--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Discrete.thy Sun Feb 17 22:56:54 2013 +0100
@@ -0,0 +1,125 @@
+(* Author: Florian Haftmann, TU Muenchen *)
+
+header {* Common discrete functions *}
+
+theory Discrete
+imports Main
+begin
+
+lemma power2_nat_le_eq_le:
+ fixes m n :: nat
+ shows "m ^ 2 \<le> n ^ 2 \<longleftrightarrow> m \<le> n"
+ by (auto intro: power2_le_imp_le power_mono)
+
+subsection {* Discrete logarithm *}
+
+fun log :: "nat \<Rightarrow> nat" where
+ [simp del]: "log n = (if n < 2 then 0 else Suc (log (n div 2)))"
+
+lemma log_zero [simp]:
+ "log 0 = 0"
+ by (simp add: log.simps)
+
+lemma log_one [simp]:
+ "log 1 = 0"
+ by (simp add: log.simps)
+
+lemma log_Suc_zero [simp]:
+ "log (Suc 0) = 0"
+ using log_one by simp
+
+lemma log_rec:
+ "n \<ge> 2 \<Longrightarrow> log n = Suc (log (n div 2))"
+ by (simp add: log.simps)
+
+lemma log_twice [simp]:
+ "n \<noteq> 0 \<Longrightarrow> log (2 * n) = Suc (log n)"
+ by (simp add: log_rec)
+
+lemma log_half [simp]:
+ "log (n div 2) = log n - 1"
+proof (cases "n < 2")
+ case True
+ then have "n = 0 \<or> n = 1" by arith
+ then show ?thesis by (auto simp del: One_nat_def)
+next
+ case False then show ?thesis by (simp add: log_rec)
+qed
+
+lemma log_exp [simp]:
+ "log (2 ^ n) = n"
+ by (induct n) simp_all
+
+lemma log_mono:
+ "mono log"
+proof
+ fix m n :: nat
+ assume "m \<le> n"
+ then show "log m \<le> log n"
+ proof (induct m arbitrary: n rule: log.induct)
+ case (1 m)
+ then have mn2: "m div 2 \<le> n div 2" by arith
+ show "log m \<le> log n"
+ proof (cases "m < 2")
+ case True
+ then have "m = 0 \<or> m = 1" by arith
+ then show ?thesis by (auto simp del: One_nat_def)
+ next
+ case False
+ with mn2 have "m \<ge> 2" and "n \<ge> 2" by auto arith
+ from False have m2_0: "m div 2 \<noteq> 0" by arith
+ with mn2 have n2_0: "n div 2 \<noteq> 0" by arith
+ from False "1.hyps" mn2 have "log (m div 2) \<le> log (n div 2)" by blast
+ with m2_0 n2_0 have "log (2 * (m div 2)) \<le> log (2 * (n div 2))" by simp
+ with m2_0 n2_0 `m \<ge> 2` `n \<ge> 2` show ?thesis by (simp only: log_rec [of m] log_rec [of n]) simp
+ qed
+ qed
+qed
+
+
+subsection {* Discrete square root *}
+
+definition sqrt :: "nat \<Rightarrow> nat"
+where
+ "sqrt n = Max {m. m ^ 2 \<le> n}"
+
+lemma sqrt_inverse_power2 [simp]:
+ "sqrt (n ^ 2) = n"
+proof -
+ have "{m. m \<le> n} \<noteq> {}" by auto
+ then have "Max {m. m \<le> n} \<le> n" by auto
+ then show ?thesis
+ by (auto simp add: sqrt_def power2_nat_le_eq_le intro: antisym)
+qed
+
+lemma [code]:
+ "sqrt n = Max (Set.filter (\<lambda>m. m ^ 2 \<le> n) {0..n})"
+proof -
+ { fix m
+ assume "m\<twosuperior> \<le> n"
+ then have "m \<le> n"
+ by (cases m) (simp_all add: power2_eq_square)
+ }
+ then have "{m. m \<le> n \<and> m\<twosuperior> \<le> n} = {m. m\<twosuperior> \<le> n}" by auto
+ then show ?thesis by (simp add: sqrt_def Set.filter_def)
+qed
+
+lemma sqrt_le:
+ "sqrt n \<le> n"
+proof -
+ have "0\<twosuperior> \<le> n" by simp
+ then have *: "{m. m\<twosuperior> \<le> n} \<noteq> {}" by blast
+ { fix m
+ assume "m\<twosuperior> \<le> n"
+ then have "m \<le> n"
+ by (cases m) (simp_all add: power2_eq_square)
+ } note ** = this
+ then have "{m. m\<twosuperior> \<le> n} \<subseteq> {m. m \<le> n}" by auto
+ then have "finite {m. m\<twosuperior> \<le> n}" by (rule finite_subset) rule
+ with * show ?thesis by (auto simp add: sqrt_def intro: **)
+qed
+
+hide_const (open) log sqrt
+
+end
+
--- a/src/HOL/Library/Library.thy Sun Feb 17 21:29:30 2013 +0100
+++ b/src/HOL/Library/Library.thy Sun Feb 17 22:56:54 2013 +0100
@@ -15,6 +15,7 @@
Countable_Set
Debug
Diagonal_Subsequence
+ Discrete
Dlist
Eval_Witness
Extended_Nat