be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
authorhaftmann
Tue, 22 Sep 2009 15:36:55 +0200
changeset 32642 026e7c6a6d08
parent 32637 827cac8abecc
child 32643 72979e93f919
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
NEWS
src/HOL/Complete_Lattice.thy
src/HOL/Decision_Procs/Approximation.thy
src/HOL/Decision_Procs/Ferrack.thy
src/HOL/Finite_Set.thy
src/HOL/Hoare_Parallel/Graph.thy
src/HOL/Lattices.thy
src/HOL/Lim.thy
src/HOL/MicroJava/BV/Effect.thy
src/HOL/MicroJava/BV/LBVSpec.thy
src/HOL/MicroJava/Comp/CorrCompTp.thy
src/HOL/OrderedGroup.thy
src/HOL/UNITY/Simple/Common.thy
src/HOL/Word/BinBoolList.thy
src/HOL/Word/BinGeneral.thy
src/HOL/Word/WordDefinition.thy
src/HOL/Word/WordShift.thy
--- a/NEWS	Mon Sep 21 16:11:36 2009 +0200
+++ b/NEWS	Tue Sep 22 15:36:55 2009 +0200
@@ -102,6 +102,10 @@
 
   INCOMPATIBILITY.
 
+* Rules inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no
+simp rules by default any longer.  The same applies to
+min_max.inf_absorb1 etc.!  INCOMPATIBILITY.
+
 * Power operations on relations and functions are now one dedicate
 constant "compow" with infix syntax "^^".  Power operations on
 multiplicative monoids retains syntax "^" and is now defined generic
--- a/src/HOL/Complete_Lattice.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/Complete_Lattice.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -76,11 +76,11 @@
 
 lemma sup_bot [simp]:
   "x \<squnion> bot = x"
-  using bot_least [of x] by (simp add: sup_commute)
+  using bot_least [of x] by (simp add: sup_commute sup_absorb2)
 
 lemma inf_top [simp]:
   "x \<sqinter> top = x"
-  using top_greatest [of x] by (simp add: inf_commute)
+  using top_greatest [of x] by (simp add: inf_commute inf_absorb2)
 
 definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
   "SUPR A f = \<Squnion> (f ` A)"
--- a/src/HOL/Decision_Procs/Approximation.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/Decision_Procs/Approximation.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -1904,7 +1904,7 @@
 	show "0 < real x * 2/3" using * by auto
 	show "real ?max + 1 \<le> real x * 2/3" using * up
 	  by (cases "0 < real x * real (lapprox_posrat prec 2 3) - 1",
-	      auto simp add: real_of_float_max)
+	      auto simp add: real_of_float_max min_max.sup_absorb1)
       qed
       finally have "real (?lb_horner (Float 1 -1)) + real (?lb_horner ?max)
 	\<le> ln (real x)"
--- a/src/HOL/Decision_Procs/Ferrack.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/Decision_Procs/Ferrack.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -512,7 +512,7 @@
   assumes g0: "numgcd t = 0"
   shows "Inum bs t = 0"
   using g0[simplified numgcd_def] 
-  by (induct t rule: numgcdh.induct, auto simp add: natabs0 maxcoeff_pos)
+  by (induct t rule: numgcdh.induct, auto simp add: natabs0 maxcoeff_pos min_max.sup_absorb2)
 
 lemma numgcdh_pos: assumes gp: "g \<ge> 0" shows "numgcdh t g \<ge> 0"
   using gp
--- a/src/HOL/Finite_Set.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/Finite_Set.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -2966,11 +2966,11 @@
 
 lemma dual_max:
   "ord.max (op \<ge>) = min"
-  by (auto simp add: ord.max_def_raw expand_fun_eq)
+  by (auto simp add: ord.max_def_raw min_def expand_fun_eq)
 
 lemma dual_min:
   "ord.min (op \<ge>) = max"
-  by (auto simp add: ord.min_def_raw expand_fun_eq)
+  by (auto simp add: ord.min_def_raw max_def expand_fun_eq)
 
 lemma strict_below_fold1_iff:
   assumes "finite A" and "A \<noteq> {}"
--- a/src/HOL/Hoare_Parallel/Graph.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/Hoare_Parallel/Graph.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -187,6 +187,8 @@
 
 subsubsection{* Graph 3 *}
 
+declare min_max.inf_absorb1 [simp] min_max.inf_absorb2 [simp]
+
 lemma Graph3: 
   "\<lbrakk> T\<in>Reach E; R<length E \<rbrakk> \<Longrightarrow> Reach(E[R:=(fst(E!R),T)]) \<subseteq> Reach E"
 apply (unfold Reach_def)
@@ -307,6 +309,8 @@
 apply force
 done
 
