected_translationI: fixes a :: "'a :: topological_group_add" assumes "path_connected S" shows "path_connected ((\<lambda>x. a + x) ` S)" by (intro path_connected_continuous_image assms continuous_intros)lemma path_connected_translation: fixes a :: "'a :: topological_group_add" shows "path_connected ((\<lambda>x. a + x) ` S) = path_connected S"proof - have "\<forall>x y. (+) (x::'a) ` (+) (0 - x) ` y = y" by (simp add: image_image) then show ?thesis by (metis (no_types) path_connected_translationI)qedlemma path_connected_segment [simp]: fixes a :: "'a::real_normed_vector" shows "path_connected (closed_segment a b)" by (simp add: convex_imp_path_connected)lemma path_connected_open_segment [simp]: fixes a :: "'a::real_normed_vector" shows "path_connected (open_segment a b)" by (simp add: convex_imp_path_connected)lemma homeomorphic_path_connectedness: "S homeomorphic T \<Longrightarrow> path_connected S \<longleftrightarrow> path_connected T" unfolding homeomorphic_def homeomorphism_def by (metis path_connected_continuous_image)lemma path_connected_empty [simp]: "path_connected {}" unfolding path_connected_def by autolemma path_connected_singleton [simp]: "path_connected {a}" unfolding path_connected_def pathstart_def pathfinish_def path_image_def apply clarify apply (rule_tac x="\<lambda>x. a" in exI) apply (simp add: image_constant_conv) apply (simp add: path_def continuous_on_const) donelemma path_connected_Un: assumes "path_connected S" and "path_connected T" and "S \<inter> T \<noteq> {}" shows "path_connected (S \<union> T)" unfolding path_connected_componentproof (intro ballI) fix x y assume x: "x \<in> S \<union> T" and y: "y \<in> S \<union> T" from assms obtain z where z: "z \<in> S" "z \<in> T" by auto show "path_component (S \<union> T) x y" using x y proof safe assume "x \<in> S" "y \<in> S" then show "path_component (S \<union> T) x y" by (meson Un_upper1 \<open>path_connected S\<close> path_component_of_subset path_connected_component) next assume "x \<in> S" "y \<in> T" then show "path_component (S \<union> T) x y" by (metis z assms(1-2) le_sup_iff order_refl path_component_of_subset path_component_trans path_connected_component) next assume "x \<in> T" "y \<in> S" then show "path_component (S \<union> T) x y" by (metis z assms(1-2) le_sup_iff order_refl path_component_of_subset path_component_trans path_connected_component) next assume "x \<in> T" "y \<in> T" then show "path_component (S \<union> T) x y" by (metis Un_upper1 assms(2) path_component_of_subset path_connected_component sup_commute) qedqedlemma path_connected_UNION: assumes "\<And>i. i \<in> A \<Longrightarrow> path_connected (S i)" and "\<And>i. i \<in> A \<Longrightarrow> z \<in> S i" shows "path_connected (\<Union>i\<in>A. S i)" unfolding path_connected_componentproof clarify fix x i y j assume *: "i \<in> A" "x \<in> S i" "j \<in> A" "y \<in> S j" then have "path_component (S i) x z" and "path_component (S j) z y" using assms by (simp_all add: path_connected_component) then have "path_component (\<Union>i\<in>A. S i) x z" and "path_component (\<Union>i\<in>A. S i) z y" using *(1,3) by (auto elim!: path_component_of_subset [rotated]) then show "path_component (\<Union>i\<in>A. S i) x y" by (rule path_component_trans)qedlemma path_component_path_image_pathstart: assumes p: "path p" and x: "x \<in> path_image p" shows "path_component (path_image p) (pathstart p) x"proof - obtain y where x: "x = p y" and y: "0 \<le> y" "y \<le> 1" using x by (auto simp: path_image_def) show ?thesis unfolding path_component_def proof (intro exI conjI) have "continuous_on {0..1} (p \<circ> ((*) y))" apply (rule continuous_intros)+ using p [unfolded path_def] y apply (auto simp: mult_le_one intro: continuous_on_subset [of _ p]) done then show "path (\<lambda>u. p (y * u))" by (simp add: path_def) show "path_image (\<lambda>u. p (y * u)) \<subseteq> path_image p" using y mult_le_one by (fastforce simp: path_image_def image_iff) qed (auto simp: pathstart_def pathfinish_def x)qedlemma path_connected_path_image: "path p \<Longrightarrow> path_connected(path_image p)" unfolding path_connected_component by (meson path_component_path_image_pathstart path_component_sym path_component_trans)lemma path_connected_path_component [simp]: "path_connected (path_component_set s x)"proof - { fix y z assume pa: "path_component s x y" "path_component s x z" then have pae: "path_component_set s x = path_component_set s y" using path_component_eq by auto have yz: "path_component s y z" using pa path_component_sym path_component_trans by blast then have "\<exists>g. path g \<and> path_image g \<subseteq> path_component_set s x \<and> pathstart g = y \<and> pathfinish g = z" apply (simp add: path_component_def, clarify) apply (rule_tac x=g in exI) by (simp add: pae path_component_maximal path_connected_path_image pathstart_in_path_image) } then show ?thesis by (simp add: path_connected_def)qedlemma path_component: "path_component S x y \<longleftrightarrow> (\<exists>t. path_connected t \<and> t \<subseteq> S \<and> x \<in> t \<and> y \<in> t)" apply (intro iffI) apply (metis path_connected_path_image path_defs(5) pathfinish_in_path_image pathstart_in_path_image) using path_component_of_subset path_connected_component by blastlemma path_component_path_component [simp]: "path_component_set (path_component_set S x) x = path_component_set S x"proof (cases "x \<in> S") case True show ?thesis apply (rule subset_antisym) apply (simp add: path_component_subset) by (simp add: True path_component_maximal path_component_refl path_connected_path_component)next case False then show ?thesis by (metis False empty_iff path_component_eq_empty)qedlemma path_component_subset_connected_component: "(path_component_set S x) \<subseteq> (connected_component_set S x)"proof (cases "x \<in> S") case True show ?thesis apply (rule connected_component_maximal) apply (auto simp: True path_component_subset path_component_refl path_connected_imp_connected) donenext case False then show ?thesis using path_component_eq_empty by autoqedsubsection%unimportant\<open>Lemmas about path-connectedness\<close>lemma path_connected_linear_image: fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" assumes "path_connected S" "bounded_linear f" shows "path_connected(f ` S)"by (auto simp: linear_continuous_on assms path_connected_continuous_image)lemma is_interval_path_connected: "is_interval S \<Longrightarrow> path_connected S" by (simp add: convex_imp_path_connected is_interval_convex)lemma linear_homeomorphism_image: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "linear f" "inj f" obtains g where "homeomorphism (f ` S) S g f"using linear_injective_left_inverse [OF assms]apply clarifyapply (rule_tac g=g in that)using assmsapply (auto simp: homeomorphism_def eq_id_iff [symmetric] image_comp comp_def linear_conv_bounded_linear linear_continuous_on)donelemma linear_homeomorphic_image: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "linear f" "inj f" shows "S homeomorphic f ` S"by (meson homeomorphic_def homeomorphic_sym linear_homeomorphism_image [OF assms])lemma path_connected_Times: assumes "path_connected s" "path_connected t" shows "path_connected (s \<times> t)"proof (simp add: path_connected_def Sigma_def, clarify) fix x1 y1 x2 y2 assume "x1 \<in> s" "y1 \<in> t" "x2 \<in> s" "y2 \<in> t" obtain g where "path g" and g: "path_image g \<subseteq> s" and gs: "pathstart g = x1" and gf: "pathfinish g = x2" using \<open>x1 \<in> s\<close> \<open>x2 \<in> s\<close> assms by (force simp: path_connected_def) obtain h where "path h" and h: "path_image h \<subseteq> t" and hs: "pathstart h = y1" and hf: "pathfinish h = y2" using \<open>y1 \<in> t\<close> \<open>y2 \<in> t\<close> assms by (force simp: path_connected_def) have "path (\<lambda>z. (x1, h z))" using \<open>path h\<close> apply (simp add: path_def) apply (rule continuous_on_compose2 [where f = h]) apply (rule continuous_intros | force)+ done moreover have "path (\<lambda>z. (g z, y2))" using \<open>path g\<close> apply (simp add: path_def) apply (rule continuous_on_compose2 [where f = g]) apply (rule continuous_intros | force)+ done ultimately have 1: "path ((\<lambda>z. (x1, h z)) +++ (\<lambda>z. (g z, y2)))" by (metis hf gs path_join_imp pathstart_def pathfinish_def) have "path_image ((\<lambda>z. (x1, h z)) +++ (\<lambda>z. (g z, y2))) \<subseteq> path_image (\<lambda>z. (x1, h z)) \<union> path_image (\<lambda>z. (g z, y2))" by (rule Path_Connected.path_image_join_subset) also have "\<dots> \<subseteq> (\<Union>x\<in>s. \<Union>x1\<in>t. {(x, x1)})" using g h \<open>x1 \<in> s\<close> \<open>y2 \<in> t\<close> by (force simp: path_image_def) finally have 2: "path_image ((\<lambda>z. (x1, h z)) +++ (\<lambda>z. (g z, y2))) \<subseteq> (\<Union>x\<in>s. \<Union>x1\<in>t. {(x, x1)})" . show "\<exists>g. path g \<and> path_image g \<subseteq> (\<Union>x\<in>s. \<Union>x1\<in>t. {(x, x1)}) \<and> pathstart g = (x1, y1) \<and> pathfinish g = (x2, y2)" apply (intro exI conjI) apply (rule 