+declare min_max.inf_absorb1 [simp del] min_max.inf_absorb2 [simp del]
+
 subsubsection {* Graph 5 *}
 
 lemma Graph5: 
--- a/src/HOL/Lattices.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/Lattices.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -127,10 +127,10 @@
 lemma inf_left_idem[simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y"
   by (rule antisym) (auto intro: le_infI2)
 
-lemma inf_absorb1[simp]: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x"
+lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x"
   by (rule antisym) auto
 
-lemma inf_absorb2[simp]: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y"
+lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y"
   by (rule antisym) auto
 
 lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)"
@@ -155,10 +155,10 @@
 lemma sup_left_idem[simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y"
   by (rule antisym) (auto intro: le_supI2)
 
-lemma sup_absorb1[simp]: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x"
+lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x"
   by (rule antisym) auto
 
-lemma sup_absorb2[simp]: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y"
+lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y"
   by (rule antisym) auto
 
 lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)"
@@ -229,11 +229,11 @@
 
 lemma less_infI1:
   "a \<sqsubset> x \<Longrightarrow> a \<sqinter> b \<sqsubset> x"
-  by (auto simp add: less_le intro: le_infI1)
+  by (auto simp add: less_le inf_absorb1 intro: le_infI1)
 
 lemma less_infI2:
   "b \<sqsubset> x \<Longrightarrow> a \<sqinter> b \<sqsubset> x"
-  by (auto simp add: less_le intro: le_infI2)
+  by (auto simp add: less_le inf_absorb2 intro: le_infI2)
 
 end
 
--- a/src/HOL/Lim.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/Lim.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -544,7 +544,7 @@
     case True thus ?thesis using `0 < s` by auto
   next
     case False hence "s / 2 \<ge> (x - b) / 2" by auto
-    hence "?x = (x + b) / 2" by(simp add:field_simps)
+    hence "?x = (x + b) / 2" by (simp add: field_simps min_max.inf_absorb2)
     thus ?thesis using `b < x` by auto
   qed
   hence "0 \<le> f ?x" using all_le `?x < x` by auto
--- a/src/HOL/MicroJava/BV/Effect.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/MicroJava/BV/Effect.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -1,5 +1,4 @@
 (*  Title:      HOL/MicroJava/BV/Effect.thy
-    ID:         $Id$
     Author:     Gerwin Klein
     Copyright   2000 Technische Universitaet Muenchen
 *)
@@ -391,7 +390,7 @@
   with Pair 
   have "?app s \<Longrightarrow> ?P s" by (simp only:)
   moreover
-  have "?P s \<Longrightarrow> ?app s" by (unfold app_def) (clarsimp)
+  have "?P s \<Longrightarrow> ?app s" by (clarsimp simp add: min_max.inf_absorb2)
   ultimately
   show ?thesis by (rule iffI) 
 qed 
--- a/src/HOL/MicroJava/BV/LBVSpec.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/MicroJava/BV/LBVSpec.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -1,5 +1,4 @@
 (*  Title:      HOL/MicroJava/BV/LBVSpec.thy
-    ID:         $Id$
     Author:     Gerwin Klein
     Copyright   1999 Technische Universitaet Muenchen
 *)
@@ -293,7 +292,7 @@
   shows "wtl (take (pc+1) is) c 0 s = wtc c pc (wtl (take pc is) c 0 s)"
 proof -
   from suc have "take (pc+1) is=(take pc is)@[is!pc]" by (simp add: take_Suc)
-  with suc wtl show ?thesis by (simp)
+  with suc wtl show ?thesis by (simp add: min_max.inf_absorb2)
 qed
 
 lemma (in lbv) wtl_all:
@@ -308,7 +307,7 @@
   with all have take: "?wtl (take pc is@i#r) \<noteq> \<top>" by simp 
   from pc have "is!pc = drop pc is ! 0" by simp
   with Cons have "is!pc = i" by simp
-  with take pc show ?thesis by (auto)
+  with take pc show ?thesis by (auto simp add: min_max.inf_absorb2)
 qed
 
 section "preserves-type"
--- a/src/HOL/MicroJava/Comp/CorrCompTp.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/MicroJava/Comp/CorrCompTp.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -1,5 +1,4 @@
 (*  Title:      HOL/MicroJava/Comp/CorrCompTp.thy
-    ID:         $Id$
     Author:     Martin Strecker
 *)
 
@@ -1058,7 +1057,7 @@
 lemma bc_mt_corresp_New: "\<lbrakk>is_class cG cname \<rbrakk>
   \<Longrightarrow> bc_mt_corresp [New cname] (pushST [Class cname]) (ST, LT) cG rT mxr (Suc 0)"
 apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def
-    max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def)
+    max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def min_max.sup_absorb2)
 apply (intro strip)
 apply (rule conjI)
 apply (rule check_type_mono, assumption, simp)
@@ -1069,7 +1068,7 @@
   bc_mt_corresp [Pop] (popST (Suc 0)) (T # ST, LT) cG rT mxr (Suc 0)"
   apply (simp add: bc_mt_corresp_def popST_def wt_instr_altern_def eff_def norm_eff_def)
   apply (simp add: max_ssize_def ssize_sto_def max_of_list_def) 
-  apply (simp add: check_type_simps)
+  apply (simp add: check_type_simps min_max.sup_absorb1)
   apply clarify
   apply (rule_tac x="(length ST)" in exI)
   apply simp+
@@ -1092,7 +1091,7 @@
   \<Longrightarrow> bc_mt_corresp [LitPush val] (pushST [T]) sttp cG rT mxr (Suc 0)"
 apply (subgoal_tac "\<exists> ST LT. sttp= (ST, LT)", (erule exE)+)
   apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def
-              max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def)
+              max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def min_max.sup_absorb2)
   apply (intro strip)
   apply (rule conjI)
   apply (rule check_type_mono, assumption, simp)
@@ -1111,7 +1110,7 @@
   \<Longrightarrow> bc_mt_corresp [LitPush val] (pushST [T']) sttp cG rT mxr (Suc 0)"
 apply (subgoal_tac "\<exists> ST LT. sttp= (ST, LT)", (erule exE)+)
   apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def
-              max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def)
+              max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def min_max.sup_absorb2)
   apply (intro strip)
   apply (rule conjI)
   apply (rule check_type_mono, assumption, simp)
@@ -1127,7 +1126,7 @@
   \<Longrightarrow> bc_mt_corresp [Load i] 
          (\<lambda>(ST, LT). pushST [ok_val (LT ! i)] (ST, LT)) (ST, LT) cG rT mxr (Suc 0)"
 apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def
-            max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def)
+            max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def min_max.sup_absorb2)
   apply (intro strip)
   apply (rule conjI)
   apply (rule check_type_mono, assumption, simp)
@@ -1148,10 +1147,10 @@
 lemma bc_mt_corresp_Store_init: "\<lbrakk> i < length LT \<rbrakk>
   \<Longrightarrow> bc_mt_corresp [Store i] (storeST i T) (T # ST, LT) cG rT mxr (Suc 0)"
  apply (simp add: bc_mt_corresp_def storeST_def wt_instr_altern_def eff_def norm_eff_def)
-  apply (simp add: max_ssize_def  max_of_list_def )
+  apply (simp add: max_ssize_def  max_of_list_def)
   apply (simp add: ssize_sto_def)
   apply (intro strip)
-apply (simp add: check_type_simps)
+apply (simp add: check_type_simps min_max.sup_absorb1)
 apply clarify
 apply (rule conjI)
 apply (rule_tac x="(length ST)" in exI)
@@ -1159,14 +1158,13 @@
 done
 