1) apply (rule 2) apply (metis hs pathstart_def pathstart_join) by (metis gf pathfinish_def pathfinish_join)qedlemma is_interval_path_connected_1: fixes s :: "real set" shows "is_interval s \<longleftrightarrow> path_connected s"using is_interval_connected_1 is_interval_path_connected path_connected_imp_connected by blastsubsection%unimportant\<open>Path components\<close>lemma Union_path_component [simp]: "Union {path_component_set S x |x. x \<in> S} = S"apply (rule subset_antisym)using path_component_subset apply forceusing path_component_refl by autolemma path_component_disjoint: "disjnt (path_component_set S a) (path_component_set S b) \<longleftrightarrow> (a \<notin> path_component_set S b)"apply (auto simp: disjnt_def)using path_component_eq apply fastforceusing path_component_sym path_component_trans by blastlemma path_component_eq_eq: "path_component S x = path_component S y \<longleftrightarrow> (x \<notin> S) \<and> (y \<notin> S) \<or> x \<in> S \<and> y \<in> S \<and> path_component S x y"apply (rule iffI, metis (no_types) path_component_mem(1) path_component_refl)apply (erule disjE, metis Collect_empty_eq_bot path_component_eq_empty)apply (rule ext)apply (metis path_component_trans path_component_sym)donelemma path_component_unique: assumes "x \<in> c" "c \<subseteq> S" "path_connected c" "\<And>c'. \<lbrakk>x \<in> c'; c' \<subseteq> S; path_connected c'\<rbrakk> \<Longrightarrow> c' \<subseteq> c" shows "path_component_set S x = c"apply (rule subset_antisym)using assmsapply (metis mem_Collect_eq subsetCE path_component_eq_eq path_component_subset path_connected_path_component)by (simp add: assms path_component_maximal)lemma path_component_intermediate_subset: "path_component_set u a \<subseteq> t \<and> t \<subseteq> u \<Longrightarrow> path_component_set t a = path_component_set u a"by (metis (no_types) path_component_mono path_component_path_component subset_antisym)lemma complement_path_component_Union: fixes x :: "'a :: topological_space" shows "S - path_component_set S x = \<Union>({path_component_set S y| y. y \<in> S} - {path_component_set S x})"proof - have *: "(\<And>x. x \<in> S - {a} \<Longrightarrow> disjnt a x) \<Longrightarrow> \<Union>S - a = \<Union>(S - {a})" for a::"'a set" and S by (auto simp: disjnt_def) have "\<And>y. y \<in> {path_component_set S x |x. x \<in> S} - {path_component_set S x} \<Longrightarrow> disjnt (path_component_set S x) y" using path_component_disjoint path_component_eq by fastforce then have "\<Union>{path_component_set S x |x. x \<in> S} - path_component_set S x = \<Union>({path_component_set S y |y. y \<in> S} - {path_component_set S x})" by (meson *) then show ?thesis by simpqedsubsection \<open>Sphere is path-connected\<close>lemma path_connected_punctured_universe: assumes "2 \<le> DIM('a::euclidean_space)" shows "path_connected (- {a::'a})"proof - let ?A = "{x::'a. \<exists>i\<in>Basis. x \<bullet> i < a \<bullet> i}" let ?B = "{x::'a. \<exists>i\<in>Basis. a \<bullet> i < x \<bullet> i}" have A: "path_connected ?A" unfolding Collect_bex_eq proof (rule path_connected_UNION) fix i :: 'a assume "i \<in> Basis" then show "(\<Sum>i\<in>Basis. (a \<bullet> i - 1)*\<^sub>R i) \<in> {x::'a. x \<bullet> i < a \<bullet> i}" by simp show "path_connected {x. x \<bullet> i < a \<bullet> i}" using convex_imp_path_connected [OF convex_halfspace_lt, of i "a \<bullet> i"] by (simp add: inner_commute) qed have B: "path_connected ?B" unfolding Collect_bex_eq proof (rule path_connected_UNION) fix i :: 'a assume "i \<in> Basis" then show "(\<Sum>i\<in>Basis. (a \<bullet> i + 1) *\<^sub>R i) \<in> {x::'a. a \<bullet> i < x \<bullet> i}" by simp show "path_connected {x. a \<bullet> i < x \<bullet> i}" using convex_imp_path_connected [OF convex_halfspace_gt, of "a \<bullet> i" i] by (simp add: inner_commute) qed obtain S :: "'a set" where "S \<subseteq> Basis" and "card S = Suc (Suc 0)" using ex_card[OF assms] by auto then obtain b0 b1 :: 'a where "b0 \<in> Basis" and "b1 \<in> Basis" and "b0 \<noteq> b1" unfolding card_Suc_eq by auto then have "a + b0 - b1 \<in> ?A \<inter> ?B" by (auto simp: inner_simps inner_Basis) then have "?A \<inter> ?B \<noteq> {}" by fast with A B have "path_connected (?A \<union> ?B)" by (rule path_connected_Un) also have "?A \<union> ?B = {x. \<exists>i\<in>Basis. x \<bullet> i \<noteq> a \<bullet> i}" unfolding neq_iff bex_disj_distrib Collect_disj_eq .. also have "\<dots> = {x. x \<noteq> a}" unfolding euclidean_eq_iff [where 'a='a] by (simp add: Bex_def) also have "\<dots> = - {a}" by auto finally show ?thesis .qedcorollary connected_punctured_universe: "2 \<le> DIM('N::euclidean_space) \<Longrightarrow> connected(- {a::'N})" by (simp add: path_connected_punctured_universe path_connected_imp_connected)proposition path_connected_sphere: fixes a :: "'a :: euclidean_space" assumes "2 \<le> DIM('a)" shows "path_connected(sphere a r)"proof (cases r "0::real" rule: linorder_cases) case less then show ?thesis by (simp add: path_connected_empty)next case equal then show ?thesis by (simp add: path_connected_singleton)next case greater then have eq: "(sphere (0::'a) r) = (\<lambda>x. (r / norm x) *\<^sub>R x) ` (- {0::'a})" by (force simp: image_iff split: if_split_asm) have "continuous_on (- {0::'a}) (\<lambda>x. (r / norm x) *\<^sub>R x)" by (intro continuous_intros) auto then have "path_connected ((\<lambda>x. (r / norm x) *\<^sub>R x) ` (- {0::'a}))" by (intro path_connected_continuous_image path_connected_punctured_universe assms) with eq have "path_connected (sphere (0::'a) r)" by auto then have "path_connected((+) a ` (sphere (0::'a) r))" by (simp add: path_connected_translation) then show ?thesis by (metis add.right_neutral sphere_translation)qedlemma connected_sphere: fixes a :: "'a :: euclidean_space" assumes "2 \<le> DIM('a)" shows "connected(sphere a r)" using path_connected_sphere [OF assms] by (simp add: path_connected_imp_connected)corollary path_connected_complement_bounded_convex: fixes s :: "'a :: euclidean_space set" assumes "bounded s" "convex s" and 2: "2 \<le> DIM('a)" shows "path_connected (- s)"proof (cases "s = {}") case True then show ?thesis using convex_imp_path_connected by autonext case False then obtain a where "a \<in> s" by auto { fix x y assume "x \<notin> s" "y \<notin> s" then have "x \<noteq> a" "y \<noteq> a" using \<open>a \<in> s\<close> by auto then have bxy: "bounded(insert x (insert y s))" by (simp add: \<open>bounded s\<close>) then obtain B::real where B: "0 < B" and Bx: "norm (a - x) < B" and By: "norm (a - y) < B" and "s \<subseteq> ball a B" using bounded_subset_ballD [OF bxy, of a] by (auto simp: dist_norm) define C where "C = B / norm(x - a)" { fix u assume u: "(1 - u) *\<^sub>R x + u *\<^sub>R (a + C *\<^sub>R (x - a)) \<in> s" and "0 \<le> u" "u \<le> 1" have CC: "1 \<le> 1 + (C - 1) * u" using \<open>x \<noteq> a\<close> \<open>0 \<le> u\<close> apply (simp add: C_def divide_simps norm_minus_commute) using Bx by auto have *: "\<And>v. (1 - u) *\<^sub>R x + u *\<^sub>R (a + v *\<^sub>R (x - a)) = a + (1 + (v - 1) * u) *\<^sub>R (x - a)" by (simp add: algebra_simps) have "a + ((1 / (1 + C * u - u)) *\<^sub>R x + ((u / (1 + C * u - u)) *\<^sub>R a + (C * u / (1 + C * u - u)) *\<^sub>R x)) = (1 + (u / (1 + C * u - u))) *\<^sub>R a + ((1 / (1 + C * u - u)) + (C * u / (1 + C * u - u))) *\<^sub>R x" by (simp add: algebra_simps) also have "\<dots> = (1 + (u / (1 + C * u - u))) *\<^sub>R a + (1 + (u / (1 + C * u - u))) *\<^sub>R x" using CC by (simp add: field_simps) also have "\<dots> = x + (1 + (u / (1 + C * u - u))) *\<^sub>R a + (u / (1 + C * u - u)) *\<^sub>R x" by (simp add: algebra_simps) also have "\<dots> = x + ((1 / (1 + C * u - u)) *\<^sub>R a + ((u / (1 + C * u - u)) *\<^sub>R x + (C * u / (1 + C * u - u)) *\<^sub>R a))" using CC by (simp add: field_simps) (simp add: add_divide_distrib scaleR_add_left) finally have xeq: "(1 - 1 / (1 + (C - 1) * u)) *\<^sub>R a + (1 / (1 + (C - 1) * u)) *\<^sub>R (a + (1 + (C - 1) * u) *\<^sub>R (x - a)) = x" by (simp add: algebra_simps) have False using \<open>convex s\<close> apply (simp add: convex_alt) apply (drule_tac x=a in bspec) apply (rule \<open>a \<in> s\<close>) apply (drule_tac x="a + (1 + (C - 1) * u) *\<^sub>R (x - a)" in bspec) using u apply (simp add: *) apply (drule_tac x="1 / (1 + (C - 1) * u)" in spec) using \<open>x \<noteq> a\<close> \<open>x \<notin> s\<close> \<open>0 \<le> u\<close> CC apply (auto simp: xeq) done } then have pcx: "path_component (- s) x (a + C *\<^sub>R (x - a))" by (force simp: closed_segment_def intro!: path_connected_linepath) define D where "D = B / norm(y - a)" \<comment> \<open>massive duplication with the proof above\<close> { fix u assume u: "(1 - u) *\<^sub>R y + u *\<^sub>R (a + D *\<^sub>R (y - a)) \<in> s" and "0 \<le> u" "u \<le> 1" have DD: "1 \<le> 1 + (D - 1) * u" using \<open>y \<noteq> a\<close> \<open>0 \<le> u\<close> apply (simp add: D_def divide_simps norm_minus_commute) using By by auto have *: "\<And>v. (1 - u) *\<^sub>R y + u *\<^sub>R (a + v *\<^sub>R (y - a)) = a + (1 + (v - 1) * u) *\<^sub>R (y - a)" by (simp add: algebra_simps) have "a + ((1 / (1 + D * u - u)) *\<^sub>R y + ((u / (1 + D * u - u)) *\<^sub>R a + (D * u / (1 + D * u - u)) *\<^sub>R y)) = (1 + (u / (1 + D * u - u))) *\<^sub>R a + ((1 / (1 + D * u - u)) + (D * u / (1 + D * u - u))) *\<^sub>R y" by (simp add: algebra_simps) also have "\<dots> = (1 + (u / (1 + D * u - u))) *\<^sub>R a + (1 + (u / (1 + D * u - u))) *\<^sub>R y" using DD by (simp add: field_simps) also have "\<dots> = y + (1 + (u / (1 + D * u - u))) *\<^sub>R a + (u / (1 + D * u - u)) *\<^sub>R y" by (simp add: algebra_simps) also have "\<dots> = y + ((1 / (1 + D * u - u)) *\<^sub>R a + ((u / (1 + D * u - u)) *\<^sub>R y + (D * u / (1 + D * u - u)) *\<^sub>R a))" using DD by (simp add: field_simps) (simp add: add_divide_distrib scaleR_add_left) finally have xeq: "(1 - 1 / (1 + (D - 1) * u)) *\<^sub>R a + (1 / (1 + (D - 1) * u)) *\<^sub>R (a + (1 + (D - 1) * u) *\<^sub>R (y - a)) = y" by (simp add: algebra_simps) have False using \<open>convex s\<close> apply (simp add: convex_alt) apply (drule_tac x=a in bspec) apply (rule \<open>a \<in> s\<close>) apply (drule_tac x="a + (1 + (D - 1) * u) *\<^sub>R (y - a)" in bspec) using u apply (simp add: *) apply (drule_tac x="1 / (1 + (D - 1) * u)" in spec) using \<open>y \<noteq> a\<close> \<open>y \<notin> s\<close> \<open>0 \<le> u\<close> DD apply (auto simp: xeq) done } then have pdy: "path_component (- s) y (a + D *\<^sub>R (y - a))" by (force simp: closed_segment_def intro!: path_connected_linepath) have pyx: "path_component (- s) (a + D *\<^sub>R (y - a)) (a + C *\<^sub>R (x - a))" apply (rule path_component_of_subset [of "sphere a B"]) using \<open>s \<subseteq> ball a B\<close> apply (force simp: ball_def dist_norm norm_minus_commute) apply (rule path_connected_sphere [OF 2, of a B, simplified path_connected_component, rule_format]) using \<open>x \<noteq> a\<close> using \<open>y \<noteq> a\<close> B apply (auto simp: dist_norm C_def D_def) done have "path_component (- s) x y" by (metis path_component_trans path_component_sym pcx pdy pyx) } then show ?thesis by (auto simp: path_connected_component)qedlemma connected_complement_bounded_convex: fixes s :: "'a :: euclidean_space set" assumes "bounded s" "convex s" "2 \<le> DIM('a)" shows "connected (- s)" using path_connected_complement_bounded_convex [OF assms] path_connected_imp_connected by blastlemma connected_diff_ball: fixes s :: "'a :: euclidean_space set" assumes "connected s" "cball a r \<subseteq> s" "2 \<le> DIM('a)" shows "connected (s - ball a r)" apply (rule connected_diff_open_from_closed [OF ball_subset_cball]) using assms connected_sphere apply (auto simp: cball_diff_eq_sphere dist_norm) doneproposition connected_open_delete: assumes "open S" "connected S" and 2: "2 \<le> DIM('N::euclidean_space)" shows "connected(S - {a::'N})"proof (cases "a \<in> S") case True with \<open>open S\<close> obtain \<epsilon> where "\<epsilon> > 0" and \<epsilon>: "cball a \<epsilon> \<subseteq> S" using open_contains_cball_eq by blast have "dist a (a + \<epsilon> *\<^sub>R (SOME i. i \<in> Basis)) = \<epsilon>" by (simp add: dist_norm SOME_Basis \<open>0 < \<epsilon>\<close> less_imp_le) with \<epsilon> have "\<Inter>{S - ball a r |r. 0 < r \<and> r < \<epsilon>} \<subseteq> {} \<Longrightarrow> False" apply (drule_tac c="a + scaleR (\<epsilon>) ((SOME i. i \<in> Basis))" in subsetD) by auto then have nonemp: "(\<Inter>{S - ball a r |r. 0 < r \<and> r < \<epsilon>}) = {} \<Longrightarrow> False" by auto have con: "\<And>r. r < \<epsilon> \<Longrightarrow> connected (S - ball a r)" using \<epsilon> by (force intro: connected_diff_ball [OF \<open>connected S\<close> _ 2]) have "x \<in> \<Union>{S - ball a r |r. 0 < r \<and> r < \<epsilon>}" if "x \<in> S - {a}" for x apply (rule UnionI [of "S - ball a (min \<epsilon> (dist a x) / 2)"]) using that \<open>0 < \<epsilon>\<close> apply simp_all apply (rule_tac x="min \<epsilon> (dist a x) / 2" in exI) apply auto done then have "S - {a} = \<Union>{S - ball a r | r. 0 < r \<and> r < \<epsilon>}" by auto then show ?thesis by (auto intro: connected_Union con dest!: nonemp)next case False then show ?thesis by (simp add: \<open>connected S\<close>)qedcorollary path_connected_open_delete: assumes "open S" "connected S" and 2: "2 \<le> DIM('N::euclidean_space)" shows "path_connected(S - {a::'N})"by (simp add: assms connected_open_delete connected_open_path_connected open_delete)corollary path_connected_punctured_ball: "2 \<le> DIM('N::euclidean_space) \<Longrightarrow> path_connected(ball a r - {a::'N})"by (simp add: path_connected_open_delete)corollary connected_punctured_ball: "2 \<le> DIM('N::euclidean_space) \<Longrightarrow> connected(ball a r - {a::'N})"by (simp add: connected_open_delete)corollary connected_open_delete_finite: fixes S T::"'a::euclidean_space set" assumes S: "open S" "connected S" and 2: "2 \<le> DIM('a)" and "finite T" shows "connected(S - T)" using \<open>finite T\<close> Sproof (induct T) case empty show ?case using \<open>connected S\<close> by simpnext case (insert x F) then have "connected (S-F)" by auto moreover have "open (S - F)" using finite_imp_closed[OF \<open>finite F\<close>] \<open>open S\<close> by auto ultimately have "connected (S - F - {x})" using connected_open_delete[OF _ _ 2] by auto thus ?case by (metis Diff_insert)qedlemma sphere_1D_doubleton_zero: assumes 1: "DIM('a) = 1" and "r > 0" obtains x y::"'a::euclidean_space" where "sphere 0 r = {x,y} \<and> dist x y = 2*r"proof - obtain b::'a where b: "Basis = {b}" using 1 card_1_singletonE by blast show ?thesis proof (intro that conjI) have "x = norm x *\<^sub>R b \<or> x = - norm x *\<^sub>R b" if "r = norm x" for x proof - have xb: "(x \<bullet> b) *\<^sub>R b = x" using euclidean_representation [of x, unfolded b] by force then have "norm ((x \<bullet> b) *\<^sub>R b) = norm x" by simp with b have "\<bar>x \<bullet> b\<bar> = norm x" using norm_Basis by (simp add: b) with xb show ?thesis apply (simp add: abs_if split: if_split_asm) apply (metis add.inverse_inverse real_vector.scale_minus_left xb) done qed with \<open>r > 0\<close> b show "sphere 0 r = {r *\<^sub>R b, - r *\<^sub>R b}" by (force simp: sphere_def dist_norm) have "dist (r *\<^sub>R b) (- r *\<^sub>R b) = norm (r *\<^sub>R b + r *\<^sub>R b)" by (simp add: dist_norm) also have "\<dots> = norm ((2*r) *\<^sub>R b)" by (metis mult_2 scaleR_add_left) also have "\<dots> = 2*r" using \<open>r > 0\<close> b norm_Basis by fastforce finally show "dist (r *\<^sub>R b) (- r *\<^sub>R b) = 2*r" . qedqedlemma sphere_1D_doubleton: fixes a :: "'a :: euclidean_space" assumes "DIM('a) = 1" and "r > 0" obtains x y where "sphere a r = {x,y} \<and> dist x y = 2*r"proof - have "sphere a r = (+) a ` sphere 0 r" by (metis add.right_neutral sphere_translation) then show ?thesis using sphere_1D_doubleton_zero [OF assms] by (metis (mono_tags, lifting) dist_add_cancel image_empty image_insert that)qedlemma psubset_sphere_Compl_connected: fixes S :: "'a::euclidean_space set" assumes S: "S \<subset> sphere a r" and "0 < r" and 2: "2 \<le> DIM('a)" shows "connected(- S)"proof - have "S \<subseteq> sphere a r" using S by blast obtain b where "dist a b = r" and "b \<notin> S" using S mem_sphere by blast have CS: "- S = {x. dist a x \<le> r \<and> (x \<notin> S)} \<union> {x. r \<le> dist a x \<and> (x \<notin> S)}" by auto have "{x. dist a x \<le> r \<and> x \<notin> S} \<inter> {x. r \<le> dist a x \<and> x \<notin> S} \<noteq> {}" using \<open>b \<notin> S\<close> \<open>dist a b = r\<close> by blast moreover have "connected {x. dist a x \<le> r \<and> x \<notin> S}" apply (rule connected_intermediate_closure [of "ball a r"]) using assms by auto moreover have "connected {x. r \<le> dist a x \<and> x \<notin> S}" apply (rule connected_intermediate_closure [of "- cball a r"]) using assms apply (auto intro: connected_complement_bounded_convex) apply (metis ComplI interior_cball interior_closure mem_ball not_less) done ultimately show ?thesis by (simp add: CS connected_Un)qedsubsection\<open>Every annulus is a connected set\<close>lemma path_connected_2DIM_I: fixes a :: "'N::euclidean_space" assumes 2: "2 \<le> DIM('N)" and pc: "path_connected {r. 0 \<le> r \<and> P r}" shows "path_connected {x. P(norm(x - a))}"proof - have "{x. P(norm(x - a))} = (+) a ` {x. P(norm x)}" by force moreover have "path_connected {x::'N. P(norm x)}" proof - let ?D = "{x. 0 \<le> x \<and> P x} \<times> sphere (0::'N) 1" have "x \<in> (\<lambda>z. fst z *\<^sub>R snd z) ` ?D" if "P (norm x)" for x::'N proof (cases "x=0") case True with that show ?thesis apply (simp add: image_iff) apply (rule_tac x=0 in exI, simp) using vector_choose_size zero_le_one by blast next case False with that show ?thesis by (rule_tac x="(norm x, x /\<^sub>R norm x)" in image_eqI) auto qed then have *: "{x::'N. P(norm x)} = (\<lambda>z. fst z *\<^sub>R snd z) ` ?D" by auto have "continuous_on ?D (\<lambda>z:: real\<times>'N. fst z *\<^sub>R snd z)" by (intro continuous_intros) moreover have "path_connected ?D" by (metis path_connected_Times [OF pc] path_connected_sphere 2) ultimately show ?thesis apply (subst *) apply (rule path_connected_continuous_image, auto) done qed ultimately show ?thesis using path_connected_translation by metisqedproposition path_connected_annulus: fixes a :: "'N::euclidean_space" assumes "2 \<le> DIM('N)" shows "path_connected {x. r1 < norm(x - a) \<and> norm(x - a) < r2}" "path_connected {x. r1 < norm(x - a) \<and> norm(x - a) \<le> r2}" "path_connected {x. r1 \<le> norm(x - a) \<and> norm(x - a) < r2}" "path_connected {x. r1 \<le> norm(x - a) \<and> norm(x - a) \<le> r2}" by (auto simp: is_interval_def intro!: is_interval_convex convex_imp_path_connected path_connected_2DIM_I [OF assms])proposition connected_annulus: fixes a :: "'N::euclidean_space" assumes "2 \<le> DIM('N::euclidean_space)" shows "connected {x. r1 < norm(x - a) \<and> norm(x - a) < r2}" "connected {x. r1 < norm(x - a) \<and> norm(x - a) \<le> r2}" "connected {x. r1 \<le> norm(x - a) \<and> norm(x - a) < r2}" "connected {x. r1 \<le> norm(x - a) \<and> norm(x - a) \<le> r2}" by (auto simp: path_connected_annulus [OF assms] path_connected_imp_connected)subsection%unimportant\<open>Relations between components and path components\<close>lemma open_connected_component: fixes s :: "'a::real_normed_vector set" shows "open s \<Longrightarrow> open (connected_component_set s x)" apply (simp add: open_contains_ball, clarify) apply (rename_tac y) apply (drule_tac x=y in bspec) apply (simp add: connected_component_in, clarify) apply (rule_tac x=e in exI) by (metis mem_Collect_eq connected_component_eq connected_component_maximal centre_in_ball connected_ball)corollary open_components: fixes s :: "'a::real_normed_vector set" shows "\<lbrakk>open u; s \<in> components u\<rbrakk> \<Longrightarrow> open s" by (simp add: components_iff) (metis open_connected_component)lemma in_closure_connected_component: fixes s :: "'a::real_normed_vector set" assumes x: "x \<in> s" and s: "open s" shows "x \<in> closure (connected_component_set s y) \<longleftrightarrow> x \<in> connected_component_set s y"proof - { assume "x \<in> closure (connected_component_set s y)" moreover have "x \<in> connected_component_set s x" using x by simp ultimately have "x \<in> connected_component_set s y" using s by (meson Compl_disjoint closure_iff_nhds_not_empty connected_component_disjoint disjoint_eq_subset_Compl open_connected_component) } then show ?thesis by (auto simp: closure_def)qedlemma connected_disjoint_Union_open_pick: assumes "pairwise disjnt B" "\<And>S. S \<in> A \<Longrightarrow> connected S \<and> S \<noteq> {}" "\<And>S. S \<in> B \<Longrightarrow> open S" "\<Union>A \<subseteq> \<Union>B" "S \<in> A" obtains T where "T \<in> B" "S \<subseteq> T" "S \<inter> \<Union>(B - {T}) = {}"proof - have "S \<subseteq> \<Union>B" "connected S" "S \<noteq> {}" using assms \<open>S \<in> A\<close> by blast+ then obtain T where "T \<in> B" "S \<inter> T \<noteq> {}" by (metis Sup_inf_eq_bot_iff inf.absorb_iff2 inf_commute) have 1: "open T" by (simp add: \<open>T \<in> B\<close> assms) have 2: "open (\<Union>(B-{T}))" using assms by blast have 3: "S \<subseteq> T \<union> \<Union>(B - {T})" using \<open>S \<subseteq> \<Union>B\<close> by blast have "T \<inter> \<Union>(B - {T}) = {}" using \<open>T \<in> B\<close> \<open>pairwise disjnt B\<close> by (auto simp: pairwise_def disjnt_def) then have 4: "T \<inter> \<Union>(B - {T}) \<inter> S = {}" by auto from connectedD [OF \<open>connected S\<close> 1 2 3 4] have "S \<inter> \<Union>(B-{T}) = {}" by (auto simp: Int_commute \<open>S \<inter> T \<noteq> {}\<close>) with \<open>T \<in> B\<close> have "S \<subseteq> T" using "3" by auto show ?thesis using \<open>S \<inter> \<Union>(B - {T}) = {}\<close> \<open>S \<subseteq> T\<close> \<open>T \<in> B\<close> that by autoqedlemma connected_disjoint_Union_open_subset: assumes A: "pairwise disjnt A" and B: "pairwise disjnt B" and SA: "\<And>S. S \<in> A \<Longrightarrow> open S \<and> connected S \<and> S \<noteq> {}" and SB: "\<And>S. S \<in> B \<Longrightarrow> open S \<and> connected S \<and> S \<noteq> {}" and eq [simp]: "\<Union>A = \<Union>B" shows "A \<subseteq> B"proof fix S assume "S \<in> A" obtain T where "T \<in> B" "S \<subseteq> T" "S \<inter> \<Union>(B - {T}) = {}" apply (rule connected_disjoint_Union_open_pick [OF B, of A]) using SA SB \<open>S \<in> A\<close> by auto moreover obtain S' where "S' \<in> A" "T \<subseteq> S'" "T \<inter> \<Union>(A - {S'}) = {}" apply (rule connected_disjoint_Union_open_pick [OF A, of B]) using SA SB \<open>T \<in> B\<close> by auto ultimately have "S' = S" by (metis A Int_subset_iff SA \<open>S \<in> A\<close> disjnt_def inf.orderE pairwise_def) with \<open>T \<subseteq> S'\<close> have "T \<subseteq> S" by simp with \<open>S \<subseteq> T\<close> have "S = T" by blast with \<open>T \<in> B\<close> show "S \<in> B" by simpqedlemma connected_disjoint_Union_open_unique: assumes A: "pairwise disjnt A" and B: "pairwise disjnt B" and SA: "\<And>S. S \<in> A \<Longrightarrow> open S \<and> connected S \<and> S \<noteq> {}" and SB: "\<And>S. S \<in> B \<Longrightarrow> open S \<and> connected S \<and> S \<noteq> {}" and eq [simp]: "\<Union>A = \<Union>B" shows "A = B"by (rule subset_antisym; metis connected_disjoint_Union_open_subset assms)proposition components_open_unique: fixes S :: "'a::real_normed_vector set" assumes "pairwise disjnt A" "\<Union>A = S" "\<And>X. X \<in> A \<Longrightarrow> open X \<and> connected X \<and> X \<noteq> {}" shows "components S = A"proof - have "open S" using assms by blast show ?thesis apply (rule connected_disjoint_Union_open_unique) apply (simp add: components_eq disjnt_def pairwise_def) using \<open>open S\<close> apply (simp_all add: assms open_components in_components_connected in_components_nonempty) doneqedsubsection%unimportant\<open>Existence of unbounded components\<close>lemma cobounded_unbounded_component: fixes s :: "'a :: euclidean_space set" assumes "bounded (-s)" shows "\<exists>x. x \<in> s \<and> \<not> bounded (connected_component_set s x)"proof - obtain i::'a where i: "i \<in> Basis" using nonempty_Basis by blast obtain B where B: "B>0" "-s \<subseteq> ball 0 B" using bounded_subset_ballD [OF assms, of 0] by auto then have *: "\<And>x. B \<le> norm x \<Longrightarrow> x \<in> s" by (force simp: ball_def dist_norm) have unbounded_inner: "\<not> bounded {x. inner i x \<ge> B}" apply (auto simp: bounded_def dist_norm) apply (rule_tac x="x + (max B e + 1 + \<bar>i \<bullet> x\<bar>) *\<^sub>R i" in exI) apply simp using i apply (auto simp: algebra_simps) done have **: "{x. B \<le> i \<bullet> x} \<subseteq> connected_component_set s (B *\<^sub>R i)" apply (rule connected_component_maximal) apply (auto simp: i intro: convex_connected convex_halfspace_ge [of B]) apply (rule *) apply (rule order_trans [OF _ Basis_le_norm [OF i]]) by (simp add: inner_commute) have "B *\<^sub>R i \<in> s" by (rule *) (simp add: norm_Basis [OF i]) then show ?thesis apply (rule_tac x="B *\<^sub>R i" in exI, clarify) apply (frule bounded_subset [of _ "{x. B \<le> i \<bullet> x}", OF _ **]) using unbounded_inner apply blast doneqedlemma cobounded_unique_unbounded_component: fixes s :: "'a :: euclidean_space set" assumes bs: "bounded (-s)" and "2 \<le> DIM('a)" and bo: "\<not> bounded(connected_component_set s x)" "\<not> bounded(connected_component_set s y)" shows "connected_component_set s x = connected_component_set s y"proof - obtain i::'a where i: "i \<in> Basis" using nonempty_Basis by blast obtain B where B: "B>0" "-s \<subseteq> ball 0 B" using bounded_subset_ballD [OF bs, of 0] by auto then have *: "\<And>x. B \<le> norm x \<Longrightarrow> x \<in> s" by (force simp: ball_def dist_norm) have ccb: "connected (- ball 0 B :: 'a set)" using assms by (auto intro: connected_complement_bounded_convex) obtain x' where x': "connected_component s x x'" "norm x' > B" using bo [unfolded bounded_def dist_norm, simplified, rule_format] by (metis diff_zero norm_minus_commute not_less) obtain y' where y': "connected_component s y y'" "norm y' > B" using bo [unfolded bounded_def dist_norm, simplified, rule_format] by (metis diff_zero norm_minus_commute not_less) have x'y': "connected_component s x' y'" apply (simp add: connected_component_def) apply (rule_tac x="- ball 0 B" in exI) using x' y' apply (auto simp: ccb dist_norm *) done show ?thesis apply (rule connected_component_eq) using x' y' x'y' by (metis (no_types, lifting) connected_component_eq_empty connected_component_eq_eq connected_component_idemp connected_component_in)qedlemma cobounded_unbounded_components: fixes s :: "'a :: euclidean_space set" shows "bounded (-s) \<Longrightarrow> \<exists>c. c \<in> components s \<and> \<not>bounded c" by (metis cobounded_unbounded_component components_def imageI)lemma cobounded_unique_unbounded_components: fixes s :: "'a :: euclidean_space set" shows "\<lbrakk>bounded (- s); c \<in> components s; \<not> bounded c; c' \<in> components s; \<not> bounded c'; 2 \<le> DIM('a)\<rbrakk> \<Longrightarrow> c' = c" unfolding components_iff by (metis cobounded_unique_unbounded_component)lemma cobounded_has_bounded_component: fixes S :: "'a :: euclidean_space set" assumes "bounded (- S)" "\<not> connected S" "2 \<le> DIM('a)" obtains C where "C \<in> components S" "bounded C" by (meson cobounded_unique_unbounded_components connected_eq_connected_components_eq assms)subsection\<open>The \<open>inside\<close> and \<open>outside\<close> of a Set\<close>text%important\<open>The inside comprises the points in a bounded connected component of the set's complement. The outside comprises the points in unbounded connected component of the complement.\<close>definition%important inside where "inside S \<equiv> {x. (x \<notin> S) \<and> bounded(connected_component_set ( - S) x)}"definition%important outside where "outside S \<equiv> -S \<inter> {x. \<not> bounded(connected_component_set (- S) x)}"lemma outside: "outside S = {x. \<not> bounded(connected_component_set (- S) x)}" by (auto simp: outside_def) (metis Compl_iff bounded_empty connected_component_eq_empty)lemma inside_no_overlap [simp]: "inside S \<inter> S = {}" by (auto simp: inside_def)lemma outside_no_overlap [simp]: "outside S \<inter> S = {}" by (auto simp: outside_def)lemma inside_Int_outside [simp]: "inside S \<inter> outside S = {}" by (auto simp: inside_def outside_def)lemma inside_Un_outside [simp]: "inside S \<union> outside S = (- S)" by (auto simp: inside_def outside_def)lemma inside_eq_outside: "inside S = outside S \<longleftrightarrow> S = UNIV" by (auto simp: inside_def outside_def)lemma inside_outside: "inside S = (- (S \<union> outside S))" by (force simp: inside_def outside)lemma outside_inside: "outside S = (- (S \<union> inside S))" by (auto simp: inside_outside) (metis IntI equals0D outside_no_overlap)lemma union_with_inside: "S \<union> inside S = - outside S" by (auto simp: inside_outside) (simp add: outside_inside)lemma union_with_outside: "S \<union> outside S = - inside S" by (simp add: inside_outside)lemma outside_mono: "S \<subseteq> T \<Longrightarrow> outside T \<subseteq> outside S" by (auto simp: outside bounded_subset connected_component_mono)lemma inside_mono: "S \<subseteq> T \<Longrightarrow> inside S - T \<subseteq> inside T" by (auto simp: inside_def bounded_subset connected_component_mono)lemma segment_bound_lemma: fixes u::real assumes "x \<ge> B" "y \<ge> B" "0 \<le> u" "u \<le> 1" shows "(1 - u) * x + u * y \<ge> B"proof - obtain dx dy where "dx \<ge> 0" "dy \<ge> 0" "x = B + dx" "y = B + dy" using assms by auto (metis add.commute diff_add_cancel) with \<open>0 \<le> u\<close> \<open>u \<le> 1\<close> show ?thesis by (simp add: add_increasing2 mult_left_le field_simps)qedlemma cobounded_outside: fixes S :: "'a :: real_normed_vector set" assumes "bounded S" shows "bounded (- outside S)"proof - obtain B where B: "B>0" "S \<subseteq> ball 0 B" using bounded_subset_ballD [OF assms, of 0] by auto { fix x::'a and C::real assume Bno: "B \<le> norm x" and C: "0 < C" have "\<exists>y. connected_component (- S) x y \<and> norm y > C" proof (cases "x = 0") case True with B Bno show ?thesis by force next case False with B C have "closed_segment x (((B + C) / norm x) *\<^sub>R x) \<subseteq> - ball 0 B" apply (clarsimp simp add: closed_segment_def ball_def dist_norm real_vector_class.scaleR_add_left [symmetric] divide_simps) using segment_bound_lemma [of B "norm x" "B+C" ] Bno by (meson le_add_same_cancel1 less_eq_real_def not_le) also have "... \<subseteq> -S" by (simp add: B) finally have "\<exists>T. connected T \<and> T \<subseteq> - S \<and> x \<in> T \<and> ((B + C) / norm x) *\<^sub>R x \<in> T" by (rule_tac x="closed_segment x (((B+C)/norm x) *\<^sub>R x)" in exI) simp with False B show ?thesis by (rule_tac x="((B+C)/norm x) *\<^sub>R x" in exI) (simp add: connected_component_def) qed } then show ?thesis apply (simp add: outside_def assms) apply (rule bounded_subset [OF bounded_ball [of 0 B]]) apply (force simp: dist_norm not_less bounded_pos) doneqedlemma unbounded_outside: fixes S :: "'a::{real_normed_vector, perfect_space} set" shows "bounded S \<Longrightarrow> \<not> bounded(outside S)" using cobounded_imp_unbounded cobounded_outside by blastlemma bounded_inside: fixes S :: "'a::{real_normed_vector, perfect_space} set" shows "bounded S \<Longrightarrow> bounded(inside S)" by (simp add: bounded_Int cobounded_outside inside_outside)lemma connected_outside: fixes S :: "'a::euclidean_space set" assumes "bounded S" "2 \<le> DIM('a)" shows "connected(outside S)" apply (clarsimp simp add: connected_iff_connected_component outside) apply (rule_tac s="connected_component_set (- S) x" in connected_component_of_subset) apply (metis (no_types) assms cobounded_unbounded_component cobounded_unique_unbounded_component connected_component_eq_eq connected_component_idemp double_complement mem_Collect_eq) apply clarify apply (metis connected_component_eq_eq connected_component_in) donelemma outside_connected_component_lt: "outside S = {x. \<forall>B. \<exists>y. B < norm(y) \<and> connected_component (- S) x y}"apply (auto simp: outside bounded_def dist_norm)apply (metis diff_0 norm_minus_cancel not_less)by (metis less_diff_eq norm_minus_commute norm_triangle_ineq2 order.trans pinf(6))lemma outside_connected_component_le: "outside S = {x. \<forall>B. \<exists>y. B \<le> norm(y) \<and> connected_component (- S) x y}"apply (simp add: outside_connected_component_lt)apply (simp add: Set.set_eq_iff)by (meson gt_ex leD le_less_linear less_imp_le order.trans)lemma not_outside_connected_component_lt: fixes S :: "'a::euclidean_space set" assumes S: "bounded S" and "2 \<le> DIM('a)" shows "- (outside S) = {x. \<forall>B. \<exists>y. B < norm(y) \<and> \<not> connected_component (- S) x y}"proof - obtain B::real where B: "0 < B" and Bno: "\<And>x. x \<in> S \<Longrightarrow> norm x \<le> B" using S [simplified bounded_pos] by auto { fix y::'a and z::'a assume yz: "B < norm z" "B < norm y" have "connected_component (- cball 0 B) y z" apply (rule connected_componentI [OF _ subset_refl]) apply (rule connected_complement_bounded_convex) using assms yz by (auto simp: dist_norm) then have "connected_component (- S) y z" apply (rule connected_component_of_subset) apply (metis Bno Compl_anti_mono mem_cball_0 subset_iff) done } note cyz = this show ?thesis apply (auto simp: outside) apply (metis Compl_iff bounded_iff cobounded_imp_unbounded mem_Collect_eq not_le) apply (simp add: bounded_pos) by (metis B connected_component_trans cyz not_le)qedlemma not_outside_connected_component_le: fixes S :: "'a::euclidean_space set" assumes S: "bounded S" "2 \<le> DIM('a)" shows "- (outside S) = {x. \<forall>B. \<exists>y. B \<le> norm(y) \<and> \<not> connected_component (- S) x y}"apply (auto intro: less_imp_le simp: not_outside_connected_component_lt [OF assms])by (meson gt_ex less_le_trans)lemma inside_connected_component_lt: fixes S :: "'a::euclidean_space set" assumes S: "bounded S" "2 \<le> DIM('a)" shows "inside S = {x. (x \<notin> S) \<and> (\<forall>B. \<exists>y. B < norm(y) \<and> \<not> connected_component (- S) x y)}" by (auto simp: inside_outside not_outside_connected_component_lt [OF assms])lemma inside_connected_component_le: fixes S :: "'a::euclidean_space set" assumes S: "bounded S" "2 \<le> DIM('a)" shows "inside S = {x. (x \<notin> S) \<and> (\<forall>B. \<exists>y. B \<le> norm(y) \<and> \<not> connected_component (- S) x y)}" by (auto simp: inside_outside not_outside_connected_component_le [OF assms])lemma inside_subset: assumes "connected U" and "\<not> bounded U" and "T \<union> U = - S" shows "inside S \<subseteq> T"apply (auto simp: inside_def)by (metis bounded_subset [of "connected_component_set (- S) _"] connected_component_maximal Compl_iff Un_iff assms subsetI)lemma frontier_not_empty: fixes S :: "'a :: real_normed_vector set" shows "\<lbrakk>S \<noteq> {}; S \<noteq> UNIV\<rbrakk> \<Longrightarrow> frontier S \<noteq> {}" using connected_Int_frontier [of UNIV S] by autolemma frontier_eq_empty: fixes S :: "'a :: real_normed_vector set" shows "frontier S = {} \<longleftrightarrow> S = {} \<or> S = UNIV"using frontier_UNIV frontier_empty frontier_not_empty by blastlemma frontier_of_connected_component_subset: fixes S :: "'a::real_normed_vector set" shows "frontier(connected_component_set S x) \<subseteq> frontier S"proof - { fix y assume y1: "y \<in> closure (connected_component_set S x)" and y2: "y \<notin> interior (connected_component_set S x)" have "y \<in> closure S" using y1 closure_mono connected_component_subset by blast moreover have "z \<in> interior (connected_component_set S x)" if "0 < e" "ball y e \<subseteq> interior S" "dist y z < e" for e z proof - have "ball y e \<subseteq> connected_component_set S y" apply (rule connected_component_maximal) using that interior_subset mem_ball apply auto done then show ?thesis using y1 apply (simp add: closure_approachable open_contains_ball_eq [OF open_interior]) by (metis connected_component_eq dist_commute mem_Collect_eq mem_ball mem_interior subsetD \<open>0 < e\<close> y2) qed then have "y \<notin> interior S" using y2 by (force simp: open_contains_ball_eq [OF open_interior]) ultimately have "y \<in> frontier S" by (auto simp: frontier_def) } then show ?thesis by (auto simp: frontier_def)qedlemma frontier_Union_subset_closure: fixes F :: "'a::real_normed_vector set set" shows "frontier(\<Union>F) \<subseteq> closure(\<Union>t \<in> F. frontier t)"proof - have "\<exists>y\<in>F. \<exists>y\<in>frontier y. dist y x < e" if "T \<in> F" "y \<in> T" "dist y x < e" "x \<notin> interior (\<Union>F)" "0 < e" for x y e T proof (cases "x \<in> T") case True with that show ?thesis by (metis Diff_iff Sup_upper closure_subset contra_subsetD dist_self frontier_def interior_mono) next case False have 1: "closed_segment x y \<inter> T \<noteq> {}" using \<open>y \<in> T\<close> by blast have 2: "closed_segment x y - T \<noteq> {}" using False by blast obtain c where "c \<in> closed_segment x y" "c \<in> frontier T" using False connected_Int_frontier [OF connected_segment 1 2] by auto then show ?thesis proof - have "norm (y - x) < e" by (metis dist_norm \<open>dist y x < e\<close>) moreover have "norm (c - x) \<le> norm (y - x)" by (simp add: \<open>c \<in> closed_segment x y\<close> segment_bound(1)) ultimately have "norm (c - x) < e" by linarith then show ?thesis by (metis (no_types) \<open>c \<in> frontier T\<close> dist_norm that(1)) qed qed then show ?thesis by (fastforce simp add: frontier_def closure_approachable)qedlemma frontier_Union_subset: fixes F :: "'a::real_normed_vector set set" shows "finite F \<Longrightarrow> frontier(\<Union>F) \<subseteq> (\<Union>t \<in> F. frontier t)"by (rule order_trans [OF frontier_Union_subset_closure]) (auto simp: closure_subset_eq)lemma frontier_of_components_subset: fixes S :: "'a::real_normed_vector set" shows "C \<in> components S \<Longrightarrow> frontier C \<subseteq> frontier S" by (metis Path_Connected.frontier_of_connected_component_subset components_iff)lemma frontier_of_components_closed_complement: fixes S :: "'a::real_normed_vector set" shows "\<lbrakk>closed S; C \<in> components (- S)\<rbrakk> \<Longrightarrow> frontier C \<subseteq> S" using frontier_complement frontier_of_components_subset frontier_subset_eq by blastlemma frontier_minimal_separating_closed: fixes S :: "'a::real_normed_vector set" assumes "closed S" and nconn: "\<not> connected(- S)" and C: "C \<in> components (- S)" and conn: "\<And>T. \<lbrakk>closed T; T \<subset> S\<rbrakk> \<Longrightarrow> connected(- T)" shows "frontier C = S"proof (rule ccontr) assume "frontier C \<noteq> S" then have "frontier C \<subset> S" using frontier_of_components_closed_complement [OF \<open>closed S\<close> C] by blast then have "connected(- (frontier C))" by (simp add: conn) have "\<not> connected(- (frontier C))" unfolding connected_def not_not proof (intro exI conjI) show "open C" using C \<open>closed S\<close> open_components by blast show "open (- closure C)" by blast show "C \<inter> - closure C \<inter> - frontier C = {}" using closure_subset by blast show "C \<inter> - frontier C \<noteq> {}" using C \<open>open C\<close> components_eq frontier_disjoint_eq by fastforce show "- frontier C \<subseteq> C \<union> - closure C" by (simp add: \<open>open C\<close> closed_Compl frontier_closures) then show "- closure C \<inter> - frontier C \<noteq> {}" by (metis (no_types, lifting) C Compl_subset_Compl_iff \<open>frontier C \<subset> S\<close> compl_sup frontier_closures in_components_subset psubsetE sup.absorb_iff2 sup.boundedE sup_bot.right_neutral sup_inf_absorb) qed then show False using \<open>connected (- frontier C)\<close> by blastqedlemma connected_component_UNIV [simp]: fixes x :: "'a::real_normed_vector" shows "connected_component_set UNIV x = UNIV"using connected_iff_eq_connected_component_set [of "UNIV::'a set"] connected_UNIVby autolemma connected_component_eq_UNIV: fixes x :: "'a::real_normed_vector" shows "connected_component_set s x = UNIV \<longleftrightarrow> s = UNIV" using connected_component_in connected_component_UNIV by blastlemma components_UNIV [simp]: "components UNIV = {UNIV :: 'a::real_normed_vector set}" by (auto simp: components_eq_sing_iff)lemma interior_inside_frontier: fixes s :: "'a::real_normed_vector set" assumes "bounded s" shows "interior s \<subseteq> inside (frontier s)"proof - { fix x y assume x: "x \<in> interior s" and y: "y \<notin> s" and cc: "connected_component (- frontier s) x y" have "connected_component_set (- frontier s) x \<inter> frontier s \<noteq> {}" apply (rule connected_Int_frontier, simp) apply (metis IntI cc connected_component_in connected_component_refl empty_iff interiorE mem_Collect_eq rev_subsetD x) using y cc by blast then have "bounded (connected_component_set (- frontier s) x)" using connected_component_in by auto } then show ?thesis apply (auto simp: inside_def frontier_def) apply (rule classical) apply (rule bounded_subset [OF assms], blast) doneqedlemma inside_empty [simp]: "inside {} = ({} :: 'a :: {real_normed_vector, perfect_space} set)" by (simp add: inside_def connected_component_UNIV)lemma outside_empty [simp]: "outside {} = (UNIV :: 'a :: {real_normed_vector, perfect_space} set)"using inside_empty inside_Un_outside by blastlemma inside_same_component: "\<lbrakk>connected_component (- s) x y; x \<in> inside s\<rbrakk> \<Longrightarrow> y \<in> inside s" using connected_component_eq connected_component_in by (fastforce simp add: inside_def)lemma outside_same_component: "\<lbrakk>connected_component (- s) x y; x \<in> outside s\<rbrakk> \<Longrightarrow> y \<in> outside s" using connected_component_eq connected_component_in by (fastforce simp add: outside_def)lemma convex_in_outside: fixes s :: "'a :: {real_normed_vector, perfect_space} set" assumes s: "convex s" and z: "z \<notin> s" shows "z \<in> outside s"proof (cases "s={}") case True then show ?thesis by simpnext case False then obtain a where "a \<in> s" by blast with z have zna: "z \<noteq> a" by auto { assume "bounded (connected_component_set (- s) z)" with bounded_pos_less obtain B where "B>0" and B: "\<And>x. connected_component (- s) z x \<Longrightarrow> norm x < B" by (metis mem_Collect_eq) define C where "C = (B + 1 + norm z) / norm (z-a)" have "C > 0" using \<open>0 < B\<close> zna by (simp add: C_def divide_simps add_strict_increasing) have "\<bar>norm (z + C *\<^sub>R (z-a)) - norm (C *\<^sub>R (z-a))\<bar> \<le> norm z" by (metis add_diff_cancel norm_triangle_ineq3) moreover have "norm (C *\<^sub>R (z-a)) > norm z + B" using zna \<open>B>0\<close> by (simp add: C_def le_max_iff_disj field_simps) ultimately have C: "norm (z + C *\<^sub>R (z-a)) > B" by linarith { fix u::real assume u: "0\<le>u" "u\<le>1" and ins: "(1 - u) *\<^sub>R z + u *\<^sub>R (z + C *\<^sub>R (z - a)) \<in> s" then have Cpos: "1 + u * C > 0" by (meson \<open>0 < C\<close> add_pos_nonneg less_eq_real_def zero_le_mult_iff zero_less_one) then have *: "(1 / (1 + u * C)) *\<^sub>R z + (u * C / (1 + u * C)) *\<^sub>R z = z" by (simp add: scaleR_add_left [symmetric] divide_simps) then have False using convexD_alt [OF s \<open>a \<in> s\<close> ins, of "1/(u*C + 1)"] \<open>C>0\<close> \<open>z \<notin> s\<close> Cpos u by (simp add: * divide_simps algebra_simps) } note contra = this have "connected_component (- s) z (z + C *\<^sub>R (z-a))" apply (rule connected_componentI [OF connected_segment [of z "z + C *\<^sub>R (z-a)"]]) apply (simp add: closed_segment_def) using contra apply auto done then have False using zna B [of "z + C *\<^sub>R (z-a)"] C by (auto simp: divide_simps max_mult_distrib_right) } then show ?thesis by (auto simp: outside_def z)qedlemma outside_convex: fixes s :: "'a :: {real_normed_vector, perfect_space} set" assumes "convex s" shows "outside s = - s" by (metis ComplD assms convex_in_outside equalityI inside_Un_outside subsetI sup.cobounded2)lemma outside_singleton [simp]: fixes x :: "'a :: {real_normed_vector, perfect_space}" shows "outside {x} = -{x}" by (auto simp: outside_convex)lemma inside_convex: fixes s :: "'a :: {real_normed_vector, perfect_space} set" shows "convex s \<Longrightarrow> inside s = {}" by (simp add: inside_outside outside_convex)lemma inside_singleton [simp]: fixes x :: "'a :: {real_normed_vector, perfect_space}" shows "inside {x} = {}" by (auto simp: inside_convex)lemma outside_subset_convex: fixes s :: "'a :: {real_normed_vector, perfect_space} set" shows "\<lbrakk>convex t; s \<subseteq> t\<rbrakk> \<Longrightarrow> - t \<subseteq> outside s" using outside_convex outside_mono by blastlemma outside_Un_outside_Un: fixes S :: "'a::real_normed_vector set" assumes "S \<inter> outside(T \<union> U) = {}" shows "outside(T \<union> U) \<subseteq> outside(T \<union> S)"proof fix x assume x: "x \<in> outside (T \<union> U)" have "Y \<subseteq> - S" if "connected Y" "Y \<subseteq> - T" "Y \<subseteq> - U" "x \<in> Y" "u \<in> Y" for u Y proof - have "Y \<subseteq> connected_component_set (- (T \<union> U)) x" by (simp add: connected_component_maximal that) also have "\<dots> \<subseteq> outside(T \<union> U)" by (metis (mono_tags, lifting) Collect_mono mem_Collect_eq outside outside_same_component x) finally have "Y \<subseteq> outside(T \<union> U)" . with assms show ?thesis by auto qed with x show "x \<in> outside (T \<union> S)" by (simp add: outside_connected_component_lt connected_component_def) mesonqedlemma outside_frontier_misses_closure: fixes s :: "'a::real_normed_vector set" assumes "bounded s" shows "outside(frontier s) \<subseteq> - closure s" unfolding outside_inside Lattices.boolean_algebra_class.compl_le_compl_iffproof - { assume "interior s \<subseteq> inside (frontier s)" hence "interior s \<union> inside (frontier s) = inside (frontier s)" by (simp add: subset_Un_eq) then have "closure s \<subseteq> frontier s \<union> inside (frontier s)" using frontier_def by auto } then show "closure s \<subseteq> frontier s \<union> inside (frontier s)" using interior_inside_frontier [OF assms] by blastqedlemma outside_frontier_eq_complement_closure: fixes s :: "'a :: {real_normed_vector, perfect_space} set" assumes "bounded s" "convex s" shows "outside(frontier s) = - closure s"by (metis Diff_subset assms convex_closure frontier_def outside_frontier_misses_closure outside_subset_convex subset_antisym)lemma inside_frontier_eq_interior: fixes s :: "'a :: {real_normed_vector, perfect_space} set" shows "\<lbrakk>bounded s; convex s\<rbrakk> \<Longrightarrow> inside(frontier s) = interior s" apply (simp add: inside_outside outside_frontier_eq_complement_closure) using closure_subset interior_subset apply (auto simp: frontier_def) donelemma open_inside: fixes s :: "'a::real_normed_vector set" assumes "closed s" shows "open (inside s)"proof - { fix x assume x: "x \<in> inside s" have "open (connected_component_set (- s) x)" using assms open_connected_component by blast then obtain e where e: "e>0" and e: "\<And>y. dist y x < e \<longrightarrow> connected_component (- s) x y" using dist_not_less_zero apply (simp add: open_dist) by (metis (no_types, lifting) Compl_iff connected_component_refl_eq inside_def mem_Collect_eq x) then have "\<exists>e>0. ball x e \<subseteq> inside s" by (metis e dist_commute inside_same_component mem_ball subsetI x) } then show ?thesis by (simp add: open_contains_ball)qedlemma open_outside: fixes s :: "'a::real_normed_vector set" assumes "closed s" shows "open (outside s)"proof - { fix x assume x: "x \<in> outside s" have "open (connected_component_set (- s) x)" using assms open_connected_component by blast then obtain e where e: "e>0" and e: "\<And>y. dist y x < e \<longrightarrow> connected_component (- s) x y" using dist_not_less_zero apply (simp add: open_dist) by (metis Int_iff outside_def connected_component_refl_eq x) then have "\<exists>e>0. ball x e \<subseteq> outside s" by (metis e dist_commute outside_same_component mem_ball subsetI x) } then show ?thesis by (simp add: open_contains_ball)qedlemma closure_inside_subset: fixes s :: "'a::real_normed_vector set" assumes "closed s" shows "closure(inside s) \<subseteq> s \<union> inside s"by (metis assms closure_minimal open_closed open_outside sup.cobounded2 union_with_inside)lemma frontier_inside_subset: fixes s :: "'a::real_normed_vector set" assumes "closed s" shows "frontier(inside s) \<subseteq> s"proof - have "closure (inside s) \<inter> - inside s = closure (inside s) - interior (inside s)" by (metis (no_types) Diff_Compl assms closure_closed interior_closure open_closed open_inside) moreover have "- inside s \<inter> - outside s = s" by (metis (no_types) compl_sup double_compl inside_Un_outside) moreover have "closure (inside s) \<subseteq> - outside s" by (metis (no_types) assms closure_inside_subset union_with_inside) ultimately have "closure (inside s) - interior (inside s) \<subseteq> s" by blast then show ?thesis by (simp add: frontier_def open_inside interior_open)qedlemma closure_outside_subset: fixes s :: "'a::real_normed_vector set" assumes "closed s" shows "closure(outside s) \<subseteq> s \<union> outside s" apply (rule closure_minimal, simp) by (metis assms closed_open inside_outside open_inside)lemma frontier_outside_subset: fixes s :: "'a::real_normed_vector set" assumes "closed s" shows "frontier(outside s) \<subseteq> s" apply (simp add: frontier_def open_outside interior_open) by (metis Diff_subset_conv assms closure_outside_subset interior_eq open_outside sup.commute)lemma inside_complement_unbounded_connected_empty: "\<lbrakk>connected (- s); \<not> bounded (- s)\<rbrakk> \<Longrightarrow> inside s = {}" apply (simp add: inside_def) by (meson Compl_iff bounded_subset connected_component_maximal order_refl)lemma inside_bounded_complement_connected_empty: fixes s :: "'a::{real_normed_vector, perfect_space} set" shows "\<lbrakk>connected (- s); bounded s\<rbrakk> \<Longrightarrow> inside s = {}" by (metis inside_complement_unbounded_connected_empty cobounded_imp_unbounded)lemma inside_inside: assumes "s \<subseteq> inside t" shows "inside s - t \<subseteq> inside t"unfolding inside_defproof clarify fix x assume x: "x \<notin> t" "x \<notin> s" and bo: "bounded (connected_component_set (- s) x)" show "bounded (connected_component_set (- t) x)" proof (cases "s \<inter> connected_component_set (- t) x = {}") case True show ?thesis apply (rule bounded_subset [OF bo]) apply (rule connected_component_maximal) using x True apply auto done next case False then show ?thesis using assms [unfolded inside_def] x apply (simp add: disjoint_iff_not_equal, clarify) apply (drule subsetD, assumption, auto) by (metis (no_types, hide_lams) ComplI connected_component_eq_eq) qedqedlemma inside_inside_subset: "inside(inside s) \<subseteq> s" using inside_inside union_with_outside by fastforcelemma inside_outside_intersect_connected: "\<lbrakk>connected t; inside s \<inter> t \<noteq> {}; outside s \<inter> t \<noteq> {}\<rbrakk> \<Longrightarrow> s \<inter> t \<noteq> {}" apply (simp add: inside_def outside_def ex_in_conv [symmetric] disjoint_eq_subset_Compl, clarify) by (metis (no_types, hide_lams) Compl_anti_mono connected_component_eq connected_component_maximal contra_subsetD double_compl)lemma outside_bounded_nonempty: fixes s :: "'a :: {real_normed_vector, perfect_space} set" assumes "bounded s" shows "outside s \<noteq> {}" by (metis (no_types, lifting) Collect_empty_eq Collect_mem_eq Compl_eq_Diff_UNIV Diff_cancel Diff_disjoint UNIV_I assms ball_eq_empty bounded_diff cobounded_outside convex_ball double_complement order_refl outside_convex outside_def)lemma outside_compact_in_open: fixes s :: "'a :: {real_normed_vector,perfect_space} set" assumes s: "compact s" and t: "open t" and "s \<subseteq> t" "t \<noteq> {}" shows "outside s \<inter> t \<noteq> {}"proof - have "outside s \<noteq> {}" by (simp add: compact_imp_bounded outside_bounded_nonempty s) with assms obtain a b where a: "a \<in> outside s" and b: "b \<in> t" by auto show ?thesis proof (cases "a \<in> t") case True with a show ?thesis by blast next case False have front: "frontier t \<subseteq> - s" using \<open>s \<subseteq> t\<close> frontier_disjoint_eq t by auto { fix \<gamma> assume "path \<gamma>" and pimg_sbs: "path_image \<gamma> - {pathfinish \<gamma>} \<subseteq> interior (- t)" and pf: "pathfinish \<gamma> \<in> frontier t" and ps: "pathstart \<gamma> = a" define c where "c = pathfinish \<gamma>" have "c \<in> -s" unfolding c_def using front pf by blast moreover have "open (-s)" using s compact_imp_closed by blast ultimately obtain \<epsilon>::real where "\<epsilon> > 0" and \<epsilon>: "cball c \<epsilon> \<subseteq> -s" using open_contains_cball[of "-s"] s by blast then obtain d where "d \<in> t" and d: "dist d c < \<epsilon>" using closure_approachable [of c t] pf unfolding c_def by (metis Diff_iff frontier_def) then have "d \<in> -s" using \<epsilon> using dist_commute by (metis contra_subsetD mem_cball not_le not_less_iff_gr_or_eq) have pimg_sbs_cos: "path_image \<gamma> \<subseteq> -s" using pimg_sbs apply (auto simp: path_image_def) apply (drule subsetD) using \<open>c \<in> - s\<close> \<open>s \<subseteq> t\<close> interior_subset apply (auto simp: c_def) done have "closed_segment c d \<le> cball c \<epsilon>" apply (simp add: segment_convex_hull) apply (rule hull_minimal) using \<open>\<epsilon> > 0\<close> d apply (auto simp: dist_commute) done with \<epsilon> have "closed_segment c d \<subseteq> -s" by blast moreover have con_gcd: "connected (path_image \<gamma> \<union> closed_segment c d)" by (rule connected_Un) (auto simp: c_def \<open>path \<gamma>\<close> connected_path_image) ultimately have "connected_component (- s) a d" unfolding connected_component_def using pimg_sbs_cos ps by blast then have "outside s \<inter> t \<noteq> {}" using outside_same_component [OF _ a] by (metis IntI \<open>d \<in> t\<close> empty_iff) } note * = this have pal: "pathstart (linepath a b) \<in> closure (- t)" by (auto simp: False closure_def) show ?thesis by (rule exists_path_subpath_to_frontier [OF path_linepath pal _ *]) (auto simp: b) qedqedlemma inside_inside_compact_connected: fixes s :: "'a :: euclidean_space set" assumes s: "closed s" and t: "compact t" and "connected t" "s \<subseteq> inside t" shows "inside s \<subseteq> inside t"proof (cases "inside t = {}") case True with assms show ?thesis by autonext case False consider "DIM('a) = 1" | "DIM('a) \<ge> 2" using antisym not_less_eq_eq by fastforce then show ?thesis proof cases case 1 then show ?thesis using connected_convex_1_gen assms False inside_convex by blast next case 2 have coms: "compact s" using assms apply (simp add: s compact_eq_bounded_closed) by (meson bounded_inside bounded_subset compact_imp_bounded) then have bst: "bounded (s \<union> t)" by (simp add: compact_imp_bounded t) then obtain r where "0 < r" and r: "s \<union> t \<subseteq> ball 0 r" using bounded_subset_ballD by blast have outst: "outside s \<inter> outside t \<noteq> {}" proof - have "- ball 0 r \<subseteq> outside s" apply (rule outside_subset_convex) using r by auto moreover have "- ball 0 r \<subseteq> outside t" apply (rule outside_subset_convex) using r by auto ultimately show ?thesis by (metis Compl_subset_Compl_iff Int_subset_iff bounded_ball inf.orderE outside_bounded_nonempty outside_no_overlap) qed have "s \<inter> t = {}" using assms by (metis disjoint_iff_not_equal inside_no_overlap subsetCE) moreover have "outside s \<inter> inside t \<noteq> {}" by (meson False assms(4) compact_eq_bounded_closed coms open_inside outside_compact_in_open t) ultimately have "inside s \<inter> t = {}" using inside_outside_intersect_connected [OF \<open>connected t\<close>, of s] by (metis "2" compact_eq_bounded_closed coms connected_outside inf.commute inside_outside_intersect_connected outst) then show ?thesis using inside_inside [OF \<open>s \<subseteq> inside t\<close>] by blast qedqedlemma connected_with_inside: fixes s :: "'a :: real_normed_vector set" assumes s: "closed s" and cons: "connected s" shows "connected(s \<union> inside s)"proof (cases "s \<union> inside s = UNIV") case True with assms show ?thesis by autonext case False then obtain b where b: "b \<notin> s" "b \<notin> inside s" by blast have *: "\<exists>y t. y \<in> s \<and> connected t \<and> a \<in> t \<and> y \<in> t \<and> t \<subseteq> (s \<union> inside s)" if "a \<in> (s \<union> inside s)" for a using that proof assume "a \<in> s" then show ?thesis apply (rule_tac x=a in exI) apply (rule_tac x="{a}" in exI, simp) done next assume a: "a \<in> inside s" show ?thesis apply (rule exists_path_subpath_to_frontier [OF path_linepath [of a b], of "inside s"]) using a apply (simp add: closure_def) apply (simp add: b) apply (rule_tac x="pathfinish h" in exI) apply (rule_tac x="path_image h" in exI) apply (simp add: pathfinish_in_path_image connected_path_image, auto) using frontier_inside_subset s apply fastforce by (metis (no_types, lifting) frontier_inside_subset insertE insert_Diff interior_eq open_inside pathfinish_in_path_image s subsetCE) qed show ?thesis apply (simp add: connected_iff_connected_component) apply (simp add: connected_component_def) apply (clarify dest!: *) apply (rename_tac u u' t t') apply (rule_tac x="(s \<union> t \<union> t')" in exI) apply (auto simp: intro!: connected_Un cons) doneqedtext\<open>The proof is virtually the same as that above.\<close>lemma connected_with_outside: fixes s :: "'a :: real_normed_vector set" assumes s: "closed s" and cons: "connected s" shows "connected(s \<union> outside s)"proof (cases "s \<union> outside s = UNIV") case True with assms show ?thesis by autonext case False then obtain b where b: "b \<notin> s" "b \<notin> outside s" by blast have *: "\<exists>y t. y \<in> s \<and> connected t \<and> a \<in> t \<and> y \<in> t \<and> t \<subseteq> (s \<union> outside s)" if "a \<in> (s \<union> outside s)" for a using that proof assume "a \<in> s" then show ?thesis apply (rule_tac x=a in exI) apply (rule_tac x="{a}" in exI, simp) done next assume a: "a \<in> outside s" show ?thesis apply (rule exists_path_subpath_to_frontier [OF path_linepath [of a b], of "outside s"]) using a apply (simp add: closure_def) apply (simp add: b) apply (rule_tac x="pathfinish h" in exI) apply (rule_tac x="path_image h" in exI) apply (simp add: pathfinish_in_path_image connected_path_image, auto) using frontier_outside_subset s apply fastforce by (metis (no_types, lifting) frontier_outside_subset insertE insert_Diff interior_eq open_outside pathfinish_in_path_image s subsetCE) qed show ?thesis apply (simp add: connected_iff_connected_component) apply (simp add: connected_component_def) apply (clarify dest!: *) apply (rename_tac u u' t t') apply (rule_tac x="(s \<union> t \<union> t')" in exI) apply (auto simp: intro!: connected_Un cons) doneqedlemma inside_inside_eq_empty [simp]: fixes s :: "'a :: {real_normed_vector, perfect_space} set" assumes s: "closed s" and cons: "connected s" shows "inside (inside s) = {}" by (metis (no_types) unbounded_outside connected_with_outside [OF assms] bounded_Un inside_complement_unbounded_connected_empty unbounded_outside union_with_outside)lemma inside_in_components: "inside s \<in> components (- s) \<longleftrightarrow> connected(inside s) \<and> inside s \<noteq> {}" apply (simp add: in_components_maximal) apply (auto intro: inside_same_component connected_componentI) apply (metis IntI empty_iff inside_no_overlap) donetext\<open>The proof is virtually the same as that above.\<close>lemma outside_in_components: "outside s \<in> components (- s) \<longleftrightarrow> connected(outside s) \<and> outside s \<noteq> {}" apply (simp add: in_components_maximal) apply (auto intro: outside_same_component connected_componentI) apply (metis IntI empty_iff outside_no_overlap) donelemma bounded_unique_outside: fixes s :: "'a :: euclidean_space set" shows "\<lbrakk>bounded s; DIM('a) \<ge> 2\<rbrakk> \<Longrightarrow> (c \<in> components (- s) \<and> \<not> bounded c \<longleftrightarrow> c = outside s)" apply (rule iffI) apply (metis cobounded_unique_unbounded_components connected_outside double_compl outside_bounded_nonempty outside_in_components unbounded_outside) by (simp add: connected_outside outside_bounded_nonempty outside_in_components unbounded_outside)subsection\<open>Condition for an open map's image to contain a ball\<close>proposition ball_subset_open_map_image: fixes f :: "'a::heine_borel \<Rightarrow> 'b :: {real_normed_vector,heine_borel}" assumes contf: "continuous_on (closure S) f" and oint: "open (f ` interior S)" and le_no: "\<And>z. z \<in> frontier S \<Longrightarrow> r \<le> norm(f z - f a)" and "bounded S" "a \<in> S" "0 < r" shows "ball (f a) r \<subseteq> f ` S"proof (cases "f ` S = UNIV") case True then show ?thesis by simpnext case False obtain w where w: "w \<in> frontier (f ` S)" and dw_le: "\<And>y. y \<in> frontier (f ` S) \<Longrightarrow> norm (f a - w) \<le> norm (f a - y)" apply (rule distance_attains_inf [of "frontier(f ` S)" "f a"]) using \<open>a \<in> S\<close> by (auto simp: frontier_eq_empty dist_norm False) then obtain \<xi> where \<xi>: "\<And>n. \<xi> n \<in> f ` S" and tendsw: "\<xi> \<longlonglongrightarrow> w" by (metis Diff_iff frontier_def closure_sequential) then have "\<And>n. \<exists>x \<in> S. \<xi> n = f x" by force then obtain z where zs: "\<And>n. z n \<in> S" and fz: "\<And>n. \<xi> n = f (z n)" by metis then obtain y K where y: "y \<in> closure S" and "strict_mono (K :: nat \<Rightarrow> nat)" and Klim: "(z \<circ> K) \<longlonglongrightarrow> y" using \<open>bounded S\<close> apply (simp add: compact_closure [symmetric] compact_def) apply (drule_tac x=z in spec) using closure_subset apply force done then have ftendsw: "((\<lambda>n. f (z n)) \<circ> K) \<longlonglongrightarrow> w" by (metis LIMSEQ_subseq_LIMSEQ fun.map_cong0 fz tendsw) have zKs: "\<And>n. (z \<circ> K) n \<in> S" by (simp add: zs) have fz: "f \<circ> z = \<xi>" "(\<lambda>n. f (z n)) = \<xi>" using fz by auto then have "(\<xi> \<circ> K) \<longlonglongrightarrow> f y" by (metis (no_types) Klim zKs y contf comp_assoc continuous_on_closure_sequentially) with fz have wy: "w = f y" using fz LIMSEQ_unique ftendsw by auto have rle: "r \<le> norm (f y - f a)" apply (rule le_no) using w wy oint by (force simp: imageI image_mono interiorI interior_subset frontier_def y) have **: "(b \<inter> (- S) \<noteq> {} \<and> b - (- S) \<noteq> {} \<Longrightarrow> b \<inter> f \<noteq> {}) \<Longrightarrow> (b \<inter> S \<noteq> {}) \<Longrightarrow> b \<inter> f = {} \<Longrightarrow> b \<subseteq> S" for b f and S :: "'b set" by blast show ?thesis apply (rule **) (*such a horrible mess*) apply (rule connected_Int_frontier [where t = "f`S", OF connected_ball]) using \<open>a \<in> S\<close> \<open>0 < r\<close> apply (auto simp: disjoint_iff_not_equal dist_norm) by (metis dw_le norm_minus_commute not_less order_trans rle wy)qedend