 
-
 lemma bc_mt_corresp_Store: "\<lbrakk> i < length LT; cG  \<turnstile>  LT[i := OK T] <=l LT \<rbrakk>
   \<Longrightarrow> bc_mt_corresp [Store i] (popST (Suc 0)) (T # ST, LT) cG rT mxr (Suc 0)"
   apply (simp add: bc_mt_corresp_def popST_def wt_instr_altern_def eff_def norm_eff_def)
   apply (simp add: sup_state_conv)
   apply (simp add: max_ssize_def max_of_list_def ssize_sto_def)
  apply (intro strip)
-apply (simp add: check_type_simps)
+apply (simp add: check_type_simps min_max.sup_absorb1)
 apply clarify
 apply (rule_tac x="(length ST)" in exI)
 apply simp+
@@ -1176,7 +1174,7 @@
 lemma bc_mt_corresp_Dup: "
   bc_mt_corresp [Dup] dupST (T # ST, LT) cG rT mxr (Suc 0)"
  apply (simp add: bc_mt_corresp_def dupST_def wt_instr_altern_def
-             max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def)
+             max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def min_max.sup_absorb2)
   apply (intro strip)
   apply (rule conjI)
   apply (rule check_type_mono, assumption, simp)
@@ -1189,7 +1187,7 @@
 lemma bc_mt_corresp_Dup_x1: "
   bc_mt_corresp [Dup_x1] dup_x1ST (T1 # T2 # ST, LT) cG rT mxr (Suc 0)"
   apply (simp add: bc_mt_corresp_def dup_x1ST_def wt_instr_altern_def
-              max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def)
+              max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def min_max.sup_absorb2)
   apply (intro strip)
   apply (rule conjI)
   apply (rule check_type_mono, assumption, simp)
@@ -1206,7 +1204,7 @@
          (PrimT Integer # PrimT Integer # ST, LT) cG rT mxr (Suc 0)"
   apply (simp add: bc_mt_corresp_def replST_def wt_instr_altern_def eff_def norm_eff_def)
   apply (simp add: max_ssize_def max_of_list_def ssize_sto_def)
-  apply (simp add: check_type_simps)
+  apply (simp add: check_type_simps min_max.sup_absorb1)
   apply clarify
   apply (rule_tac x="Suc (length ST)" in exI)
   apply simp+
@@ -1249,7 +1247,7 @@
   apply (simp add: max_ssize_def max_of_list_def ssize_sto_def)
 
   apply (intro strip)
-apply (simp add: check_type_simps)
+apply (simp add: check_type_simps min_max.sup_absorb1)
 apply clarify
 apply (rule_tac x="Suc (length ST)" in exI)
 apply simp+
--- a/src/HOL/OrderedGroup.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/OrderedGroup.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -1075,17 +1075,16 @@
 lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)
 
 lemma pprt_eq_id [simp, noatp]: "0 \<le> x \<Longrightarrow> pprt x = x"
-by (simp add: pprt_def sup_aci)
-
+  by (simp add: pprt_def sup_aci sup_absorb1)
 
 lemma nprt_eq_id [simp, noatp]: "x \<le> 0 \<Longrightarrow> nprt x = x"
-by (simp add: nprt_def inf_aci)
+  by (simp add: nprt_def inf_aci inf_absorb1)
 
 lemma pprt_eq_0 [simp, noatp]: "x \<le> 0 \<Longrightarrow> pprt x = 0"
-by (simp add: pprt_def sup_aci)
+  by (simp add: pprt_def sup_aci sup_absorb2)
 
 lemma nprt_eq_0 [simp, noatp]: "0 \<le> x \<Longrightarrow> nprt x = 0"
-by (simp add: nprt_def inf_aci)
+  by (simp add: nprt_def inf_aci inf_absorb2)
 
 lemma sup_0_imp_0: "sup a (- a) = 0 \<Longrightarrow> a = 0"
 proof -
@@ -1119,7 +1118,7 @@
   "0 \<le> a + a \<longleftrightarrow> 0 \<le> a"
 proof
   assume "0 <= a + a"
-  hence a:"inf (a+a) 0 = 0" by (simp add: inf_commute)
+  hence a:"inf (a+a) 0 = 0" by (simp add: inf_commute inf_absorb1)
   have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_")
     by (simp add: add_sup_inf_distribs inf_aci)
   hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute)
@@ -1135,7 +1134,7 @@
   assume assm: "a + a = 0"
   then have "a + a + - a = - a" by simp
   then have "a + (a + - a) = - a" by (simp only: add_assoc)
-  then have a: "- a = a" by simp (*FIXME tune proof*)
+  then have a: "- a = a" by simp
   show "a = 0" apply (rule antisym)
   apply (unfold neg_le_iff_le [symmetric, of a])
   unfolding a apply simp
@@ -1275,7 +1274,7 @@
 proof -
   note add_le_cancel_right [of a a "- a", symmetric, simplified]
   moreover note add_le_cancel_right [of "-a" a a, symmetric, simplified]
-  then show ?thesis by (auto simp: sup_max)
+  then show ?thesis by (auto simp: sup_max min_max.sup_absorb1 min_max.sup_absorb2)
 qed
 
 lemma abs_if_lattice:
--- a/src/HOL/UNITY/Simple/Common.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/UNITY/Simple/Common.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -1,5 +1,4 @@
 (*  Title:      HOL/UNITY/Common
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1998  University of Cambridge
 
@@ -10,7 +9,9 @@
 From Misra, "A Logic for Concurrent Programming" (1994), sections 5.1 and 13.1.
 *)
 
-theory Common imports "../UNITY_Main" begin
+theory Common
+imports "../UNITY_Main"
+begin
 
 consts
   ftime :: "nat=>nat"
@@ -65,7 +66,7 @@
 lemma "mk_total_program (UNIV, {range(%t.(t, max (ftime t) (gtime t)))}, UNIV)
        \<in> {m} co (maxfg m)"
 apply (simp add: mk_total_program_def) 
-apply (simp add: constrains_def maxfg_def gasc)
+apply (simp add: constrains_def maxfg_def gasc min_max.sup_absorb2)
 done
 
 (*This one is  t := t+1 if t <max (ftime t) (gtime t) *)
@@ -73,7 +74,7 @@
           (UNIV, { {(t, Suc t) | t. t < max (ftime t) (gtime t)} }, UNIV)   
        \<in> {m} co (maxfg m)"
 apply (simp add: mk_total_program_def) 
-apply (simp add: constrains_def maxfg_def gasc)
+apply (simp add: constrains_def maxfg_def gasc min_max.sup_absorb2)
 done
 
 
--- a/src/HOL/Word/BinBoolList.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/Word/BinBoolList.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -919,7 +919,7 @@
   apply (drule spec)
   apply (erule trans)
   apply (drule_tac x = "bin_cat y n a" in spec)
-  apply (simp add : bin_cat_assoc_sym)
+  apply (simp add : bin_cat_assoc_sym min_max.inf_absorb2)
   done
 
 lemma bin_rcat_bl:
--- a/src/HOL/Word/BinGeneral.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/Word/BinGeneral.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -508,7 +508,7 @@
 lemma sbintrunc_sbintrunc_min [simp]:
   "sbintrunc m (sbintrunc n w) = sbintrunc (min m n) w"
   apply (rule bin_eqI)
-  apply (auto simp: nth_sbintr)
+  apply (auto simp: nth_sbintr min_max.inf_absorb1 min_max.inf_absorb2)
   done
 
 lemmas bintrunc_Pls = 
--- a/src/HOL/Word/WordDefinition.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/Word/WordDefinition.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -381,14 +381,14 @@
   apply (unfold word_size)
   apply (subst word_ubin.norm_Rep [symmetric]) 
   apply (simp only: bintrunc_bintrunc_min word_size)
-  apply simp
+  apply (simp add: min_max.inf_absorb2)
   done
 
 lemma wi_bintr': 
   "wb = word_of_int bin ==> n >= size wb ==> 
     word_of_int (bintrunc n bin) = wb"
   unfolding word_size
-  by (clarsimp simp add : word_ubin.norm_eq_iff [symmetric])
+  by (clarsimp simp add: word_ubin.norm_eq_iff [symmetric] min_max.inf_absorb1)
 
 lemmas bintr_uint = bintr_uint' [unfolded word_size]
 lemmas wi_bintr = wi_bintr' [unfolded word_size]
--- a/src/HOL/Word/WordShift.thy	Mon Sep 21 16:11:36 2009 +0200
+++ b/src/HOL/Word/WordShift.thy	Tue Sep 22 15:36:55 2009 +0200
@@ -1017,8 +1017,8 @@
   (word_cat (word_of_int w :: 'b word) (b :: 'c word) :: 'a word) = 
   word_of_int (bin_cat w (size b) (uint b))"
   apply (unfold word_cat_def word_size) 
-  apply (clarsimp simp add : word_ubin.norm_eq_iff [symmetric]
-      word_ubin.eq_norm bintr_cat)
+  apply (clarsimp simp add: word_ubin.norm_eq_iff [symmetric]
+      word_ubin.eq_norm bintr_cat min_max.inf_absorb1)
   done
 
 lemma word_cat_split_alt: