author | haftmann |
Fri, 15 Feb 2013 08:31:31 +0100 | |
changeset 51143 | 0a2371e7ced3 |
parent 51142 | ac9e909fe55d |
child 51144 | 0ede9e2266a8 |
--- a/NEWS Fri Feb 15 08:31:30 2013 +0100 +++ b/NEWS Fri Feb 15 08:31:31 2013 +0100 @@ -170,6 +170,18 @@ *** HOL *** +* Numeric types mapped by default to target language numerals: +natural (replaces former code_numeral) and integer (replaces +former code_int). Conversions are available as integer_of_natural / +natural_of_integer / integer_of_nat / nat_of_integer (in HOL) and +Code_Numeral.integer_of_natural / Code_Numeral.natural_of_integer (in ML). +INCOMPATIBILITY. + +* Discontinued theories Code_Integer and Efficient_Nat by a more +fine-grain stack of theories Code_Target_Int, Code_Binary_Nat, +Code_Target_Nat and Code_Target_Numeral. See the tutorial on +code generation for details. INCOMPATIBILITY. + * Sledgehammer: - Added MaSh relevance filter based on machine-learning; see the
--- a/src/Doc/Classes/Classes.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/Doc/Classes/Classes.thy Fri Feb 15 08:31:31 2013 +0100 @@ -600,7 +600,6 @@ text {* \noindent This maps to Haskell as follows: *} -(*<*)code_include %invisible Haskell "Natural" -(*>*) text %quotetypewriter {* @{code_stmts example (Haskell)} *} @@ -616,7 +615,6 @@ text {* \noindent In Scala, implicts are used as dictionaries: *} -(*<*)code_include %invisible Scala "Natural" -(*>*) text %quotetypewriter {* @{code_stmts example (Scala)} *} @@ -640,3 +638,4 @@ *} end +
--- a/src/Doc/Classes/Setup.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/Doc/Classes/Setup.thy Fri Feb 15 08:31:31 2013 +0100 @@ -1,5 +1,5 @@ theory Setup -imports Main "~~/src/HOL/Library/Code_Integer" +imports Main begin ML_file "../antiquote_setup.ML" @@ -37,4 +37,4 @@ end *} -end \ No newline at end of file +end
--- a/src/Doc/Codegen/Adaptation.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/Doc/Codegen/Adaptation.thy Fri Feb 15 08:31:31 2013 +0100 @@ -125,11 +125,30 @@ \begin{description} - \item[@{text "Code_Integer"}] represents @{text HOL} integers by - big integer literals in target languages. + \item[@{theory "Code_Numeral"}] provides additional numeric + types @{typ integer} and @{typ natural} isomorphic to types + @{typ int} and @{typ nat} respectively. Type @{typ integer} + is mapped to target-language built-in integers; @{typ natural} + is implemented as abstract type over @{typ integer}. + Useful for code setups which involve e.g.~indexing + of target-language arrays. Part of @{text "HOL-Main"}. + + \item[@{text "Code_Target_Int"}] implements type @{typ int} + by @{typ integer} and thus by target-language built-in integers. - \item[@{text "Code_Char"}] represents @{text HOL} characters by - character literals in target languages. + \item[@{text "Code_Binary_Nat"}] \label{eff_nat} implements type + @{typ nat} using a binary rather than a linear representation, + which yields a considerable speedup for computations. + Pattern matching with @{term "0\<Colon>nat"} / @{const "Suc"} is eliminated + by a preprocessor. + + \item[@{text "Code_Target_Nat"}] implements type @{typ int} + by @{typ integer} and thus by target-language built-in integers; + contains @{text "Code_Binary_Nat"} as a prerequisite. + + \item[@{text "Code_Target_Numeral"}] is a convenience node + containing both @{text "Code_Target_Nat"} and + @{text "Code_Target_Int"}. \item[@{text "Code_Char_chr"}] like @{text "Code_Char"}, but also offers treatment of character codes; includes @{text @@ -141,10 +160,8 @@ @{const "Suc"} is eliminated; includes @{text "Code_Integer"} and @{text "Code_Numeral"}. - \item[@{theory "Code_Numeral"}] provides an additional datatype - @{typ index} which is mapped to target-language built-in - integers. Useful for code setups which involve e.g.~indexing - of target-language arrays. Part of @{text "HOL-Main"}. + \item[@{text "Code_Char"}] represents @{text HOL} characters by + character literals in target languages. \item[@{theory "String"}] provides an additional datatype @{typ String.literal} which is isomorphic to strings; @{typ
--- a/src/Doc/Codegen/Foundations.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/Doc/Codegen/Foundations.thy Fri Feb 15 08:31:31 2013 +0100 @@ -117,7 +117,7 @@ interface, transforming a list of function theorems to another list of function theorems, provided that neither the heading constant nor its type change. The @{term "0\<Colon>nat"} / @{const Suc} pattern - elimination implemented in theory @{text Efficient_Nat} (see + elimination implemented in theory @{text Code_Binary_Nat} (see \secref{eff_nat}) uses this interface. \noindent The current setup of the preprocessor may be inspected
--- a/src/HOL/Code_Evaluation.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Code_Evaluation.thy Fri Feb 15 08:31:31 2013 +0100 @@ -158,10 +158,16 @@ else termify (numeral :: num \<Rightarrow> nat) <\<cdot>> term_of_num_semiring (2::nat) n)" by (simp only: term_of_anything) -lemma (in term_syntax) term_of_code_numeral_code [code]: - "term_of (k::code_numeral) = ( - if k = 0 then termify (0 :: code_numeral) - else termify (numeral :: num \<Rightarrow> code_numeral) <\<cdot>> term_of_num_semiring (2::code_numeral) k)" +lemma (in term_syntax) term_of_natural_code [code]: + "term_of (k::natural) = ( + if k = 0 then termify (0 :: natural) + else termify (numeral :: num \<Rightarrow> natural) <\<cdot>> term_of_num_semiring (2::natural) k)" + by (simp only: term_of_anything) + +lemma (in term_syntax) term_of_integer_code [code]: + "term_of (k::integer) = (if k = 0 then termify (0 :: integer) + else if k < 0 then termify (neg_numeral :: num \<Rightarrow> integer) <\<cdot>> term_of_num_semiring (2::integer) (- k) + else termify (numeral :: num \<Rightarrow> integer) <\<cdot>> term_of_num_semiring (2::integer) k)" by (simp only: term_of_anything) lemma (in term_syntax) term_of_int_code [code]: @@ -199,3 +205,4 @@ hide_const (open) Const App Abs Free termify valtermify term_of term_of_num_semiring tracing end +
--- a/src/HOL/Code_Numeral.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Code_Numeral.thy Fri Feb 15 08:31:31 2013 +0100 @@ -1,337 +1,614 @@ -(* Author: Florian Haftmann, TU Muenchen *) +(* Title: HOL/Code_Numeral.thy + Author: Florian Haftmann, TU Muenchen +*) -header {* Type of target language numerals *} +header {* Numeric types for code generation onto target language numerals only *} theory Code_Numeral -imports Nat_Transfer Divides +imports Nat_Transfer Divides Lifting +begin + +subsection {* Type of target language integers *} + +typedef integer = "UNIV \<Colon> int set" + morphisms int_of_integer integer_of_int .. + +setup_lifting (no_code) type_definition_integer + +lemma integer_eq_iff: + "k = l \<longleftrightarrow> int_of_integer k = int_of_integer l" + by transfer rule + +lemma integer_eqI: + "int_of_integer k = int_of_integer l \<Longrightarrow> k = l" + using integer_eq_iff [of k l] by simp + +lemma int_of_integer_integer_of_int [simp]: + "int_of_integer (integer_of_int k) = k" + by transfer rule + +lemma integer_of_int_int_of_integer [simp]: + "integer_of_int (int_of_integer k) = k" + by transfer rule + +instantiation integer :: ring_1 begin -text {* - Code numerals are isomorphic to HOL @{typ nat} but - mapped to target-language builtin numerals. -*} +lift_definition zero_integer :: integer + is "0 :: int" + . + +declare zero_integer.rep_eq [simp] -subsection {* Datatype of target language numerals *} +lift_definition one_integer :: integer + is "1 :: int" + . + +declare one_integer.rep_eq [simp] -typedef code_numeral = "UNIV \<Colon> nat set" - morphisms nat_of of_nat .. +lift_definition plus_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" + is "plus :: int \<Rightarrow> int \<Rightarrow> int" + . + +declare plus_integer.rep_eq [simp] -lemma of_nat_nat_of [simp]: - "of_nat (nat_of k) = k" - by (rule nat_of_inverse) +lift_definition uminus_integer :: "integer \<Rightarrow> integer" + is "uminus :: int \<Rightarrow> int" + . + +declare uminus_integer.rep_eq [simp] -lemma nat_of_of_nat [simp]: - "nat_of (of_nat n) = n" - by (rule of_nat_inverse) (rule UNIV_I) +lift_definition minus_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" + is "minus :: int \<Rightarrow> int \<Rightarrow> int" + . + +declare minus_integer.rep_eq [simp] -lemma [measure_function]: - "is_measure nat_of" by (rule is_measure_trivial) +lift_definition times_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" + is "times :: int \<Rightarrow> int \<Rightarrow> int" + . + +declare times_integer.rep_eq [simp] -lemma code_numeral: - "(\<And>n\<Colon>code_numeral. PROP P n) \<equiv> (\<And>n\<Colon>nat. PROP P (of_nat n))" -proof - fix n :: nat - assume "\<And>n\<Colon>code_numeral. PROP P n" - then show "PROP P (of_nat n)" . -next - fix n :: code_numeral - assume "\<And>n\<Colon>nat. PROP P (of_nat n)" - then have "PROP P (of_nat (nat_of n))" . - then show "PROP P n" by simp +instance proof +qed (transfer, simp add: algebra_simps)+ + +end + +lemma [transfer_rule]: + "fun_rel HOL.eq cr_integer (of_nat :: nat \<Rightarrow> int) (of_nat :: nat \<Rightarrow> integer)" + by (unfold of_nat_def [abs_def]) transfer_prover + +lemma [transfer_rule]: + "fun_rel HOL.eq cr_integer (\<lambda>k :: int. k :: int) (of_int :: int \<Rightarrow> integer)" +proof - + have "fun_rel HOL.eq cr_integer (of_int :: int \<Rightarrow> int) (of_int :: int \<Rightarrow> integer)" + by (unfold of_int_of_nat [abs_def]) transfer_prover + then show ?thesis by (simp add: id_def) qed -lemma code_numeral_case: - assumes "\<And>n. k = of_nat n \<Longrightarrow> P" - shows P - by (rule assms [of "nat_of k"]) simp - -lemma code_numeral_induct_raw: - assumes "\<And>n. P (of_nat n)" - shows "P k" +lemma [transfer_rule]: + "fun_rel HOL.eq cr_integer (numeral :: num \<Rightarrow> int) (numeral :: num \<Rightarrow> integer)" proof - - from assms have "P (of_nat (nat_of k))" . + have "fun_rel HOL.eq cr_integer (numeral :: num \<Rightarrow> int) (\<lambda>n. of_int (numeral n))" + by transfer_prover then show ?thesis by simp qed -lemma nat_of_inject [simp]: - "nat_of k = nat_of l \<longleftrightarrow> k = l" - by (rule nat_of_inject) +lemma [transfer_rule]: + "fun_rel HOL.eq cr_integer (neg_numeral :: num \<Rightarrow> int) (neg_numeral :: num \<Rightarrow> integer)" + by (unfold neg_numeral_def [abs_def]) transfer_prover + +lemma [transfer_rule]: + "fun_rel HOL.eq (fun_rel HOL.eq cr_integer) (Num.sub :: _ \<Rightarrow> _ \<Rightarrow> int) (Num.sub :: _ \<Rightarrow> _ \<Rightarrow> integer)" + by (unfold Num.sub_def [abs_def]) transfer_prover + +lemma int_of_integer_of_nat [simp]: + "int_of_integer (of_nat n) = of_nat n" + by transfer rule + +lift_definition integer_of_nat :: "nat \<Rightarrow> integer" + is "of_nat :: nat \<Rightarrow> int" + . + +lemma integer_of_nat_eq_of_nat [code]: + "integer_of_nat = of_nat" + by transfer rule + +lemma int_of_integer_integer_of_nat [simp]: + "int_of_integer (integer_of_nat n) = of_nat n" + by transfer rule + +lift_definition nat_of_integer :: "integer \<Rightarrow> nat" + is Int.nat + . -lemma of_nat_inject [simp]: - "of_nat n = of_nat m \<longleftrightarrow> n = m" - by (rule of_nat_inject) (rule UNIV_I)+ +lemma nat_of_integer_of_nat [simp]: + "nat_of_integer (of_nat n) = n" + by transfer simp + +lemma int_of_integer_of_int [simp]: + "int_of_integer (of_int k) = k" + by transfer simp + +lemma nat_of_integer_integer_of_nat [simp]: + "nat_of_integer (integer_of_nat n) = n" + by transfer simp + +lemma integer_of_int_eq_of_int [simp, code_abbrev]: + "integer_of_int = of_int" + by transfer (simp add: fun_eq_iff) -instantiation code_numeral :: zero +lemma of_int_integer_of [simp]: + "of_int (int_of_integer k) = (k :: integer)" + by transfer rule + +lemma int_of_integer_numeral [simp]: + "int_of_integer (numeral k) = numeral k" + by transfer rule + +lemma int_of_integer_neg_numeral [simp]: + "int_of_integer (neg_numeral k) = neg_numeral k" + by transfer rule + +lemma int_of_integer_sub [simp]: + "int_of_integer (Num.sub k l) = Num.sub k l" + by transfer rule + +instantiation integer :: "{ring_div, equal, linordered_idom}" begin -definition [simp, code del]: - "0 = of_nat 0" +lift_definition div_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" + is "Divides.div :: int \<Rightarrow> int \<Rightarrow> int" + . + +declare div_integer.rep_eq [simp] + +lift_definition mod_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" + is "Divides.mod :: int \<Rightarrow> int \<Rightarrow> int" + . + +declare mod_integer.rep_eq [simp] + +lift_definition abs_integer :: "integer \<Rightarrow> integer" + is "abs :: int \<Rightarrow> int" + . + +declare abs_integer.rep_eq [simp] -instance .. +lift_definition sgn_integer :: "integer \<Rightarrow> integer" + is "sgn :: int \<Rightarrow> int" + . + +declare sgn_integer.rep_eq [simp] + +lift_definition less_eq_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool" + is "less_eq :: int \<Rightarrow> int \<Rightarrow> bool" + . + +lift_definition less_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool" + is "less :: int \<Rightarrow> int \<Rightarrow> bool" + . + +lift_definition equal_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool" + is "HOL.equal :: int \<Rightarrow> int \<Rightarrow> bool" + . + +instance proof +qed (transfer, simp add: algebra_simps equal less_le_not_le [symmetric] mult_strict_right_mono linear)+ end -definition Suc where [simp]: - "Suc k = of_nat (Nat.Suc (nat_of k))" +lemma [transfer_rule]: + "fun_rel cr_integer (fun_rel cr_integer cr_integer) (min :: _ \<Rightarrow> _ \<Rightarrow> int) (min :: _ \<Rightarrow> _ \<Rightarrow> integer)" + by (unfold min_def [abs_def]) transfer_prover + +lemma [transfer_rule]: + "fun_rel cr_integer (fun_rel cr_integer cr_integer) (max :: _ \<Rightarrow> _ \<Rightarrow> int) (max :: _ \<Rightarrow> _ \<Rightarrow> integer)" + by (unfold max_def [abs_def]) transfer_prover + +lemma int_of_integer_min [simp]: + "int_of_integer (min k l) = min (int_of_integer k) (int_of_integer l)" + by transfer rule + +lemma int_of_integer_max [simp]: + "int_of_integer (max k l) = max (int_of_integer k) (int_of_integer l)" + by transfer rule -rep_datatype "0 \<Colon> code_numeral" Suc -proof - - fix P :: "code_numeral \<Rightarrow> bool" - fix k :: code_numeral - assume "P 0" then have init: "P (of_nat 0)" by simp - assume "\<And>k. P k \<Longrightarrow> P (Suc k)" - then have "\<And>n. P (of_nat n) \<Longrightarrow> P (Suc (of_nat n))" . - then have step: "\<And>n. P (of_nat n) \<Longrightarrow> P (of_nat (Nat.Suc n))" by simp - from init step have "P (of_nat (nat_of k))" - by (induct ("nat_of k")) simp_all - then show "P k" by simp -qed simp_all +lemma nat_of_integer_non_positive [simp]: + "k \<le> 0 \<Longrightarrow> nat_of_integer k = 0" + by transfer simp + +lemma of_nat_of_integer [simp]: + "of_nat (nat_of_integer k) = max 0 k" + by transfer auto + -declare code_numeral_case [case_names nat, cases type: code_numeral] -declare code_numeral.induct [case_names nat, induct type: code_numeral] +subsection {* Code theorems for target language integers *} + +text {* Constructors *} -lemma code_numeral_decr [termination_simp]: - "k \<noteq> of_nat 0 \<Longrightarrow> nat_of k - Nat.Suc 0 < nat_of k" - by (cases k) simp +definition Pos :: "num \<Rightarrow> integer" +where + [simp, code_abbrev]: "Pos = numeral" + +lemma [transfer_rule]: + "fun_rel HOL.eq cr_integer numeral Pos" + by simp transfer_prover -lemma [simp, code]: - "code_numeral_size = nat_of" -proof (rule ext) - fix k - have "code_numeral_size k = nat_size (nat_of k)" - by (induct k rule: code_numeral.induct) (simp_all del: zero_code_numeral_def Suc_def, simp_all) - also have "nat_size (nat_of k) = nat_of k" by (induct ("nat_of k")) simp_all - finally show "code_numeral_size k = nat_of k" . -qed +definition Neg :: "num \<Rightarrow> integer" +where + [simp, code_abbrev]: "Neg = neg_numeral" + +lemma [transfer_rule]: + "fun_rel HOL.eq cr_integer neg_numeral Neg" + by simp transfer_prover + +code_datatype "0::integer" Pos Neg + + +text {* Auxiliary operations *} + +lift_definition dup :: "integer \<Rightarrow> integer" + is "\<lambda>k::int. k + k" + . -lemma [simp, code]: - "size = nat_of" -proof (rule ext) - fix k - show "size k = nat_of k" - by (induct k) (simp_all del: zero_code_numeral_def Suc_def, simp_all) -qed +lemma dup_code [code]: + "dup 0 = 0" + "dup (Pos n) = Pos (Num.Bit0 n)" + "dup (Neg n) = Neg (Num.Bit0 n)" + by (transfer, simp only: neg_numeral_def numeral_Bit0 minus_add_distrib)+ + +lift_definition sub :: "num \<Rightarrow> num \<Rightarrow> integer" + is "\<lambda>m n. numeral m - numeral n :: int" + . -lemmas [code del] = code_numeral.recs code_numeral.cases - -lemma [code]: - "HOL.equal k l \<longleftrightarrow> HOL.equal (nat_of k) (nat_of l)" - by (cases k, cases l) (simp add: equal) - -lemma [code nbe]: - "HOL.equal (k::code_numeral) k \<longleftrightarrow> True" - by (rule equal_refl) +lemma sub_code [code]: + "sub Num.One Num.One = 0" + "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)" + "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)" + "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)" + "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)" + "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)" + "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)" + "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1" + "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1" + by (transfer, simp add: dbl_def dbl_inc_def dbl_dec_def)+ -subsection {* Basic arithmetic *} +text {* Implementations *} -instantiation code_numeral :: "{minus, linordered_semidom, semiring_div, linorder}" -begin - -definition [simp, code del]: - "(1\<Colon>code_numeral) = of_nat 1" +lemma one_integer_code [code, code_unfold]: + "1 = Pos Num.One" + by simp -definition [simp, code del]: - "n + m = of_nat (nat_of n + nat_of m)" - -definition [simp, code del]: - "n - m = of_nat (nat_of n - nat_of m)" - -definition [simp, code del]: - "n * m = of_nat (nat_of n * nat_of m)" - -definition [simp, code del]: - "n div m = of_nat (nat_of n div nat_of m)" +lemma plus_integer_code [code]: + "k + 0 = (k::integer)" + "0 + l = (l::integer)" + "Pos m + Pos n = Pos (m + n)" + "Pos m + Neg n = sub m n" + "Neg m + Pos n = sub n m" + "Neg m + Neg n = Neg (m + n)" + by (transfer, simp)+ -definition [simp, code del]: - "n mod m = of_nat (nat_of n mod nat_of m)" - -definition [simp, code del]: - "n \<le> m \<longleftrightarrow> nat_of n \<le> nat_of m" - -definition [simp, code del]: - "n < m \<longleftrightarrow> nat_of n < nat_of m" - -instance proof -qed (auto simp add: code_numeral distrib_right intro: mult_commute) +lemma uminus_integer_code [code]: + "uminus 0 = (0::integer)" + "uminus (Pos m) = Neg m" + "uminus (Neg m) = Pos m" + by simp_all -end - -lemma nat_of_numeral [simp]: "nat_of (numeral k) = numeral k" - by (induct k rule: num_induct) (simp_all add: numeral_inc) +lemma minus_integer_code [code]: + "k - 0 = (k::integer)" + "0 - l = uminus (l::integer)" + "Pos m - Pos n = sub m n" + "Pos m - Neg n = Pos (m + n)" + "Neg m - Pos n = Neg (m + n)" + "Neg m - Neg n = sub n m" + by (transfer, simp)+ -definition Num :: "num \<Rightarrow> code_numeral" - where [simp, code_abbrev]: "Num = numeral" +lemma abs_integer_code [code]: + "\<bar>k\<bar> = (if (k::integer) < 0 then - k else k)" + by simp -code_datatype "0::code_numeral" Num - -lemma one_code_numeral_code [code]: - "(1\<Colon>code_numeral) = Numeral1" +lemma sgn_integer_code [code]: + "sgn k = (if k = 0 then 0 else if (k::integer) < 0 then - 1 else 1)" by simp -lemma [code_abbrev]: "Numeral1 = (1\<Colon>code_numeral)" - using one_code_numeral_code .. +lemma times_integer_code [code]: + "k * 0 = (0::integer)" + "0 * l = (0::integer)" + "Pos m * Pos n = Pos (m * n)" + "Pos m * Neg n = Neg (m * n)" + "Neg m * Pos n = Neg (m * n)" + "Neg m * Neg n = Pos (m * n)" + by simp_all + +definition divmod_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer \<times> integer" +where + "divmod_integer k l = (k div l, k mod l)" + +lemma fst_divmod [simp]: + "fst (divmod_integer k l) = k div l" + by (simp add: divmod_integer_def) + +lemma snd_divmod [simp]: + "snd (divmod_integer k l) = k mod l" + by (simp add: divmod_integer_def) + +definition divmod_abs :: "integer \<Rightarrow> integer \<Rightarrow> integer \<times> integer" +where + "divmod_abs k l = (\<bar>k\<bar> div \<bar>l\<bar>, \<bar>k\<bar> mod \<bar>l\<bar>)" + +lemma fst_divmod_abs [simp]: + "fst (divmod_abs k l) = \<bar>k\<bar> div \<bar>l\<bar>" + by (simp add: divmod_abs_def) + +lemma snd_divmod_abs [simp]: + "snd (divmod_abs k l) = \<bar>k\<bar> mod \<bar>l\<bar>" + by (simp add: divmod_abs_def) -lemma plus_code_numeral_code [code nbe]: - "of_nat n + of_nat m = of_nat (n + m)" - by simp +lemma divmod_abs_terminate_code [code]: + "divmod_abs (Neg k) (Neg l) = divmod_abs (Pos k) (Pos l)" + "divmod_abs (Neg k) (Pos l) = divmod_abs (Pos k) (Pos l)" + "divmod_abs (Pos k) (Neg l) = divmod_abs (Pos k) (Pos l)" + "divmod_abs j 0 = (0, \<bar>j\<bar>)" + "divmod_abs 0 j = (0, 0)" + by (simp_all add: prod_eq_iff) + +lemma divmod_abs_rec_code [code]: + "divmod_abs (Pos k) (Pos l) = + (let j = sub k l in + if j < 0 then (0, Pos k) + else let (q, r) = divmod_abs j (Pos l) in (q + 1, r))" + apply (simp add: prod_eq_iff Let_def prod_case_beta) + apply transfer + apply (simp add: sub_non_negative sub_negative div_pos_pos_trivial mod_pos_pos_trivial div_pos_geq mod_pos_geq) + done -lemma minus_code_numeral_code [code nbe]: - "of_nat n - of_nat m = of_nat (n - m)" +lemma divmod_integer_code [code]: + "divmod_integer k l = + (if k = 0 then (0, 0) else if l = 0 then (0, k) else + (apsnd \<circ> times \<circ> sgn) l (if sgn k = sgn l + then divmod_abs k l + else (let (r, s) = divmod_abs k l in + if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))" +proof - + have aux1: "\<And>k l::int. sgn k = sgn l \<longleftrightarrow> k = 0 \<and> l = 0 \<or> 0 < l \<and> 0 < k \<or> l < 0 \<and> k < 0" + by (auto simp add: sgn_if) + have aux2: "\<And>q::int. - int_of_integer k = int_of_integer l * q \<longleftrightarrow> int_of_integer k = int_of_integer l * - q" by auto + show ?thesis + by (simp add: prod_eq_iff integer_eq_iff prod_case_beta aux1) + (auto simp add: zdiv_zminus1_eq_if zmod_zminus1_eq_if div_minus_right mod_minus_right aux2) +qed + +lemma div_integer_code [code]: + "k div l = fst (divmod_integer k l)" by simp -lemma times_code_numeral_code [code nbe]: - "of_nat n * of_nat m = of_nat (n * m)" - by simp - -lemma less_eq_code_numeral_code [code nbe]: - "of_nat n \<le> of_nat m \<longleftrightarrow> n \<le> m" - by simp - -lemma less_code_numeral_code [code nbe]: - "of_nat n < of_nat m \<longleftrightarrow> n < m" +lemma mod_integer_code [code]: + "k mod l = snd (divmod_integer k l)" by simp -lemma code_numeral_zero_minus_one: - "(0::code_numeral) - 1 = 0" - by simp +lemma equal_integer_code [code]: + "HOL.equal 0 (0::integer) \<longleftrightarrow> True" + "HOL.equal 0 (Pos l) \<longleftrightarrow> False" + "HOL.equal 0 (Neg l) \<longleftrightarrow> False" + "HOL.equal (Pos k) 0 \<longleftrightarrow> False" + "HOL.equal (Pos k) (Pos l) \<longleftrightarrow> HOL.equal k l" + "HOL.equal (Pos k) (Neg l) \<longleftrightarrow> False" + "HOL.equal (Neg k) 0 \<longleftrightarrow> False" + "HOL.equal (Neg k) (Pos l) \<longleftrightarrow> False" + "HOL.equal (Neg k) (Neg l) \<longleftrightarrow> HOL.equal k l" + by (simp_all add: equal) + +lemma equal_integer_refl [code nbe]: + "HOL.equal (k::integer) k \<longleftrightarrow> True" + by (fact equal_refl) -lemma Suc_code_numeral_minus_one: - "Suc n - 1 = n" - by simp +lemma less_eq_integer_code [code]: + "0 \<le> (0::integer) \<longleftrightarrow> True" + "0 \<le> Pos l \<longleftrightarrow> True" + "0 \<le> Neg l \<longleftrightarrow> False" + "Pos k \<le> 0 \<longleftrightarrow> False" + "Pos k \<le> Pos l \<longleftrightarrow> k \<le> l" + "Pos k \<le> Neg l \<longleftrightarrow> False" + "Neg k \<le> 0 \<longleftrightarrow> True" + "Neg k \<le> Pos l \<longleftrightarrow> True" + "Neg k \<le> Neg l \<longleftrightarrow> l \<le> k" + by simp_all + +lemma less_integer_code [code]: + "0 < (0::integer) \<longleftrightarrow> False" + "0 < Pos l \<longleftrightarrow> True" + "0 < Neg l \<longleftrightarrow> False" + "Pos k < 0 \<longleftrightarrow> False" + "Pos k < Pos l \<longleftrightarrow> k < l" + "Pos k < Neg l \<longleftrightarrow> False" + "Neg k < 0 \<longleftrightarrow> True" + "Neg k < Pos l \<longleftrightarrow> True" + "Neg k < Neg l \<longleftrightarrow> l < k" + by simp_all -lemma of_nat_code [code]: - "of_nat = Nat.of_nat" -proof - fix n :: nat - have "Nat.of_nat n = of_nat n" - by (induct n) simp_all - then show "of_nat n = Nat.of_nat n" - by (rule sym) +lift_definition integer_of_num :: "num \<Rightarrow> integer" + is "numeral :: num \<Rightarrow> int" + . + +lemma integer_of_num [code]: + "integer_of_num num.One = 1" + "integer_of_num (num.Bit0 n) = (let k = integer_of_num n in k + k)" + "integer_of_num (num.Bit1 n) = (let k = integer_of_num n in k + k + 1)" + by (transfer, simp only: numeral.simps Let_def)+ + +lift_definition num_of_integer :: "integer \<Rightarrow> num" + is "num_of_nat \<circ> nat" + . + +lemma num_of_integer_code [code]: + "num_of_integer k = (if k \<le> 1 then Num.One + else let + (l, j) = divmod_integer k 2; + l' = num_of_integer l; + l'' = l' + l' + in if j = 0 then l'' else l'' + Num.One)" +proof - + { + assume "int_of_integer k mod 2 = 1" + then have "nat (int_of_integer k mod 2) = nat 1" by simp + moreover assume *: "1 < int_of_integer k" + ultimately have **: "nat (int_of_integer k) mod 2 = 1" by (simp add: nat_mod_distrib) + have "num_of_nat (nat (int_of_integer k)) = + num_of_nat (2 * (nat (int_of_integer k) div 2) + nat (int_of_integer k) mod 2)" + by simp + then have "num_of_nat (nat (int_of_integer k)) = + num_of_nat (nat (int_of_integer k) div 2 + nat (int_of_integer k) div 2 + nat (int_of_integer k) mod 2)" + by (simp add: mult_2) + with ** have "num_of_nat (nat (int_of_integer k)) = + num_of_nat (nat (int_of_integer k) div 2 + nat (int_of_integer k) div 2 + 1)" + by simp + } + note aux = this + show ?thesis + by (auto simp add: num_of_integer_def nat_of_integer_def Let_def prod_case_beta + not_le integer_eq_iff less_eq_integer_def + nat_mult_distrib nat_div_distrib num_of_nat_One num_of_nat_plus_distrib + mult_2 [where 'a=nat] aux add_One) qed -lemma code_numeral_not_eq_zero: "i \<noteq> of_nat 0 \<longleftrightarrow> i \<ge> 1" - by (cases i) auto - -definition nat_of_aux :: "code_numeral \<Rightarrow> nat \<Rightarrow> nat" where - "nat_of_aux i n = nat_of i + n" - -lemma nat_of_aux_code [code]: - "nat_of_aux i n = (if i = 0 then n else nat_of_aux (i - 1) (Nat.Suc n))" - by (auto simp add: nat_of_aux_def code_numeral_not_eq_zero) - -lemma nat_of_code [code]: - "nat_of i = nat_of_aux i 0" - by (simp add: nat_of_aux_def) - -definition div_mod :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<times> code_numeral" where - [code del]: "div_mod n m = (n div m, n mod m)" - -lemma [code]: - "div_mod n m = (if m = 0 then (0, n) else (n div m, n mod m))" - unfolding div_mod_def by auto - -lemma [code]: - "n div m = fst (div_mod n m)" - unfolding div_mod_def by simp - -lemma [code]: - "n mod m = snd (div_mod n m)" - unfolding div_mod_def by simp - -definition int_of :: "code_numeral \<Rightarrow> int" where - "int_of = Nat.of_nat o nat_of" - -lemma int_of_code [code]: - "int_of k = (if k = 0 then 0 - else (if k mod 2 = 0 then 2 * int_of (k div 2) else 2 * int_of (k div 2) + 1))" +lemma nat_of_integer_code [code]: + "nat_of_integer k = (if k \<le> 0 then 0 + else let + (l, j) = divmod_integer k 2; + l' = nat_of_integer l; + l'' = l' + l' + in if j = 0 then l'' else l'' + 1)" proof - - have "(nat_of k div 2) * 2 + nat_of k mod 2 = nat_of k" - by (rule mod_div_equality) - then have "int ((nat_of k div 2) * 2 + nat_of k mod 2) = int (nat_of k)" - by simp - then have "int (nat_of k) = int (nat_of k div 2) * 2 + int (nat_of k mod 2)" - unfolding of_nat_mult of_nat_add by simp - then show ?thesis by (auto simp add: int_of_def mult_ac) + obtain j where "k = integer_of_int j" + proof + show "k = integer_of_int (int_of_integer k)" by simp + qed + moreover have "2 * (j div 2) = j - j mod 2" + by (simp add: zmult_div_cancel mult_commute) + ultimately show ?thesis + by (auto simp add: split_def Let_def mod_integer_def nat_of_integer_def not_le + nat_add_distrib [symmetric] Suc_nat_eq_nat_zadd1) + (auto simp add: mult_2 [symmetric]) qed +lemma int_of_integer_code [code]: + "int_of_integer k = (if k < 0 then - (int_of_integer (- k)) + else if k = 0 then 0 + else let + (l, j) = divmod_integer k 2; + l' = 2 * int_of_integer l + in if j = 0 then l' else l' + 1)" + by (auto simp add: split_def Let_def integer_eq_iff zmult_div_cancel) -hide_const (open) of_nat nat_of Suc int_of +lemma integer_of_int_code [code]: + "integer_of_int k = (if k < 0 then - (integer_of_int (- k)) + else if k = 0 then 0 + else let + (l, j) = divmod_int k 2; + l' = 2 * integer_of_int l + in if j = 0 then l' else l' + 1)" + by (auto simp add: split_def Let_def integer_eq_iff zmult_div_cancel) + +hide_const (open) Pos Neg sub dup divmod_abs -subsection {* Code generator setup *} +subsection {* Serializer setup for target language integers *} -text {* Implementation of code numerals by bounded integers *} +code_reserved Eval int Integer abs -code_type code_numeral - (SML "int") +code_type integer + (SML "IntInf.int") (OCaml "Big'_int.big'_int") (Haskell "Integer") (Scala "BigInt") + (Eval "int") -code_instance code_numeral :: equal +code_instance integer :: equal (Haskell -) -setup {* - Numeral.add_code @{const_name Num} - false Code_Printer.literal_naive_numeral "SML" - #> fold (Numeral.add_code @{const_name Num} - false Code_Printer.literal_numeral) ["OCaml", "Haskell", "Scala"] -*} - -code_reserved SML Int int -code_reserved Eval Integer - -code_const "0::code_numeral" +code_const "0::integer" (SML "0") (OCaml "Big'_int.zero'_big'_int") (Haskell "0") (Scala "BigInt(0)") -code_const "plus \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" - (SML "Int.+/ ((_),/ (_))") +setup {* + fold (Numeral.add_code @{const_name Code_Numeral.Pos} + false Code_Printer.literal_numeral) ["SML", "OCaml", "Haskell", "Scala"] +*} + +setup {* + fold (Numeral.add_code @{const_name Code_Numeral.Neg} + true Code_Printer.literal_numeral) ["SML", "OCaml", "Haskell", "Scala"] +*} + +code_const "plus :: integer \<Rightarrow> _ \<Rightarrow> _" + (SML "IntInf.+ ((_), (_))") (OCaml "Big'_int.add'_big'_int") (Haskell infixl 6 "+") (Scala infixl 7 "+") (Eval infixl 8 "+") -code_const "minus \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" - (SML "Int.max/ (0 : int,/ Int.-/ ((_),/ (_)))") - (OCaml "Big'_int.max'_big'_int/ Big'_int.zero'_big'_int/ (Big'_int.sub'_big'_int/ _/ _)") - (Haskell "Prelude.max/ (0 :: Integer)/ (_/ -/ _)") - (Scala "!(_/ -/ _).max(0)") - (Eval "Integer.max/ 0/ (_/ -/ _)") +code_const "uminus :: integer \<Rightarrow> _" + (SML "IntInf.~") + (OCaml "Big'_int.minus'_big'_int") + (Haskell "negate") + (Scala "!(- _)") + (Eval "~/ _") + +code_const "minus :: integer \<Rightarrow> _" + (SML "IntInf.- ((_), (_))") + (OCaml "Big'_int.sub'_big'_int") + (Haskell infixl 6 "-") + (Scala infixl 7 "-") + (Eval infixl 8 "-") -code_const "times \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" - (SML "Int.*/ ((_),/ (_))") +code_const Code_Numeral.dup + (SML "IntInf.*/ (2,/ (_))") + (OCaml "Big'_int.mult'_big'_int/ (Big'_int.big'_int'_of'_int/ 2)") + (Haskell "!(2 * _)") + (Scala "!(2 * _)") + (Eval "!(2 * _)") + +code_const Code_Numeral.sub + (SML "!(raise/ Fail/ \"sub\")") + (OCaml "failwith/ \"sub\"") + (Haskell "error/ \"sub\"") + (Scala "!sys.error(\"sub\")") + +code_const "times :: integer \<Rightarrow> _ \<Rightarrow> _" + (SML "IntInf.* ((_), (_))") (OCaml "Big'_int.mult'_big'_int") (Haskell infixl 7 "*") (Scala infixl 8 "*") - (Eval infixl 8 "*") + (Eval infixl 9 "*") -code_const Code_Numeral.div_mod - (SML "!(fn n => fn m =>/ if m = 0/ then (0, n) else/ (Int.div (n, m), Int.mod (n, m)))") +code_const Code_Numeral.divmod_abs + (SML "IntInf.divMod/ (IntInf.abs _,/ IntInf.abs _)") (OCaml "Big'_int.quomod'_big'_int/ (Big'_int.abs'_big'_int _)/ (Big'_int.abs'_big'_int _)") - (Haskell "divMod") + (Haskell "divMod/ (abs _)/ (abs _)") (Scala "!((k: BigInt) => (l: BigInt) =>/ if (l == 0)/ (BigInt(0), k) else/ (k.abs '/% l.abs))") - (Eval "!(fn n => fn m =>/ if m = 0/ then (0, n) else/ (Integer.div'_mod n m))") + (Eval "Integer.div'_mod/ (abs _)/ (abs _)") -code_const "HOL.equal \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> bool" - (SML "!((_ : Int.int) = _)") +code_const "HOL.equal :: integer \<Rightarrow> _ \<Rightarrow> bool" + (SML "!((_ : IntInf.int) = _)") (OCaml "Big'_int.eq'_big'_int") (Haskell infix 4 "==") (Scala infixl 5 "==") - (Eval "!((_ : int) = _)") + (Eval infixl 6 "=") -code_const "less_eq \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> bool" - (SML "Int.<=/ ((_),/ (_))") +code_const "less_eq :: integer \<Rightarrow> _ \<Rightarrow> bool" + (SML "IntInf.<= ((_), (_))") (OCaml "Big'_int.le'_big'_int") (Haskell infix 4 "<=") (Scala infixl 4 "<=") (Eval infixl 6 "<=") -code_const "less \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> bool" - (SML "Int.</ ((_),/ (_))") +code_const "less :: integer \<Rightarrow> _ \<Rightarrow> bool" + (SML "IntInf.< ((_), (_))") (OCaml "Big'_int.lt'_big'_int") (Haskell infix 4 "<") (Scala infixl 4 "<") @@ -346,5 +623,321 @@ code_modulename Haskell Code_Numeral Arith + +subsection {* Type of target language naturals *} + +typedef natural = "UNIV \<Colon> nat set" + morphisms nat_of_natural natural_of_nat .. + +setup_lifting (no_code) type_definition_natural + +lemma natural_eq_iff [termination_simp]: + "m = n \<longleftrightarrow> nat_of_natural m = nat_of_natural n" + by transfer rule + +lemma natural_eqI: + "nat_of_natural m = nat_of_natural n \<Longrightarrow> m = n" + using natural_eq_iff [of m n] by simp + +lemma nat_of_natural_of_nat_inverse [simp]: + "nat_of_natural (natural_of_nat n) = n" + by transfer rule + +lemma natural_of_nat_of_natural_inverse [simp]: + "natural_of_nat (nat_of_natural n) = n" + by transfer rule + +instantiation natural :: "{comm_monoid_diff, semiring_1}" +begin + +lift_definition zero_natural :: natural + is "0 :: nat" + . + +declare zero_natural.rep_eq [simp] + +lift_definition one_natural :: natural + is "1 :: nat" + . + +declare one_natural.rep_eq [simp] + +lift_definition plus_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural" + is "plus :: nat \<Rightarrow> nat \<Rightarrow> nat" + . + +declare plus_natural.rep_eq [simp] + +lift_definition minus_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural" + is "minus :: nat \<Rightarrow> nat \<Rightarrow> nat" + . + +declare minus_natural.rep_eq [simp] + +lift_definition times_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural" + is "times :: nat \<Rightarrow> nat \<Rightarrow> nat" + . + +declare times_natural.rep_eq [simp] + +instance proof +qed (transfer, simp add: algebra_simps)+ + +end + +lemma [transfer_rule]: + "fun_rel HOL.eq cr_natural (\<lambda>n::nat. n) (of_nat :: nat \<Rightarrow> natural)" +proof - + have "fun_rel HOL.eq cr_natural (of_nat :: nat \<Rightarrow> nat) (of_nat :: nat \<Rightarrow> natural)" + by (unfold of_nat_def [abs_def]) transfer_prover + then show ?thesis by (simp add: id_def) +qed + +lemma [transfer_rule]: + "fun_rel HOL.eq cr_natural (numeral :: num \<Rightarrow> nat) (numeral :: num \<Rightarrow> natural)" +proof - + have "fun_rel HOL.eq cr_natural (numeral :: num \<Rightarrow> nat) (\<lambda>n. of_nat (numeral n))" + by transfer_prover + then show ?thesis by simp +qed + +lemma nat_of_natural_of_nat [simp]: + "nat_of_natural (of_nat n) = n" + by transfer rule + +lemma natural_of_nat_of_nat [simp, code_abbrev]: + "natural_of_nat = of_nat" + by transfer rule + +lemma of_nat_of_natural [simp]: + "of_nat (nat_of_natural n) = n" + by transfer rule + +lemma nat_of_natural_numeral [simp]: + "nat_of_natural (numeral k) = numeral k" + by transfer rule + +instantiation natural :: "{semiring_div, equal, linordered_semiring}" +begin + +lift_definition div_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural" + is "Divides.div :: nat \<Rightarrow> nat \<Rightarrow> nat" + . + +declare div_natural.rep_eq [simp] + +lift_definition mod_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural" + is "Divides.mod :: nat \<Rightarrow> nat \<Rightarrow> nat" + . + +declare mod_natural.rep_eq [simp] + +lift_definition less_eq_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool" + is "less_eq :: nat \<Rightarrow> nat \<Rightarrow> bool" + . + +declare less_eq_natural.rep_eq [termination_simp] + +lift_definition less_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool" + is "less :: nat \<Rightarrow> nat \<Rightarrow> bool" + . + +declare less_natural.rep_eq [termination_simp] + +lift_definition equal_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool" + is "HOL.equal :: nat \<Rightarrow> nat \<Rightarrow> bool" + . + +instance proof +qed (transfer, simp add: algebra_simps equal less_le_not_le [symmetric] linear)+ + end +lemma [transfer_rule]: + "fun_rel cr_natural (fun_rel cr_natural cr_natural) (min :: _ \<Rightarrow> _ \<Rightarrow> nat) (min :: _ \<Rightarrow> _ \<Rightarrow> natural)" + by (unfold min_def [abs_def]) transfer_prover + +lemma [transfer_rule]: + "fun_rel cr_natural (fun_rel cr_natural cr_natural) (max :: _ \<Rightarrow> _ \<Rightarrow> nat) (max :: _ \<Rightarrow> _ \<Rightarrow> natural)" + by (unfold max_def [abs_def]) transfer_prover + +lemma nat_of_natural_min [simp]: + "nat_of_natural (min k l) = min (nat_of_natural k) (nat_of_natural l)" + by transfer rule + +lemma nat_of_natural_max [simp]: + "nat_of_natural (max k l) = max (nat_of_natural k) (nat_of_natural l)" + by transfer rule + +lift_definition natural_of_integer :: "integer \<Rightarrow> natural" + is "nat :: int \<Rightarrow> nat" + . + +lift_definition integer_of_natural :: "natural \<Rightarrow> integer" + is "of_nat :: nat \<Rightarrow> int" + . + +lemma natural_of_integer_of_natural [simp]: + "natural_of_integer (integer_of_natural n) = n" + by transfer simp + +lemma integer_of_natural_of_integer [simp]: + "integer_of_natural (natural_of_integer k) = max 0 k" + by transfer auto + +lemma int_of_integer_of_natural [simp]: + "int_of_integer (integer_of_natural n) = of_nat (nat_of_natural n)" + by transfer rule + +lemma integer_of_natural_of_nat [simp]: + "integer_of_natural (of_nat n) = of_nat n" + by transfer rule + +lemma [measure_function]: + "is_measure nat_of_natural" + by (rule is_measure_trivial) + + +subsection {* Inductive represenation of target language naturals *} + +lift_definition Suc :: "natural \<Rightarrow> natural" + is Nat.Suc + . + +declare Suc.rep_eq [simp] + +rep_datatype "0::natural" Suc + by (transfer, fact nat.induct nat.inject nat.distinct)+ + +lemma natural_case [case_names nat, cases type: natural]: + fixes m :: natural + assumes "\<And>n. m = of_nat n \<Longrightarrow> P" + shows P + using assms by transfer blast + +lemma [simp, code]: + "natural_size = nat_of_natural" +proof (rule ext) + fix n + show "natural_size n = nat_of_natural n" + by (induct n) simp_all +qed + +lemma [simp, code]: + "size = nat_of_natural" +proof (rule ext) + fix n + show "size n = nat_of_natural n" + by (induct n) simp_all +qed + +lemma natural_decr [termination_simp]: + "n \<noteq> 0 \<Longrightarrow> nat_of_natural n - Nat.Suc 0 < nat_of_natural n" + by transfer simp + +lemma natural_zero_minus_one: + "(0::natural) - 1 = 0" + by simp + +lemma Suc_natural_minus_one: + "Suc n - 1 = n" + by transfer simp + +hide_const (open) Suc + + +subsection {* Code refinement for target language naturals *} + +lift_definition Nat :: "integer \<Rightarrow> natural" + is nat + . + +lemma [code_post]: + "Nat 0 = 0" + "Nat 1 = 1" + "Nat (numeral k) = numeral k" + by (transfer, simp)+ + +lemma [code abstype]: + "Nat (integer_of_natural n) = n" + by transfer simp + +lemma [code abstract]: + "integer_of_natural (natural_of_nat n) = of_nat n" + by simp + +lemma [code abstract]: + "integer_of_natural (natural_of_integer k) = max 0 k" + by simp + +lemma [code_abbrev]: + "natural_of_integer (Code_Numeral.Pos k) = numeral k" + by transfer simp + +lemma [code abstract]: + "integer_of_natural 0 = 0" + by transfer simp + +lemma [code abstract]: + "integer_of_natural 1 = 1" + by transfer simp + +lemma [code abstract]: + "integer_of_natural (Code_Numeral.Suc n) = integer_of_natural n + 1" + by transfer simp + +lemma [code]: + "nat_of_natural = nat_of_integer \<circ> integer_of_natural" + by transfer (simp add: fun_eq_iff) + +lemma [code, code_unfold]: + "natural_case f g n = (if n = 0 then f else g (n - 1))" + by (cases n rule: natural.exhaust) (simp_all, simp add: Suc_def) + +declare natural.recs [code del] + +lemma [code abstract]: + "integer_of_natural (m + n) = integer_of_natural m + integer_of_natural n" + by transfer simp + +lemma [code abstract]: + "integer_of_natural (m - n) = max 0 (integer_of_natural m - integer_of_natural n)" + by transfer simp + +lemma [code abstract]: + "integer_of_natural (m * n) = integer_of_natural m * integer_of_natural n" + by transfer (simp add: of_nat_mult) + +lemma [code abstract]: + "integer_of_natural (m div n) = integer_of_natural m div integer_of_natural n" + by transfer (simp add: zdiv_int) + +lemma [code abstract]: + "integer_of_natural (m mod n) = integer_of_natural m mod integer_of_natural n" + by transfer (simp add: zmod_int) + +lemma [code]: + "HOL.equal m n \<longleftrightarrow> HOL.equal (integer_of_natural m) (integer_of_natural n)" + by transfer (simp add: equal) + +lemma [code nbe]: + "HOL.equal n (n::natural) \<longleftrightarrow> True" + by (simp add: equal) + +lemma [code]: + "m \<le> n \<longleftrightarrow> integer_of_natural m \<le> integer_of_natural n" + by transfer simp + +lemma [code]: + "m < n \<longleftrightarrow> integer_of_natural m < integer_of_natural n" + by transfer simp + +hide_const (open) Nat + + +code_reflect Code_Numeral + datatypes natural = _ + functions integer_of_natural natural_of_integer + +end +
--- a/src/HOL/Codegenerator_Test/Candidates_Pretty.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Codegenerator_Test/Candidates_Pretty.thy Fri Feb 15 08:31:31 2013 +0100 @@ -4,7 +4,7 @@ header {* Generating code using pretty literals and natural number literals *} theory Candidates_Pretty -imports Candidates Code_Char_ord Efficient_Nat +imports Candidates Code_Char_ord Code_Target_Numeral begin end
--- a/src/HOL/Codegenerator_Test/Generate_Pretty.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Codegenerator_Test/Generate_Pretty.thy Fri Feb 15 08:31:31 2013 +0100 @@ -10,9 +10,6 @@ lemma [code, code del]: "nat_of_char = nat_of_char" .. lemma [code, code del]: "char_of_nat = char_of_nat" .. -declare Quickcheck_Narrowing.one_code_int_code [code del] -declare Quickcheck_Narrowing.int_of_code [code del] - subsection {* Check whether generated code compiles *} text {*
--- a/src/HOL/Decision_Procs/Approximation.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Decision_Procs/Approximation.thy Fri Feb 15 08:31:31 2013 +0100 @@ -9,7 +9,7 @@ "~~/src/HOL/Library/Float" "~~/src/HOL/Library/Reflection" "~~/src/HOL/Decision_Procs/Dense_Linear_Order" - "~~/src/HOL/Library/Efficient_Nat" + "~~/src/HOL/Library/Code_Target_Numeral" begin declare powr_numeral[simp] @@ -3329,8 +3329,11 @@ fun term_of_bool true = @{term True} | term_of_bool false = @{term False}; + val mk_int = HOLogic.mk_number @{typ int} o @{code integer_of_int}; + val dest_int = @{code int_of_integer} o snd o HOLogic.dest_number; + fun term_of_float (@{code Float} (k, l)) = - @{term Float} $ HOLogic.mk_number @{typ int} k $ HOLogic.mk_number @{typ int} l; + @{term Float} $ mk_int k $ mk_int l; fun term_of_float_float_option NONE = @{term "None :: (float \<times> float) option"} | term_of_float_float_option (SOME ff) = @{term "Some :: float \<times> float \<Rightarrow> _"} @@ -3339,10 +3342,11 @@ val term_of_float_float_option_list = HOLogic.mk_list @{typ "(float \<times> float) option"} o map term_of_float_float_option; - fun nat_of_term t = HOLogic.dest_nat t handle TERM _ => snd (HOLogic.dest_number t); + fun nat_of_term t = @{code nat_of_integer} + (HOLogic.dest_nat t handle TERM _ => snd (HOLogic.dest_number t)); fun float_of_term (@{term Float} $ k $ l) = - @{code Float} (snd (HOLogic.dest_number k), snd (HOLogic.dest_number l)) + @{code Float} (dest_int k, dest_int l) | float_of_term t = bad t; fun floatarith_of_term (@{term Add} $ a $ b) = @{code Add} (floatarith_of_term a, floatarith_of_term b)
--- a/src/HOL/Decision_Procs/Cooper.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Decision_Procs/Cooper.thy Fri Feb 15 08:31:31 2013 +0100 @@ -3,7 +3,7 @@ *) theory Cooper -imports Complex_Main "~~/src/HOL/Library/Efficient_Nat" "~~/src/HOL/Library/Old_Recdef" +imports Complex_Main "~~/src/HOL/Library/Code_Target_Numeral" "~~/src/HOL/Library/Old_Recdef" begin (* Periodicity of dvd *) @@ -1996,21 +1996,23 @@ ML {* @{code cooper_test} () *} -(* code_reflect Cooper_Procedure +(*code_reflect Cooper_Procedure functions pa - file "~~/src/HOL/Tools/Qelim/cooper_procedure.ML" *) + file "~~/src/HOL/Tools/Qelim/cooper_procedure.ML"*) oracle linzqe_oracle = {* let fun num_of_term vs (t as Free (xn, xT)) = (case AList.lookup (op =) vs t of NONE => error "Variable not found in the list!" - | SOME n => @{code Bound} n) - | num_of_term vs @{term "0::int"} = @{code C} 0 - | num_of_term vs @{term "1::int"} = @{code C} 1 - | num_of_term vs (@{term "numeral :: _ \<Rightarrow> int"} $ t) = @{code C} (HOLogic.dest_num t) - | num_of_term vs (@{term "neg_numeral :: _ \<Rightarrow> int"} $ t) = @{code C} (~(HOLogic.dest_num t)) - | num_of_term vs (Bound i) = @{code Bound} i + | SOME n => @{code Bound} (@{code nat_of_integer} n)) + | num_of_term vs @{term "0::int"} = @{code C} (@{code int_of_integer} 0) + | num_of_term vs @{term "1::int"} = @{code C} (@{code int_of_integer} 1) + | num_of_term vs (@{term "numeral :: _ \<Rightarrow> int"} $ t) = + @{code C} (@{code int_of_integer} (HOLogic.dest_num t)) + | num_of_term vs (@{term "neg_numeral :: _ \<Rightarrow> int"} $ t) = + @{code C} (@{code int_of_integer} (~(HOLogic.dest_num t))) + | num_of_term vs (Bound i) = @{code Bound} (@{code nat_of_integer} i) | num_of_term vs (@{term "uminus :: int \<Rightarrow> int"} $ t') = @{code Neg} (num_of_term vs t') | num_of_term vs (@{term "op + :: int \<Rightarrow> int \<Rightarrow> int"} $ t1 $ t2) = @{code Add} (num_of_term vs t1, num_of_term vs t2) @@ -2018,9 +2020,9 @@ @{code Sub} (num_of_term vs t1, num_of_term vs t2) | num_of_term vs (@{term "op * :: int \<Rightarrow> int \<Rightarrow> int"} $ t1 $ t2) = (case try HOLogic.dest_number t1 - of SOME (_, i) => @{code Mul} (i, num_of_term vs t2) + of SOME (_, i) => @{code Mul} (@{code int_of_integer} i, num_of_term vs t2) | NONE => (case try HOLogic.dest_number t2 - of SOME (_, i) => @{code Mul} (i, num_of_term vs t1) + of SOME (_, i) => @{code Mul} (@{code int_of_integer} i, num_of_term vs t1) | NONE => error "num_of_term: unsupported multiplication")) | num_of_term vs t = error ("num_of_term: unknown term " ^ Syntax.string_of_term @{context} t); @@ -2034,7 +2036,7 @@ @{code Eq} (@{code Sub} (num_of_term vs t1, num_of_term vs t2)) | fm_of_term ps vs (@{term "op dvd :: int \<Rightarrow> int \<Rightarrow> bool"} $ t1 $ t2) = (case try HOLogic.dest_number t1 - of SOME (_, i) => @{code Dvd} (i, num_of_term vs t2) + of SOME (_, i) => @{code Dvd} (@{code int_of_integer} i, num_of_term vs t2) | NONE => error "num_of_term: unsupported dvd") | fm_of_term ps vs (@{term "op = :: bool \<Rightarrow> bool \<Rightarrow> bool"} $ t1 $ t2) = @{code Iff} (fm_of_term ps vs t1, fm_of_term ps vs t2) @@ -2058,8 +2060,11 @@ in @{code A} (fm_of_term ps vs' p) end | fm_of_term ps vs t = error ("fm_of_term : unknown term " ^ Syntax.string_of_term @{context} t); -fun term_of_num vs (@{code C} i) = HOLogic.mk_number HOLogic.intT i - | term_of_num vs (@{code Bound} n) = fst (the (find_first (fn (_, m) => n = m) vs)) +fun term_of_num vs (@{code C} i) = HOLogic.mk_number HOLogic.intT (@{code integer_of_int} i) + | term_of_num vs (@{code Bound} n) = + let + val q = @{code integer_of_nat} n + in fst (the (find_first (fn (_, m) => q = m) vs)) end | term_of_num vs (@{code Neg} t') = @{term "uminus :: int \<Rightarrow> int"} $ term_of_num vs t' | term_of_num vs (@{code Add} (t1, t2)) = @{term "op + :: int \<Rightarrow> int \<Rightarrow> int"} $ term_of_num vs t1 $ term_of_num vs t2 @@ -2097,7 +2102,10 @@ HOLogic.imp $ term_of_fm ps vs t1 $ term_of_fm ps vs t2 | term_of_fm ps vs (@{code Iff} (t1, t2)) = @{term "op = :: bool \<Rightarrow> bool \<Rightarrow> bool"} $ term_of_fm ps vs t1 $ term_of_fm ps vs t2 - | term_of_fm ps vs (@{code Closed} n) = (fst o the) (find_first (fn (_, m) => m = n) ps) + | term_of_fm ps vs (@{code Closed} n) = + let + val q = @{code integer_of_nat} n + in (fst o the) (find_first (fn (_, m) => m = q) ps) end | term_of_fm ps vs (@{code NClosed} n) = term_of_fm ps vs (@{code NOT} (@{code Closed} n)); fun term_bools acc t =
--- a/src/HOL/Decision_Procs/Ferrack.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Decision_Procs/Ferrack.thy Fri Feb 15 08:31:31 2013 +0100 @@ -4,7 +4,7 @@ theory Ferrack imports Complex_Main Dense_Linear_Order DP_Library - "~~/src/HOL/Library/Efficient_Nat" "~~/src/HOL/Library/Old_Recdef" + "~~/src/HOL/Library/Code_Target_Numeral" "~~/src/HOL/Library/Old_Recdef" begin section {* Quantifier elimination for @{text "\<real> (0, 1, +, <)"} *} @@ -1818,7 +1818,7 @@ with usubst_I[OF lp mnp stnb, where x="x" and bs="bs"] tnU smU show ?lhs by blast qed -lemma ferrack: +lemma ferrack: assumes qf: "qfree p" shows "qfree (ferrack p) \<and> ((Ifm bs (ferrack p)) = (\<exists> x. Ifm (x#bs) p))" (is "_ \<and> (?rhs = ?lhs)") @@ -1922,12 +1922,15 @@ oracle linr_oracle = {* let -fun num_of_term vs (Free vT) = @{code Bound} (find_index (fn vT' => vT = vT') vs) - | num_of_term vs @{term "real (0::int)"} = @{code C} 0 - | num_of_term vs @{term "real (1::int)"} = @{code C} 1 - | num_of_term vs @{term "0::real"} = @{code C} 0 - | num_of_term vs @{term "1::real"} = @{code C} 1 - | num_of_term vs (Bound i) = @{code Bound} i +val mk_C = @{code C} o @{code int_of_integer}; +val mk_Bound = @{code Bound} o @{code nat_of_integer}; + +fun num_of_term vs (Free vT) = mk_Bound (find_index (fn vT' => vT = vT') vs) + | num_of_term vs @{term "real (0::int)"} = mk_C 0 + | num_of_term vs @{term "real (1::int)"} = mk_C 1 + | num_of_term vs @{term "0::real"} = mk_C 0 + | num_of_term vs @{term "1::real"} = mk_C 1 + | num_of_term vs (Bound i) = mk_Bound i | num_of_term vs (@{term "uminus :: real \<Rightarrow> real"} $ t') = @{code Neg} (num_of_term vs t') | num_of_term vs (@{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) = @{code Add} (num_of_term vs t1, num_of_term vs t2) @@ -1937,10 +1940,10 @@ of @{code C} i => @{code Mul} (i, num_of_term vs t2) | _ => error "num_of_term: unsupported multiplication") | num_of_term vs (@{term "real :: int \<Rightarrow> real"} $ t') = - (@{code C} (snd (HOLogic.dest_number t')) + (mk_C (snd (HOLogic.dest_number t')) handle TERM _ => error ("num_of_term: unknown term")) | num_of_term vs t' = - (@{code C} (snd (HOLogic.dest_number t')) + (mk_C (snd (HOLogic.dest_number t')) handle TERM _ => error ("num_of_term: unknown term")); fun fm_of_term vs @{term True} = @{code T} @@ -1963,8 +1966,9 @@ @{code A} (fm_of_term (("", dummyT) :: vs) p) | fm_of_term vs t = error ("fm_of_term : unknown term " ^ Syntax.string_of_term @{context} t); -fun term_of_num vs (@{code C} i) = @{term "real :: int \<Rightarrow> real"} $ HOLogic.mk_number HOLogic.intT i - | term_of_num vs (@{code Bound} n) = Free (nth vs n) +fun term_of_num vs (@{code C} i) = @{term "real :: int \<Rightarrow> real"} $ + HOLogic.mk_number HOLogic.intT (@{code integer_of_int} i) + | term_of_num vs (@{code Bound} n) = Free (nth vs (@{code integer_of_nat} n)) | term_of_num vs (@{code Neg} t') = @{term "uminus :: real \<Rightarrow> real"} $ term_of_num vs t' | term_of_num vs (@{code Add} (t1, t2)) = @{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $ term_of_num vs t1 $ term_of_num vs t2 @@ -2026,3 +2030,4 @@ by rferrack end +
--- a/src/HOL/Decision_Procs/MIR.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Decision_Procs/MIR.thy Fri Feb 15 08:31:31 2013 +0100 @@ -4,7 +4,7 @@ theory MIR imports Complex_Main Dense_Linear_Order DP_Library - "~~/src/HOL/Library/Efficient_Nat" "~~/src/HOL/Library/Old_Recdef" + "~~/src/HOL/Library/Code_Target_Numeral" "~~/src/HOL/Library/Old_Recdef" begin section {* Quantifier elimination for @{text "\<real> (0, 1, +, floor, <)"} *} @@ -5521,14 +5521,18 @@ oracle mirfr_oracle = {* fn (proofs, ct) => let +val mk_C = @{code C} o @{code int_of_integer}; +val mk_Dvd = @{code Dvd} o apfst @{code int_of_integer}; +val mk_Bound = @{code Bound} o @{code nat_of_integer}; + fun num_of_term vs (t as Free (xn, xT)) = (case AList.lookup (op =) vs t of NONE => error "Variable not found in the list!" - | SOME n => @{code Bound} n) - | num_of_term vs @{term "real (0::int)"} = @{code C} 0 - | num_of_term vs @{term "real (1::int)"} = @{code C} 1 - | num_of_term vs @{term "0::real"} = @{code C} 0 - | num_of_term vs @{term "1::real"} = @{code C} 1 - | num_of_term vs (Bound i) = @{code Bound} i + | SOME n => mk_Bound n) + | num_of_term vs @{term "real (0::int)"} = mk_C 0 + | num_of_term vs @{term "real (1::int)"} = mk_C 1 + | num_of_term vs @{term "0::real"} = mk_C 0 + | num_of_term vs @{term "1::real"} = mk_C 1 + | num_of_term vs (Bound i) = mk_Bound i | num_of_term vs (@{term "uminus :: real \<Rightarrow> real"} $ t') = @{code Neg} (num_of_term vs t') | num_of_term vs (@{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) = @{code Add} (num_of_term vs t1, num_of_term vs t2) @@ -5539,17 +5543,17 @@ of @{code C} i => @{code Mul} (i, num_of_term vs t2) | _ => error "num_of_term: unsupported Multiplication") | num_of_term vs (@{term "real :: int \<Rightarrow> real"} $ (@{term "numeral :: _ \<Rightarrow> int"} $ t')) = - @{code C} (HOLogic.dest_num t') + mk_C (HOLogic.dest_num t') | num_of_term vs (@{term "real :: int \<Rightarrow> real"} $ (@{term "neg_numeral :: _ \<Rightarrow> int"} $ t')) = - @{code C} (~ (HOLogic.dest_num t')) + mk_C (~ (HOLogic.dest_num t')) | num_of_term vs (@{term "real :: int \<Rightarrow> real"} $ (@{term "floor :: real \<Rightarrow> int"} $ t')) = @{code Floor} (num_of_term vs t') | num_of_term vs (@{term "real :: int \<Rightarrow> real"} $ (@{term "ceiling :: real \<Rightarrow> int"} $ t')) = @{code Neg} (@{code Floor} (@{code Neg} (num_of_term vs t'))) | num_of_term vs (@{term "numeral :: _ \<Rightarrow> real"} $ t') = - @{code C} (HOLogic.dest_num t') + mk_C (HOLogic.dest_num t') | num_of_term vs (@{term "neg_numeral :: _ \<Rightarrow> real"} $ t') = - @{code C} (~ (HOLogic.dest_num t')) + mk_C (~ (HOLogic.dest_num t')) | num_of_term vs t = error ("num_of_term: unknown term " ^ Syntax.string_of_term @{context} t); fun fm_of_term vs @{term True} = @{code T} @@ -5561,9 +5565,9 @@ | fm_of_term vs (@{term "op = :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) = @{code Eq} (@{code Sub} (num_of_term vs t1, num_of_term vs t2)) | fm_of_term vs (@{term "op rdvd"} $ (@{term "real :: int \<Rightarrow> real"} $ (@{term "numeral :: _ \<Rightarrow> int"} $ t1)) $ t2) = - @{code Dvd} (HOLogic.dest_num t1, num_of_term vs t2) + mk_Dvd (HOLogic.dest_num t1, num_of_term vs t2) | fm_of_term vs (@{term "op rdvd"} $ (@{term "real :: int \<Rightarrow> real"} $ (@{term "neg_numeral :: _ \<Rightarrow> int"} $ t1)) $ t2) = - @{code Dvd} (~ (HOLogic.dest_num t1), num_of_term vs t2) + mk_Dvd (~ (HOLogic.dest_num t1), num_of_term vs t2) | fm_of_term vs (@{term "op = :: bool \<Rightarrow> bool \<Rightarrow> bool"} $ t1 $ t2) = @{code Iff} (fm_of_term vs t1, fm_of_term vs t2) | fm_of_term vs (@{term HOL.conj} $ t1 $ t2) = @@ -5580,8 +5584,12 @@ @{code A} (fm_of_term (map (fn (v, n) => (v, n + 1)) vs) p) | fm_of_term vs t = error ("fm_of_term : unknown term " ^ Syntax.string_of_term @{context} t); -fun term_of_num vs (@{code C} i) = @{term "real :: int \<Rightarrow> real"} $ HOLogic.mk_number HOLogic.intT i - | term_of_num vs (@{code Bound} n) = fst (the (find_first (fn (_, m) => n = m) vs)) +fun term_of_num vs (@{code C} i) = @{term "real :: int \<Rightarrow> real"} $ + HOLogic.mk_number HOLogic.intT (@{code integer_of_int} i) + | term_of_num vs (@{code Bound} n) = + let + val m = @{code integer_of_nat} n; + in fst (the (find_first (fn (_, q) => m = q) vs)) end | term_of_num vs (@{code Neg} (@{code Floor} (@{code Neg} t'))) = @{term "real :: int \<Rightarrow> real"} $ (@{term "ceiling :: real \<Rightarrow> int"} $ term_of_num vs t') | term_of_num vs (@{code Neg} t') = @{term "uminus :: real \<Rightarrow> real"} $ term_of_num vs t' @@ -5660,3 +5668,4 @@ by mir end +
--- a/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy Fri Feb 15 08:31:31 2013 +0100 @@ -6,7 +6,7 @@ theory Parametric_Ferrante_Rackoff imports Reflected_Multivariate_Polynomial Dense_Linear_Order DP_Library - "~~/src/HOL/Library/Efficient_Nat" "~~/src/HOL/Library/Old_Recdef" + "~~/src/HOL/Library/Code_Target_Numeral" "~~/src/HOL/Library/Old_Recdef" begin subsection {* Terms *} @@ -2795,6 +2795,10 @@ fun binopT T = T --> T --> T; fun relT T = T --> T --> @{typ bool}; +val mk_C = @{code C} o pairself @{code int_of_integer}; +val mk_poly_Bound = @{code poly.Bound} o @{code nat_of_integer}; +val mk_Bound = @{code Bound} o @{code nat_of_integer}; + val dest_num = snd o HOLogic.dest_number; fun try_dest_num t = SOME ((snd o HOLogic.dest_number) t) @@ -2812,19 +2816,19 @@ | num_of_term ps (Const (@{const_name Groups.plus}, _) $ a $ b) = @{code poly.Add} (num_of_term ps a, num_of_term ps b) | num_of_term ps (Const (@{const_name Groups.minus}, _) $ a $ b) = @{code poly.Sub} (num_of_term ps a, num_of_term ps b) | num_of_term ps (Const (@{const_name Groups.times}, _) $ a $ b) = @{code poly.Mul} (num_of_term ps a, num_of_term ps b) - | num_of_term ps (Const (@{const_name Power.power}, _) $ a $ n) = @{code poly.Pw} (num_of_term ps a, dest_nat n) - | num_of_term ps (Const (@{const_name Fields.divide}, _) $ a $ b) = @{code poly.C} (dest_num a, dest_num b) + | num_of_term ps (Const (@{const_name Power.power}, _) $ a $ n) = @{code poly.Pw} (num_of_term ps a, @{code nat_of_integer} (dest_nat n)) + | num_of_term ps (Const (@{const_name Fields.divide}, _) $ a $ b) = mk_C (dest_num a, dest_num b) | num_of_term ps t = (case try_dest_num t - of SOME k => @{code poly.C} (k, 1) - | NONE => @{code poly.Bound} (the_index ps t)); + of SOME k => mk_C (k, 1) + | NONE => mk_poly_Bound (the_index ps t)); fun tm_of_term fs ps (Const(@{const_name Groups.uminus}, _) $ t) = @{code Neg} (tm_of_term fs ps t) | tm_of_term fs ps (Const(@{const_name Groups.plus}, _) $ a $ b) = @{code Add} (tm_of_term fs ps a, tm_of_term fs ps b) | tm_of_term fs ps (Const(@{const_name Groups.minus}, _) $ a $ b) = @{code Sub} (tm_of_term fs ps a, tm_of_term fs ps b) | tm_of_term fs ps (Const(@{const_name Groups.times}, _) $ a $ b) = @{code Mul} (num_of_term ps a, tm_of_term fs ps b) | tm_of_term fs ps t = (@{code CP} (num_of_term ps t) - handle TERM _ => @{code Bound} (the_index fs t) - | General.Subscript => @{code Bound} (the_index fs t)); + handle TERM _ => mk_Bound (the_index fs t) + | General.Subscript => mk_Bound (the_index fs t)); fun fm_of_term fs ps @{term True} = @{code T} | fm_of_term fs ps @{term False} = @{code F} @@ -2850,21 +2854,25 @@ | fm_of_term fs ps _ = error "fm_of_term"; fun term_of_num T ps (@{code poly.C} (a, b)) = - (if b = 1 then HOLogic.mk_number T a - else if b = 0 then Const (@{const_name Groups.zero}, T) - else Const (@{const_name Fields.divide}, binopT T) $ HOLogic.mk_number T a $ HOLogic.mk_number T b) - | term_of_num T ps (@{code poly.Bound} i) = nth ps i + let + val (c, d) = pairself (@{code integer_of_int}) (a, b) + in + (if d = 1 then HOLogic.mk_number T c + else if d = 0 then Const (@{const_name Groups.zero}, T) + else Const (@{const_name Fields.divide}, binopT T) $ HOLogic.mk_number T c $ HOLogic.mk_number T d) + end + | term_of_num T ps (@{code poly.Bound} i) = nth ps (@{code integer_of_nat} i) | term_of_num T ps (@{code poly.Add} (a, b)) = Const (@{const_name Groups.plus}, binopT T) $ term_of_num T ps a $ term_of_num T ps b | term_of_num T ps (@{code poly.Mul} (a, b)) = Const (@{const_name Groups.times}, binopT T) $ term_of_num T ps a $ term_of_num T ps b | term_of_num T ps (@{code poly.Sub} (a, b)) = Const (@{const_name Groups.minus}, binopT T) $ term_of_num T ps a $ term_of_num T ps b | term_of_num T ps (@{code poly.Neg} a) = Const (@{const_name Groups.uminus}, T --> T) $ term_of_num T ps a - | term_of_num T ps (@{code poly.Pw} (a, n)) = - Const (@{const_name Power.power}, T --> @{typ nat} --> T) $ term_of_num T ps a $ HOLogic.mk_number HOLogic.natT n + | term_of_num T ps (@{code poly.Pw} (a, n)) = Const (@{const_name Power.power}, + T --> @{typ nat} --> T) $ term_of_num T ps a $ HOLogic.mk_number HOLogic.natT (@{code integer_of_nat} n) | term_of_num T ps (@{code poly.CN} (c, n, p)) = term_of_num T ps (@{code poly.Add} (c, @{code poly.Mul} (@{code poly.Bound} n, p))); fun term_of_tm T fs ps (@{code CP} p) = term_of_num T ps p - | term_of_tm T fs ps (@{code Bound} i) = nth fs i + | term_of_tm T fs ps (@{code Bound} i) = nth fs (@{code integer_of_nat} i) | term_of_tm T fs ps (@{code Add} (a, b)) = Const (@{const_name Groups.plus}, binopT T) $ term_of_tm T fs ps a $ term_of_tm T fs ps b | term_of_tm T fs ps (@{code Mul} (a, b)) = Const (@{const_name Groups.times}, binopT T) $ term_of_num T ps a $ term_of_tm T fs ps b | term_of_tm T fs ps (@{code Sub} (a, b)) = Const (@{const_name Groups.minus}, binopT T) $ term_of_tm T fs ps a $ term_of_tm T fs ps b @@ -2993,3 +3001,4 @@ *) end +
--- a/src/HOL/Imperative_HOL/Array.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Imperative_HOL/Array.thy Fri Feb 15 08:31:31 2013 +0100 @@ -361,38 +361,38 @@ subsubsection {* Logical intermediate layer *} definition new' where - [code del]: "new' = Array.new o Code_Numeral.nat_of" + [code del]: "new' = Array.new o nat_of_integer" lemma [code]: - "Array.new = new' o Code_Numeral.of_nat" + "Array.new = new' o of_nat" by (simp add: new'_def o_def) definition make' where - [code del]: "make' i f = Array.make (Code_Numeral.nat_of i) (f o Code_Numeral.of_nat)" + [code del]: "make' i f = Array.make (nat_of_integer i) (f o of_nat)" lemma [code]: - "Array.make n f = make' (Code_Numeral.of_nat n) (f o Code_Numeral.nat_of)" + "Array.make n f = make' (of_nat n) (f o nat_of_integer)" by (simp add: make'_def o_def) definition len' where - [code del]: "len' a = Array.len a \<guillemotright>= (\<lambda>n. return (Code_Numeral.of_nat n))" + [code del]: "len' a = Array.len a \<guillemotright>= (\<lambda>n. return (of_nat n))" lemma [code]: - "Array.len a = len' a \<guillemotright>= (\<lambda>i. return (Code_Numeral.nat_of i))" + "Array.len a = len' a \<guillemotright>= (\<lambda>i. return (nat_of_integer i))" by (simp add: len'_def) definition nth' where - [code del]: "nth' a = Array.nth a o Code_Numeral.nat_of" + [code del]: "nth' a = Array.nth a o nat_of_integer" lemma [code]: - "Array.nth a n = nth' a (Code_Numeral.of_nat n)" + "Array.nth a n = nth' a (of_nat n)" by (simp add: nth'_def) definition upd' where - [code del]: "upd' a i x = Array.upd (Code_Numeral.nat_of i) x a \<guillemotright> return ()" + [code del]: "upd' a i x = Array.upd (nat_of_integer i) x a \<guillemotright> return ()" lemma [code]: - "Array.upd i x a = upd' a (Code_Numeral.of_nat i) x \<guillemotright> return a" + "Array.upd i x a = upd' a (of_nat i) x \<guillemotright> return a" by (simp add: upd'_def upd_return) lemma [code]: @@ -501,3 +501,4 @@ code_const "HOL.equal :: 'a array \<Rightarrow> 'a array \<Rightarrow> bool" (Scala infixl 5 "==") end +
--- a/src/HOL/Imperative_HOL/Heap_Monad.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Imperative_HOL/Heap_Monad.thy Fri Feb 15 08:31:31 2013 +0100 @@ -8,7 +8,6 @@ imports Heap "~~/src/HOL/Library/Monad_Syntax" - "~~/src/HOL/Library/Code_Natural" begin subsection {* The monad *} @@ -529,33 +528,31 @@ import qualified Data.STRef; import qualified Data.Array.ST; -import Natural; - type RealWorld = Control.Monad.ST.RealWorld; type ST s a = Control.Monad.ST.ST s a; type STRef s a = Data.STRef.STRef s a; -type STArray s a = Data.Array.ST.STArray s Natural a; +type STArray s a = Data.Array.ST.STArray s Integer a; newSTRef = Data.STRef.newSTRef; readSTRef = Data.STRef.readSTRef; writeSTRef = Data.STRef.writeSTRef; -newArray :: Natural -> a -> ST s (STArray s a); +newArray :: Integer -> a -> ST s (STArray s a); newArray k = Data.Array.ST.newArray (0, k); newListArray :: [a] -> ST s (STArray s a); newListArray xs = Data.Array.ST.newListArray (0, (fromInteger . toInteger . length) xs) xs; -newFunArray :: Natural -> (Natural -> a) -> ST s (STArray s a); +newFunArray :: Integer -> (Integer -> a) -> ST s (STArray s a); newFunArray k f = Data.Array.ST.newListArray (0, k) (map f [0..k-1]); -lengthArray :: STArray s a -> ST s Natural; +lengthArray :: STArray s a -> ST s Integer; lengthArray a = Control.Monad.liftM snd (Data.Array.ST.getBounds a); -readArray :: STArray s a -> Natural -> ST s a; +readArray :: STArray s a -> Integer -> ST s a; readArray = Data.Array.ST.readArray; -writeArray :: STArray s a -> Natural -> a -> ST s (); +writeArray :: STArray s a -> Integer -> a -> ST s (); writeArray = Data.Array.ST.writeArray;*} code_reserved Haskell Heap @@ -590,16 +587,16 @@ object Array { import collection.mutable.ArraySeq - def alloc[A](n: Natural)(x: A): ArraySeq[A] = - ArraySeq.fill(n.as_Int)(x) - def make[A](n: Natural)(f: Natural => A): ArraySeq[A] = - ArraySeq.tabulate(n.as_Int)((k: Int) => f(Natural(k))) - def len[A](a: ArraySeq[A]): Natural = - Natural(a.length) - def nth[A](a: ArraySeq[A], n: Natural): A = - a(n.as_Int) - def upd[A](a: ArraySeq[A], n: Natural, x: A): Unit = - a.update(n.as_Int, x) + def alloc[A](n: BigInt)(x: A): ArraySeq[A] = + ArraySeq.fill(n.toInt)(x) + def make[A](n: BigInt)(f: BigInt => A): ArraySeq[A] = + ArraySeq.tabulate(n.toInt)((k: Int) => f(BigInt(k))) + def len[A](a: ArraySeq[A]): BigInt = + BigInt(a.length) + def nth[A](a: ArraySeq[A], n: BigInt): A = + a(n.toInt) + def upd[A](a: ArraySeq[A], n: BigInt, x: A): Unit = + a.update(n.toInt, x) def freeze[A](a: ArraySeq[A]): List[A] = a.toList }
--- a/src/HOL/Imperative_HOL/ex/Imperative_Quicksort.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Imperative_HOL/ex/Imperative_Quicksort.thy Fri Feb 15 08:31:31 2013 +0100 @@ -9,7 +9,7 @@ "~~/src/HOL/Imperative_HOL/Imperative_HOL" Subarray "~~/src/HOL/Library/Multiset" - "~~/src/HOL/Library/Efficient_Nat" + "~~/src/HOL/Library/Code_Target_Numeral" begin text {* We prove QuickSort correct in the Relational Calculus. *} @@ -657,7 +657,12 @@ code_reserved SML upto -ML {* @{code qsort} (Array.fromList [42, 2, 3, 5, 0, 1705, 8, 3, 15]) () *} +definition "example = do { + a \<leftarrow> Array.of_list [42, 2, 3, 5, 0, 1705, 8, 3, 15]; + qsort a + }" + +ML {* @{code example} () *} export_code qsort checking SML SML_imp OCaml? OCaml_imp? Haskell? Scala Scala_imp
--- a/src/HOL/Imperative_HOL/ex/Linked_Lists.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Imperative_HOL/ex/Linked_Lists.thy Fri Feb 15 08:31:31 2013 +0100 @@ -5,7 +5,7 @@ header {* Linked Lists by ML references *} theory Linked_Lists -imports "../Imperative_HOL" "~~/src/HOL/Library/Code_Integer" +imports "../Imperative_HOL" "~~/src/HOL/Library/Code_Target_Int" begin section {* Definition of Linked Lists *}
--- a/src/HOL/Int.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Int.thy Fri Feb 15 08:31:31 2013 +0100 @@ -853,7 +853,7 @@ apply (rule nat_mono, simp_all) done -lemma nat_numeral [simp, code_abbrev]: +lemma nat_numeral [simp]: "nat (numeral k) = numeral k" by (simp add: nat_eq_iff)
--- a/src/HOL/Lazy_Sequence.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Lazy_Sequence.thy Fri Feb 15 08:31:31 2013 +0100 @@ -169,13 +169,14 @@ where "those xq = Option.map lazy_sequence_of_list (List.those (list_of_lazy_sequence xq))" -function iterate_upto :: "(code_numeral \<Rightarrow> 'a) \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<Rightarrow> 'a lazy_sequence" +function iterate_upto :: "(natural \<Rightarrow> 'a) \<Rightarrow> natural \<Rightarrow> natural \<Rightarrow> 'a lazy_sequence" where "iterate_upto f n m = Lazy_Sequence (\<lambda>_. if n > m then None else Some (f n, iterate_upto f (n + 1) m))" by pat_completeness auto -termination by (relation "measure (%(f, n, m). Code_Numeral.nat_of (m + 1 - n))") auto +termination by (relation "measure (\<lambda>(f, n, m). nat_of_natural (m + 1 - n))") + (auto simp add: less_natural_def) definition not_seq :: "unit lazy_sequence \<Rightarrow> unit lazy_sequence" where @@ -225,7 +226,7 @@ subsubsection {* Small lazy typeclasses *} class small_lazy = - fixes small_lazy :: "code_numeral \<Rightarrow> 'a lazy_sequence" + fixes small_lazy :: "natural \<Rightarrow> 'a lazy_sequence" instantiation unit :: small_lazy begin @@ -252,7 +253,7 @@ by (relation "measure (%(d, i). nat (d + 1 - i))") auto definition - "small_lazy d = small_lazy' (Code_Numeral.int_of d) (- (Code_Numeral.int_of d))" + "small_lazy d = small_lazy' (int (nat_of_natural d)) (- (int (nat_of_natural d)))" instance .. @@ -271,7 +272,7 @@ instantiation list :: (small_lazy) small_lazy begin -fun small_lazy_list :: "code_numeral \<Rightarrow> 'a list lazy_sequence" +fun small_lazy_list :: "natural \<Rightarrow> 'a list lazy_sequence" where "small_lazy_list d = append (single []) (if d > 0 then bind (product (small_lazy (d - 1))
--- a/src/HOL/Library/Cardinality.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Library/Cardinality.thy Fri Feb 15 08:31:31 2013 +0100 @@ -225,11 +225,24 @@ instance by intro_classes (simp_all add: card_UNIV_int_def finite_UNIV_int_def infinite_UNIV_int) end -instantiation code_numeral :: card_UNIV begin -definition "finite_UNIV = Phantom(code_numeral) False" -definition "card_UNIV = Phantom(code_numeral) 0" -instance - by(intro_classes)(auto simp add: card_UNIV_code_numeral_def finite_UNIV_code_numeral_def type_definition.univ[OF type_definition_code_numeral] card_eq_0_iff dest!: finite_imageD intro: inj_onI) +instantiation natural :: card_UNIV begin +definition "finite_UNIV = Phantom(natural) False" +definition "card_UNIV = Phantom(natural) 0" +instance proof +qed (auto simp add: finite_UNIV_natural_def card_UNIV_natural_def card_eq_0_iff + type_definition.univ [OF type_definition_natural] natural_eq_iff + dest!: finite_imageD intro: inj_onI) +end + +declare [[show_consts]] + +instantiation integer :: card_UNIV begin +definition "finite_UNIV = Phantom(integer) False" +definition "card_UNIV = Phantom(integer) 0" +instance proof +qed (auto simp add: finite_UNIV_integer_def card_UNIV_integer_def card_eq_0_iff + type_definition.univ [OF type_definition_integer] infinite_UNIV_int + dest!: finite_imageD intro: inj_onI) end instantiation list :: (type) card_UNIV begin
--- a/src/HOL/Library/Code_Binary_Nat.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Library/Code_Binary_Nat.thy Fri Feb 15 08:31:31 2013 +0100 @@ -21,10 +21,6 @@ code_datatype "0::nat" nat_of_num -lemma [code_abbrev]: - "nat_of_num = numeral" - by (fact nat_of_num_numeral) - lemma [code]: "num_of_nat 0 = Num.One" "num_of_nat (nat_of_num k) = k"
--- a/src/HOL/Library/Code_Char_chr.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Library/Code_Char_chr.thy Fri Feb 15 08:31:31 2013 +0100 @@ -5,7 +5,7 @@ header {* Code generation of pretty characters with character codes *} theory Code_Char_chr -imports Char_nat Code_Char Code_Integer Main +imports Char_nat Code_Char Code_Target_Int Main begin definition
--- a/src/HOL/Library/Code_Integer.thy Fri Feb 15 08:31:30 2013 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,161 +0,0 @@ -(* Title: HOL/Library/Code_Integer.thy - Author: Florian Haftmann, TU Muenchen -*) - -header {* Pretty integer literals for code generation *} - -theory Code_Integer -imports Main Code_Natural -begin - -text {* - Representation-ignorant code equations for conversions. -*} - -lemma nat_code [code]: - "nat k = (if k \<le> 0 then 0 else - let - (l, j) = divmod_int k 2; - n = nat l; - l' = n + n - in if j = 0 then l' else Suc l')" -proof - - have "2 = nat 2" by simp - show ?thesis - apply (subst mult_2 [symmetric]) - apply (auto simp add: Let_def divmod_int_mod_div not_le - nat_div_distrib nat_mult_distrib mult_div_cancel mod_2_not_eq_zero_eq_one_int) - apply (unfold `2 = nat 2`) - apply (subst nat_mod_distrib [symmetric]) - apply simp_all - done -qed - -lemma (in ring_1) of_int_code: - "of_int k = (if k = 0 then 0 - else if k < 0 then - of_int (- k) - else let - (l, j) = divmod_int k 2; - l' = 2 * of_int l - in if j = 0 then l' else l' + 1)" -proof - - from mod_div_equality have *: "of_int k = of_int (k div 2 * 2 + k mod 2)" by simp - show ?thesis - by (simp add: Let_def divmod_int_mod_div mod_2_not_eq_zero_eq_one_int - of_int_add [symmetric]) (simp add: * mult_commute) -qed - -declare of_int_code [code] - -text {* - HOL numeral expressions are mapped to integer literals - in target languages, using predefined target language - operations for abstract integer operations. -*} - -code_type int - (SML "IntInf.int") - (OCaml "Big'_int.big'_int") - (Haskell "Integer") - (Scala "BigInt") - (Eval "int") - -code_instance int :: equal - (Haskell -) - -code_const "0::int" - (SML "0") - (OCaml "Big'_int.zero'_big'_int") - (Haskell "0") - (Scala "BigInt(0)") - -setup {* - fold (Numeral.add_code @{const_name Int.Pos} - false Code_Printer.literal_numeral) ["SML", "OCaml", "Haskell", "Scala"] -*} - -setup {* - fold (Numeral.add_code @{const_name Int.Neg} - true Code_Printer.literal_numeral) ["SML", "OCaml", "Haskell", "Scala"] -*} - -code_const "op + \<Colon> int \<Rightarrow> int \<Rightarrow> int" - (SML "IntInf.+ ((_), (_))") - (OCaml "Big'_int.add'_big'_int") - (Haskell infixl 6 "+") - (Scala infixl 7 "+") - (Eval infixl 8 "+") - -code_const "uminus \<Colon> int \<Rightarrow> int" - (SML "IntInf.~") - (OCaml "Big'_int.minus'_big'_int") - (Haskell "negate") - (Scala "!(- _)") - (Eval "~/ _") - -code_const "op - \<Colon> int \<Rightarrow> int \<Rightarrow> int" - (SML "IntInf.- ((_), (_))") - (OCaml "Big'_int.sub'_big'_int") - (Haskell infixl 6 "-") - (Scala infixl 7 "-") - (Eval infixl 8 "-") - -code_const Int.dup - (SML "IntInf.*/ (2,/ (_))") - (OCaml "Big'_int.mult'_big'_int/ 2") - (Haskell "!(2 * _)") - (Scala "!(2 * _)") - (Eval "!(2 * _)") - -code_const Int.sub - (SML "!(raise/ Fail/ \"sub\")") - (OCaml "failwith/ \"sub\"") - (Haskell "error/ \"sub\"") - (Scala "!sys.error(\"sub\")") - -code_const "op * \<Colon> int \<Rightarrow> int \<Rightarrow> int" - (SML "IntInf.* ((_), (_))") - (OCaml "Big'_int.mult'_big'_int") - (Haskell infixl 7 "*") - (Scala infixl 8 "*") - (Eval infixl 9 "*") - -code_const pdivmod - (SML "IntInf.divMod/ (IntInf.abs _,/ IntInf.abs _)") - (OCaml "Big'_int.quomod'_big'_int/ (Big'_int.abs'_big'_int _)/ (Big'_int.abs'_big'_int _)") - (Haskell "divMod/ (abs _)/ (abs _)") - (Scala "!((k: BigInt) => (l: BigInt) =>/ if (l == 0)/ (BigInt(0), k) else/ (k.abs '/% l.abs))") - (Eval "Integer.div'_mod/ (abs _)/ (abs _)") - -code_const "HOL.equal \<Colon> int \<Rightarrow> int \<Rightarrow> bool" - (SML "!((_ : IntInf.int) = _)") - (OCaml "Big'_int.eq'_big'_int") - (Haskell infix 4 "==") - (Scala infixl 5 "==") - (Eval infixl 6 "=") - -code_const "op \<le> \<Colon> int \<Rightarrow> int \<Rightarrow> bool" - (SML "IntInf.<= ((_), (_))") - (OCaml "Big'_int.le'_big'_int") - (Haskell infix 4 "<=") - (Scala infixl 4 "<=") - (Eval infixl 6 "<=") - -code_const "op < \<Colon> int \<Rightarrow> int \<Rightarrow> bool" - (SML "IntInf.< ((_), (_))") - (OCaml "Big'_int.lt'_big'_int") - (Haskell infix 4 "<") - (Scala infixl 4 "<") - (Eval infixl 6 "<") - -code_const Code_Numeral.int_of - (SML "IntInf.fromInt") - (OCaml "_") - (Haskell "Prelude.toInteger") - (Scala "!_.as'_BigInt") - (Eval "_") - -code_const "Code_Evaluation.term_of \<Colon> int \<Rightarrow> term" - (Eval "HOLogic.mk'_number/ HOLogic.intT") - -end
--- a/src/HOL/Library/Code_Natural.thy Fri Feb 15 08:31:30 2013 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,148 +0,0 @@ -(* Title: HOL/Library/Code_Natural.thy - Author: Florian Haftmann, TU Muenchen -*) - -theory Code_Natural -imports "../Main" -begin - -section {* Alternative representation of @{typ code_numeral} for @{text Haskell} and @{text Scala} *} - -code_include Haskell "Natural" -{*import Data.Array.ST; - -newtype Natural = Natural Integer deriving (Eq, Show, Read); - -instance Num Natural where { - fromInteger k = Natural (if k >= 0 then k else 0); - Natural n + Natural m = Natural (n + m); - Natural n - Natural m = fromInteger (n - m); - Natural n * Natural m = Natural (n * m); - abs n = n; - signum _ = 1; - negate n = error "negate Natural"; -}; - -instance Ord Natural where { - Natural n <= Natural m = n <= m; - Natural n < Natural m = n < m; -}; - -instance Ix Natural where { - range (Natural n, Natural m) = map Natural (range (n, m)); - index (Natural n, Natural m) (Natural q) = index (n, m) q; - inRange (Natural n, Natural m) (Natural q) = inRange (n, m) q; - rangeSize (Natural n, Natural m) = rangeSize (n, m); -}; - -instance Real Natural where { - toRational (Natural n) = toRational n; -}; - -instance Enum Natural where { - toEnum k = fromInteger (toEnum k); - fromEnum (Natural n) = fromEnum n; -}; - -instance Integral Natural where { - toInteger (Natural n) = n; - divMod n m = quotRem n m; - quotRem (Natural n) (Natural m) - | (m == 0) = (0, Natural n) - | otherwise = (Natural k, Natural l) where (k, l) = quotRem n m; -};*} - - -code_reserved Haskell Natural - -code_include Scala "Natural" -{*object Natural { - - def apply(numeral: BigInt): Natural = new Natural(numeral max 0) - def apply(numeral: Int): Natural = Natural(BigInt(numeral)) - def apply(numeral: String): Natural = Natural(BigInt(numeral)) - -} - -class Natural private(private val value: BigInt) { - - override def hashCode(): Int = this.value.hashCode() - - override def equals(that: Any): Boolean = that match { - case that: Natural => this equals that - case _ => false - } - - override def toString(): String = this.value.toString - - def equals(that: Natural): Boolean = this.value == that.value - - def as_BigInt: BigInt = this.value - def as_Int: Int = if (this.value >= scala.Int.MinValue && this.value <= scala.Int.MaxValue) - this.value.intValue - else error("Int value out of range: " + this.value.toString) - - def +(that: Natural): Natural = new Natural(this.value + that.value) - def -(that: Natural): Natural = Natural(this.value - that.value) - def *(that: Natural): Natural = new Natural(this.value * that.value) - - def /%(that: Natural): (Natural, Natural) = if (that.value == 0) (new Natural(0), this) - else { - val (k, l) = this.value /% that.value - (new Natural(k), new Natural(l)) - } - - def <=(that: Natural): Boolean = this.value <= that.value - - def <(that: Natural): Boolean = this.value < that.value - -} -*} - -code_reserved Scala Natural - -code_type code_numeral - (Haskell "Natural.Natural") - (Scala "Natural") - -setup {* - fold (Numeral.add_code @{const_name Code_Numeral.Num} - false Code_Printer.literal_alternative_numeral) ["Haskell", "Scala"] -*} - -code_instance code_numeral :: equal - (Haskell -) - -code_const "0::code_numeral" - (Haskell "0") - (Scala "Natural(0)") - -code_const "plus \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" - (Haskell infixl 6 "+") - (Scala infixl 7 "+") - -code_const "minus \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" - (Haskell infixl 6 "-") - (Scala infixl 7 "-") - -code_const "times \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" - (Haskell infixl 7 "*") - (Scala infixl 8 "*") - -code_const Code_Numeral.div_mod - (Haskell "divMod") - (Scala infixl 8 "/%") - -code_const "HOL.equal \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> bool" - (Haskell infix 4 "==") - (Scala infixl 5 "==") - -code_const "less_eq \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> bool" - (Haskell infix 4 "<=") - (Scala infixl 4 "<=") - -code_const "less \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> bool" - (Haskell infix 4 "<") - (Scala infixl 4 "<") - -end
--- a/src/HOL/Library/Code_Numeral_Types.thy Fri Feb 15 08:31:30 2013 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,942 +0,0 @@ -(* Title: HOL/Library/Code_Numeral_Types.thy - Author: Florian Haftmann, TU Muenchen -*) - -header {* Numeric types for code generation onto target language numerals only *} - -theory Code_Numeral_Types -imports Main Nat_Transfer Divides Lifting -begin - -subsection {* Type of target language integers *} - -typedef integer = "UNIV \<Colon> int set" - morphisms int_of_integer integer_of_int .. - -setup_lifting (no_code) type_definition_integer - -lemma integer_eq_iff: - "k = l \<longleftrightarrow> int_of_integer k = int_of_integer l" - by transfer rule - -lemma integer_eqI: - "int_of_integer k = int_of_integer l \<Longrightarrow> k = l" - using integer_eq_iff [of k l] by simp - -lemma int_of_integer_integer_of_int [simp]: - "int_of_integer (integer_of_int k) = k" - by transfer rule - -lemma integer_of_int_int_of_integer [simp]: - "integer_of_int (int_of_integer k) = k" - by transfer rule - -instantiation integer :: ring_1 -begin - -lift_definition zero_integer :: integer - is "0 :: int" - . - -declare zero_integer.rep_eq [simp] - -lift_definition one_integer :: integer - is "1 :: int" - . - -declare one_integer.rep_eq [simp] - -lift_definition plus_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" - is "plus :: int \<Rightarrow> int \<Rightarrow> int" - . - -declare plus_integer.rep_eq [simp] - -lift_definition uminus_integer :: "integer \<Rightarrow> integer" - is "uminus :: int \<Rightarrow> int" - . - -declare uminus_integer.rep_eq [simp] - -lift_definition minus_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" - is "minus :: int \<Rightarrow> int \<Rightarrow> int" - . - -declare minus_integer.rep_eq [simp] - -lift_definition times_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" - is "times :: int \<Rightarrow> int \<Rightarrow> int" - . - -declare times_integer.rep_eq [simp] - -instance proof -qed (transfer, simp add: algebra_simps)+ - -end - -lemma [transfer_rule]: - "fun_rel HOL.eq cr_integer (of_nat :: nat \<Rightarrow> int) (of_nat :: nat \<Rightarrow> integer)" - by (unfold of_nat_def [abs_def]) transfer_prover - -lemma [transfer_rule]: - "fun_rel HOL.eq cr_integer (\<lambda>k :: int. k :: int) (of_int :: int \<Rightarrow> integer)" -proof - - have "fun_rel HOL.eq cr_integer (of_int :: int \<Rightarrow> int) (of_int :: int \<Rightarrow> integer)" - by (unfold of_int_of_nat [abs_def]) transfer_prover - then show ?thesis by (simp add: id_def) -qed - -lemma [transfer_rule]: - "fun_rel HOL.eq cr_integer (numeral :: num \<Rightarrow> int) (numeral :: num \<Rightarrow> integer)" -proof - - have "fun_rel HOL.eq cr_integer (numeral :: num \<Rightarrow> int) (\<lambda>n. of_int (numeral n))" - by transfer_prover - then show ?thesis by simp -qed - -lemma [transfer_rule]: - "fun_rel HOL.eq cr_integer (neg_numeral :: num \<Rightarrow> int) (neg_numeral :: num \<Rightarrow> integer)" - by (unfold neg_numeral_def [abs_def]) transfer_prover - -lemma [transfer_rule]: - "fun_rel HOL.eq (fun_rel HOL.eq cr_integer) (Num.sub :: _ \<Rightarrow> _ \<Rightarrow> int) (Num.sub :: _ \<Rightarrow> _ \<Rightarrow> integer)" - by (unfold Num.sub_def [abs_def]) transfer_prover - -lemma int_of_integer_of_nat [simp]: - "int_of_integer (of_nat n) = of_nat n" - by transfer rule - -lift_definition integer_of_nat :: "nat \<Rightarrow> integer" - is "of_nat :: nat \<Rightarrow> int" - . - -lemma integer_of_nat_eq_of_nat [code]: - "integer_of_nat = of_nat" - by transfer rule - -lemma int_of_integer_integer_of_nat [simp]: - "int_of_integer (integer_of_nat n) = of_nat n" - by transfer rule - -lift_definition nat_of_integer :: "integer \<Rightarrow> nat" - is Int.nat - . - -lemma nat_of_integer_of_nat [simp]: - "nat_of_integer (of_nat n) = n" - by transfer simp - -lemma int_of_integer_of_int [simp]: - "int_of_integer (of_int k) = k" - by transfer simp - -lemma nat_of_integer_integer_of_nat [simp]: - "nat_of_integer (integer_of_nat n) = n" - by transfer simp - -lemma integer_of_int_eq_of_int [simp, code_abbrev]: - "integer_of_int = of_int" - by transfer (simp add: fun_eq_iff) - -lemma of_int_integer_of [simp]: - "of_int (int_of_integer k) = (k :: integer)" - by transfer rule - -lemma int_of_integer_numeral [simp]: - "int_of_integer (numeral k) = numeral k" - by transfer rule - -lemma int_of_integer_neg_numeral [simp]: - "int_of_integer (neg_numeral k) = neg_numeral k" - by transfer rule - -lemma int_of_integer_sub [simp]: - "int_of_integer (Num.sub k l) = Num.sub k l" - by transfer rule - -instantiation integer :: "{ring_div, equal, linordered_idom}" -begin - -lift_definition div_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" - is "Divides.div :: int \<Rightarrow> int \<Rightarrow> int" - . - -declare div_integer.rep_eq [simp] - -lift_definition mod_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" - is "Divides.mod :: int \<Rightarrow> int \<Rightarrow> int" - . - -declare mod_integer.rep_eq [simp] - -lift_definition abs_integer :: "integer \<Rightarrow> integer" - is "abs :: int \<Rightarrow> int" - . - -declare abs_integer.rep_eq [simp] - -lift_definition sgn_integer :: "integer \<Rightarrow> integer" - is "sgn :: int \<Rightarrow> int" - . - -declare sgn_integer.rep_eq [simp] - -lift_definition less_eq_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool" - is "less_eq :: int \<Rightarrow> int \<Rightarrow> bool" - . - -lift_definition less_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool" - is "less :: int \<Rightarrow> int \<Rightarrow> bool" - . - -lift_definition equal_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool" - is "HOL.equal :: int \<Rightarrow> int \<Rightarrow> bool" - . - -instance proof -qed (transfer, simp add: algebra_simps equal less_le_not_le [symmetric] mult_strict_right_mono linear)+ - -end - -lemma [transfer_rule]: - "fun_rel cr_integer (fun_rel cr_integer cr_integer) (min :: _ \<Rightarrow> _ \<Rightarrow> int) (min :: _ \<Rightarrow> _ \<Rightarrow> integer)" - by (unfold min_def [abs_def]) transfer_prover - -lemma [transfer_rule]: - "fun_rel cr_integer (fun_rel cr_integer cr_integer) (max :: _ \<Rightarrow> _ \<Rightarrow> int) (max :: _ \<Rightarrow> _ \<Rightarrow> integer)" - by (unfold max_def [abs_def]) transfer_prover - -lemma int_of_integer_min [simp]: - "int_of_integer (min k l) = min (int_of_integer k) (int_of_integer l)" - by transfer rule - -lemma int_of_integer_max [simp]: - "int_of_integer (max k l) = max (int_of_integer k) (int_of_integer l)" - by transfer rule - -lemma nat_of_integer_non_positive [simp]: - "k \<le> 0 \<Longrightarrow> nat_of_integer k = 0" - by transfer simp - -lemma of_nat_of_integer [simp]: - "of_nat (nat_of_integer k) = max 0 k" - by transfer auto - - -subsection {* Code theorems for target language integers *} - -text {* Constructors *} - -definition Pos :: "num \<Rightarrow> integer" -where - [simp, code_abbrev]: "Pos = numeral" - -lemma [transfer_rule]: - "fun_rel HOL.eq cr_integer numeral Pos" - by simp transfer_prover - -definition Neg :: "num \<Rightarrow> integer" -where - [simp, code_abbrev]: "Neg = neg_numeral" - -lemma [transfer_rule]: - "fun_rel HOL.eq cr_integer neg_numeral Neg" - by simp transfer_prover - -code_datatype "0::integer" Pos Neg - - -text {* Auxiliary operations *} - -lift_definition dup :: "integer \<Rightarrow> integer" - is "\<lambda>k::int. k + k" - . - -lemma dup_code [code]: - "dup 0 = 0" - "dup (Pos n) = Pos (Num.Bit0 n)" - "dup (Neg n) = Neg (Num.Bit0 n)" - by (transfer, simp only: neg_numeral_def numeral_Bit0 minus_add_distrib)+ - -lift_definition sub :: "num \<Rightarrow> num \<Rightarrow> integer" - is "\<lambda>m n. numeral m - numeral n :: int" - . - -lemma sub_code [code]: - "sub Num.One Num.One = 0" - "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)" - "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)" - "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)" - "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)" - "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)" - "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)" - "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1" - "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1" - by (transfer, simp add: dbl_def dbl_inc_def dbl_dec_def)+ - - -text {* Implementations *} - -lemma one_integer_code [code, code_unfold]: - "1 = Pos Num.One" - by simp - -lemma plus_integer_code [code]: - "k + 0 = (k::integer)" - "0 + l = (l::integer)" - "Pos m + Pos n = Pos (m + n)" - "Pos m + Neg n = sub m n" - "Neg m + Pos n = sub n m" - "Neg m + Neg n = Neg (m + n)" - by (transfer, simp)+ - -lemma uminus_integer_code [code]: - "uminus 0 = (0::integer)" - "uminus (Pos m) = Neg m" - "uminus (Neg m) = Pos m" - by simp_all - -lemma minus_integer_code [code]: - "k - 0 = (k::integer)" - "0 - l = uminus (l::integer)" - "Pos m - Pos n = sub m n" - "Pos m - Neg n = Pos (m + n)" - "Neg m - Pos n = Neg (m + n)" - "Neg m - Neg n = sub n m" - by (transfer, simp)+ - -lemma abs_integer_code [code]: - "\<bar>k\<bar> = (if (k::integer) < 0 then - k else k)" - by simp - -lemma sgn_integer_code [code]: - "sgn k = (if k = 0 then 0 else if (k::integer) < 0 then - 1 else 1)" - by simp - -lemma times_integer_code [code]: - "k * 0 = (0::integer)" - "0 * l = (0::integer)" - "Pos m * Pos n = Pos (m * n)" - "Pos m * Neg n = Neg (m * n)" - "Neg m * Pos n = Neg (m * n)" - "Neg m * Neg n = Pos (m * n)" - by simp_all - -definition divmod_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer \<times> integer" -where - "divmod_integer k l = (k div l, k mod l)" - -lemma fst_divmod [simp]: - "fst (divmod_integer k l) = k div l" - by (simp add: divmod_integer_def) - -lemma snd_divmod [simp]: - "snd (divmod_integer k l) = k mod l" - by (simp add: divmod_integer_def) - -definition divmod_abs :: "integer \<Rightarrow> integer \<Rightarrow> integer \<times> integer" -where - "divmod_abs k l = (\<bar>k\<bar> div \<bar>l\<bar>, \<bar>k\<bar> mod \<bar>l\<bar>)" - -lemma fst_divmod_abs [simp]: - "fst (divmod_abs k l) = \<bar>k\<bar> div \<bar>l\<bar>" - by (simp add: divmod_abs_def) - -lemma snd_divmod_abs [simp]: - "snd (divmod_abs k l) = \<bar>k\<bar> mod \<bar>l\<bar>" - by (simp add: divmod_abs_def) - -lemma divmod_abs_terminate_code [code]: - "divmod_abs (Neg k) (Neg l) = divmod_abs (Pos k) (Pos l)" - "divmod_abs (Neg k) (Pos l) = divmod_abs (Pos k) (Pos l)" - "divmod_abs (Pos k) (Neg l) = divmod_abs (Pos k) (Pos l)" - "divmod_abs j 0 = (0, \<bar>j\<bar>)" - "divmod_abs 0 j = (0, 0)" - by (simp_all add: prod_eq_iff) - -lemma divmod_abs_rec_code [code]: - "divmod_abs (Pos k) (Pos l) = - (let j = sub k l in - if j < 0 then (0, Pos k) - else let (q, r) = divmod_abs j (Pos l) in (q + 1, r))" - apply (simp add: prod_eq_iff Let_def prod_case_beta) - apply transfer - apply (simp add: sub_non_negative sub_negative div_pos_pos_trivial mod_pos_pos_trivial div_pos_geq mod_pos_geq) - done - -lemma divmod_integer_code [code]: - "divmod_integer k l = - (if k = 0 then (0, 0) else if l = 0 then (0, k) else - (apsnd \<circ> times \<circ> sgn) l (if sgn k = sgn l - then divmod_abs k l - else (let (r, s) = divmod_abs k l in - if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))" -proof - - have aux1: "\<And>k l::int. sgn k = sgn l \<longleftrightarrow> k = 0 \<and> l = 0 \<or> 0 < l \<and> 0 < k \<or> l < 0 \<and> k < 0" - by (auto simp add: sgn_if) - have aux2: "\<And>q::int. - int_of_integer k = int_of_integer l * q \<longleftrightarrow> int_of_integer k = int_of_integer l * - q" by auto - show ?thesis - by (simp add: prod_eq_iff integer_eq_iff prod_case_beta aux1) - (auto simp add: zdiv_zminus1_eq_if zmod_zminus1_eq_if div_minus_right mod_minus_right aux2) -qed - -lemma div_integer_code [code]: - "k div l = fst (divmod_integer k l)" - by simp - -lemma mod_integer_code [code]: - "k mod l = snd (divmod_integer k l)" - by simp - -lemma equal_integer_code [code]: - "HOL.equal 0 (0::integer) \<longleftrightarrow> True" - "HOL.equal 0 (Pos l) \<longleftrightarrow> False" - "HOL.equal 0 (Neg l) \<longleftrightarrow> False" - "HOL.equal (Pos k) 0 \<longleftrightarrow> False" - "HOL.equal (Pos k) (Pos l) \<longleftrightarrow> HOL.equal k l" - "HOL.equal (Pos k) (Neg l) \<longleftrightarrow> False" - "HOL.equal (Neg k) 0 \<longleftrightarrow> False" - "HOL.equal (Neg k) (Pos l) \<longleftrightarrow> False" - "HOL.equal (Neg k) (Neg l) \<longleftrightarrow> HOL.equal k l" - by (simp_all add: equal) - -lemma equal_integer_refl [code nbe]: - "HOL.equal (k::integer) k \<longleftrightarrow> True" - by (fact equal_refl) - -lemma less_eq_integer_code [code]: - "0 \<le> (0::integer) \<longleftrightarrow> True" - "0 \<le> Pos l \<longleftrightarrow> True" - "0 \<le> Neg l \<longleftrightarrow> False" - "Pos k \<le> 0 \<longleftrightarrow> False" - "Pos k \<le> Pos l \<longleftrightarrow> k \<le> l" - "Pos k \<le> Neg l \<longleftrightarrow> False" - "Neg k \<le> 0 \<longleftrightarrow> True" - "Neg k \<le> Pos l \<longleftrightarrow> True" - "Neg k \<le> Neg l \<longleftrightarrow> l \<le> k" - by simp_all - -lemma less_integer_code [code]: - "0 < (0::integer) \<longleftrightarrow> False" - "0 < Pos l \<longleftrightarrow> True" - "0 < Neg l \<longleftrightarrow> False" - "Pos k < 0 \<longleftrightarrow> False" - "Pos k < Pos l \<longleftrightarrow> k < l" - "Pos k < Neg l \<longleftrightarrow> False" - "Neg k < 0 \<longleftrightarrow> True" - "Neg k < Pos l \<longleftrightarrow> True" - "Neg k < Neg l \<longleftrightarrow> l < k" - by simp_all - -lift_definition integer_of_num :: "num \<Rightarrow> integer" - is "numeral :: num \<Rightarrow> int" - . - -lemma integer_of_num [code]: - "integer_of_num num.One = 1" - "integer_of_num (num.Bit0 n) = (let k = integer_of_num n in k + k)" - "integer_of_num (num.Bit1 n) = (let k = integer_of_num n in k + k + 1)" - by (transfer, simp only: numeral.simps Let_def)+ - -lift_definition num_of_integer :: "integer \<Rightarrow> num" - is "num_of_nat \<circ> nat" - . - -lemma num_of_integer_code [code]: - "num_of_integer k = (if k \<le> 1 then Num.One - else let - (l, j) = divmod_integer k 2; - l' = num_of_integer l; - l'' = l' + l' - in if j = 0 then l'' else l'' + Num.One)" -proof - - { - assume "int_of_integer k mod 2 = 1" - then have "nat (int_of_integer k mod 2) = nat 1" by simp - moreover assume *: "1 < int_of_integer k" - ultimately have **: "nat (int_of_integer k) mod 2 = 1" by (simp add: nat_mod_distrib) - have "num_of_nat (nat (int_of_integer k)) = - num_of_nat (2 * (nat (int_of_integer k) div 2) + nat (int_of_integer k) mod 2)" - by simp - then have "num_of_nat (nat (int_of_integer k)) = - num_of_nat (nat (int_of_integer k) div 2 + nat (int_of_integer k) div 2 + nat (int_of_integer k) mod 2)" - by (simp add: mult_2) - with ** have "num_of_nat (nat (int_of_integer k)) = - num_of_nat (nat (int_of_integer k) div 2 + nat (int_of_integer k) div 2 + 1)" - by simp - } - note aux = this - show ?thesis - by (auto simp add: num_of_integer_def nat_of_integer_def Let_def prod_case_beta - not_le integer_eq_iff less_eq_integer_def - nat_mult_distrib nat_div_distrib num_of_nat_One num_of_nat_plus_distrib - mult_2 [where 'a=nat] aux add_One) -qed - -lemma nat_of_integer_code [code]: - "nat_of_integer k = (if k \<le> 0 then 0 - else let - (l, j) = divmod_integer k 2; - l' = nat_of_integer l; - l'' = l' + l' - in if j = 0 then l'' else l'' + 1)" -proof - - obtain j where "k = integer_of_int j" - proof - show "k = integer_of_int (int_of_integer k)" by simp - qed - moreover have "2 * (j div 2) = j - j mod 2" - by (simp add: zmult_div_cancel mult_commute) - ultimately show ?thesis - by (auto simp add: split_def Let_def mod_integer_def nat_of_integer_def not_le - nat_add_distrib [symmetric] Suc_nat_eq_nat_zadd1) -qed - -lemma int_of_integer_code [code]: - "int_of_integer k = (if k < 0 then - (int_of_integer (- k)) - else if k = 0 then 0 - else let - (l, j) = divmod_integer k 2; - l' = 2 * int_of_integer l - in if j = 0 then l' else l' + 1)" - by (auto simp add: split_def Let_def integer_eq_iff zmult_div_cancel) - -lemma integer_of_int_code [code]: - "integer_of_int k = (if k < 0 then - (integer_of_int (- k)) - else if k = 0 then 0 - else let - (l, j) = divmod_int k 2; - l' = 2 * integer_of_int l - in if j = 0 then l' else l' + 1)" - by (auto simp add: split_def Let_def integer_eq_iff zmult_div_cancel) - -hide_const (open) Pos Neg sub dup divmod_abs - - -subsection {* Serializer setup for target language integers *} - -code_reserved Eval abs - -code_type integer - (SML "IntInf.int") - (OCaml "Big'_int.big'_int") - (Haskell "Integer") - (Scala "BigInt") - (Eval "int") - -code_instance integer :: equal - (Haskell -) - -code_const "0::integer" - (SML "0") - (OCaml "Big'_int.zero'_big'_int") - (Haskell "0") - (Scala "BigInt(0)") - -setup {* - fold (Numeral.add_code @{const_name Code_Numeral_Types.Pos} - false Code_Printer.literal_numeral) ["SML", "OCaml", "Haskell", "Scala"] -*} - -setup {* - fold (Numeral.add_code @{const_name Code_Numeral_Types.Neg} - true Code_Printer.literal_numeral) ["SML", "OCaml", "Haskell", "Scala"] -*} - -code_const "plus :: integer \<Rightarrow> _ \<Rightarrow> _" - (SML "IntInf.+ ((_), (_))") - (OCaml "Big'_int.add'_big'_int") - (Haskell infixl 6 "+") - (Scala infixl 7 "+") - (Eval infixl 8 "+") - -code_const "uminus :: integer \<Rightarrow> _" - (SML "IntInf.~") - (OCaml "Big'_int.minus'_big'_int") - (Haskell "negate") - (Scala "!(- _)") - (Eval "~/ _") - -code_const "minus :: integer \<Rightarrow> _" - (SML "IntInf.- ((_), (_))") - (OCaml "Big'_int.sub'_big'_int") - (Haskell infixl 6 "-") - (Scala infixl 7 "-") - (Eval infixl 8 "-") - -code_const Code_Numeral_Types.dup - (SML "IntInf.*/ (2,/ (_))") - (OCaml "Big'_int.mult'_big'_int/ (Big'_int.big'_int'_of'_int/ 2)") - (Haskell "!(2 * _)") - (Scala "!(2 * _)") - (Eval "!(2 * _)") - -code_const Code_Numeral_Types.sub - (SML "!(raise/ Fail/ \"sub\")") - (OCaml "failwith/ \"sub\"") - (Haskell "error/ \"sub\"") - (Scala "!sys.error(\"sub\")") - -code_const "times :: integer \<Rightarrow> _ \<Rightarrow> _" - (SML "IntInf.* ((_), (_))") - (OCaml "Big'_int.mult'_big'_int") - (Haskell infixl 7 "*") - (Scala infixl 8 "*") - (Eval infixl 9 "*") - -code_const Code_Numeral_Types.divmod_abs - (SML "IntInf.divMod/ (IntInf.abs _,/ IntInf.abs _)") - (OCaml "Big'_int.quomod'_big'_int/ (Big'_int.abs'_big'_int _)/ (Big'_int.abs'_big'_int _)") - (Haskell "divMod/ (abs _)/ (abs _)") - (Scala "!((k: BigInt) => (l: BigInt) =>/ if (l == 0)/ (BigInt(0), k) else/ (k.abs '/% l.abs))") - (Eval "Integer.div'_mod/ (abs _)/ (abs _)") - -code_const "HOL.equal :: integer \<Rightarrow> _ \<Rightarrow> bool" - (SML "!((_ : IntInf.int) = _)") - (OCaml "Big'_int.eq'_big'_int") - (Haskell infix 4 "==") - (Scala infixl 5 "==") - (Eval infixl 6 "=") - -code_const "less_eq :: integer \<Rightarrow> _ \<Rightarrow> bool" - (SML "IntInf.<= ((_), (_))") - (OCaml "Big'_int.le'_big'_int") - (Haskell infix 4 "<=") - (Scala infixl 4 "<=") - (Eval infixl 6 "<=") - -code_const "less :: integer \<Rightarrow> _ \<Rightarrow> bool" - (SML "IntInf.< ((_), (_))") - (OCaml "Big'_int.lt'_big'_int") - (Haskell infix 4 "<") - (Scala infixl 4 "<") - (Eval infixl 6 "<") - -code_modulename SML - Code_Numeral_Types Arith - -code_modulename OCaml - Code_Numeral_Types Arith - -code_modulename Haskell - Code_Numeral_Types Arith - - -subsection {* Type of target language naturals *} - -typedef natural = "UNIV \<Colon> nat set" - morphisms nat_of_natural natural_of_nat .. - -setup_lifting (no_code) type_definition_natural - -lemma natural_eq_iff [termination_simp]: - "m = n \<longleftrightarrow> nat_of_natural m = nat_of_natural n" - by transfer rule - -lemma natural_eqI: - "nat_of_natural m = nat_of_natural n \<Longrightarrow> m = n" - using natural_eq_iff [of m n] by simp - -lemma nat_of_natural_of_nat_inverse [simp]: - "nat_of_natural (natural_of_nat n) = n" - by transfer rule - -lemma natural_of_nat_of_natural_inverse [simp]: - "natural_of_nat (nat_of_natural n) = n" - by transfer rule - -instantiation natural :: "{comm_monoid_diff, semiring_1}" -begin - -lift_definition zero_natural :: natural - is "0 :: nat" - . - -declare zero_natural.rep_eq [simp] - -lift_definition one_natural :: natural - is "1 :: nat" - . - -declare one_natural.rep_eq [simp] - -lift_definition plus_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural" - is "plus :: nat \<Rightarrow> nat \<Rightarrow> nat" - . - -declare plus_natural.rep_eq [simp] - -lift_definition minus_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural" - is "minus :: nat \<Rightarrow> nat \<Rightarrow> nat" - . - -declare minus_natural.rep_eq [simp] - -lift_definition times_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural" - is "times :: nat \<Rightarrow> nat \<Rightarrow> nat" - . - -declare times_natural.rep_eq [simp] - -instance proof -qed (transfer, simp add: algebra_simps)+ - -end - -lemma [transfer_rule]: - "fun_rel HOL.eq cr_natural (\<lambda>n::nat. n) (of_nat :: nat \<Rightarrow> natural)" -proof - - have "fun_rel HOL.eq cr_natural (of_nat :: nat \<Rightarrow> nat) (of_nat :: nat \<Rightarrow> natural)" - by (unfold of_nat_def [abs_def]) transfer_prover - then show ?thesis by (simp add: id_def) -qed - -lemma [transfer_rule]: - "fun_rel HOL.eq cr_natural (numeral :: num \<Rightarrow> nat) (numeral :: num \<Rightarrow> natural)" -proof - - have "fun_rel HOL.eq cr_natural (numeral :: num \<Rightarrow> nat) (\<lambda>n. of_nat (numeral n))" - by transfer_prover - then show ?thesis by simp -qed - -lemma nat_of_natural_of_nat [simp]: - "nat_of_natural (of_nat n) = n" - by transfer rule - -lemma natural_of_nat_of_nat [simp, code_abbrev]: - "natural_of_nat = of_nat" - by transfer rule - -lemma of_nat_of_natural [simp]: - "of_nat (nat_of_natural n) = n" - by transfer rule - -lemma nat_of_natural_numeral [simp]: - "nat_of_natural (numeral k) = numeral k" - by transfer rule - -instantiation natural :: "{semiring_div, equal, linordered_semiring}" -begin - -lift_definition div_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural" - is "Divides.div :: nat \<Rightarrow> nat \<Rightarrow> nat" - . - -declare div_natural.rep_eq [simp] - -lift_definition mod_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural" - is "Divides.mod :: nat \<Rightarrow> nat \<Rightarrow> nat" - . - -declare mod_natural.rep_eq [simp] - -lift_definition less_eq_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool" - is "less_eq :: nat \<Rightarrow> nat \<Rightarrow> bool" - . - -declare less_eq_natural.rep_eq [termination_simp] - -lift_definition less_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool" - is "less :: nat \<Rightarrow> nat \<Rightarrow> bool" - . - -declare less_natural.rep_eq [termination_simp] - -lift_definition equal_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool" - is "HOL.equal :: nat \<Rightarrow> nat \<Rightarrow> bool" - . - -instance proof -qed (transfer, simp add: algebra_simps equal less_le_not_le [symmetric] linear)+ - -end - -lemma [transfer_rule]: - "fun_rel cr_natural (fun_rel cr_natural cr_natural) (min :: _ \<Rightarrow> _ \<Rightarrow> nat) (min :: _ \<Rightarrow> _ \<Rightarrow> natural)" - by (unfold min_def [abs_def]) transfer_prover - -lemma [transfer_rule]: - "fun_rel cr_natural (fun_rel cr_natural cr_natural) (max :: _ \<Rightarrow> _ \<Rightarrow> nat) (max :: _ \<Rightarrow> _ \<Rightarrow> natural)" - by (unfold max_def [abs_def]) transfer_prover - -lemma nat_of_natural_min [simp]: - "nat_of_natural (min k l) = min (nat_of_natural k) (nat_of_natural l)" - by transfer rule - -lemma nat_of_natural_max [simp]: - "nat_of_natural (max k l) = max (nat_of_natural k) (nat_of_natural l)" - by transfer rule - -lift_definition natural_of_integer :: "integer \<Rightarrow> natural" - is "nat :: int \<Rightarrow> nat" - . - -lift_definition integer_of_natural :: "natural \<Rightarrow> integer" - is "of_nat :: nat \<Rightarrow> int" - . - -lemma natural_of_integer_of_natural [simp]: - "natural_of_integer (integer_of_natural n) = n" - by transfer simp - -lemma integer_of_natural_of_integer [simp]: - "integer_of_natural (natural_of_integer k) = max 0 k" - by transfer auto - -lemma int_of_integer_of_natural [simp]: - "int_of_integer (integer_of_natural n) = of_nat (nat_of_natural n)" - by transfer rule - -lemma integer_of_natural_of_nat [simp]: - "integer_of_natural (of_nat n) = of_nat n" - by transfer rule - -lemma [measure_function]: - "is_measure nat_of_natural" - by (rule is_measure_trivial) - - -subsection {* Inductive represenation of target language naturals *} - -lift_definition Suc :: "natural \<Rightarrow> natural" - is Nat.Suc - . - -declare Suc.rep_eq [simp] - -rep_datatype "0::natural" Suc - by (transfer, fact nat.induct nat.inject nat.distinct)+ - -lemma natural_case [case_names nat, cases type: natural]: - fixes m :: natural - assumes "\<And>n. m = of_nat n \<Longrightarrow> P" - shows P - using assms by transfer blast - -lemma [simp, code]: - "natural_size = nat_of_natural" -proof (rule ext) - fix n - show "natural_size n = nat_of_natural n" - by (induct n) simp_all -qed - -lemma [simp, code]: - "size = nat_of_natural" -proof (rule ext) - fix n - show "size n = nat_of_natural n" - by (induct n) simp_all -qed - -lemma natural_decr [termination_simp]: - "n \<noteq> 0 \<Longrightarrow> nat_of_natural n - Nat.Suc 0 < nat_of_natural n" - by transfer simp - -lemma natural_zero_minus_one: - "(0::natural) - 1 = 0" - by simp - -lemma Suc_natural_minus_one: - "Suc n - 1 = n" - by transfer simp - -hide_const (open) Suc - - -subsection {* Code refinement for target language naturals *} - -lift_definition Nat :: "integer \<Rightarrow> natural" - is nat - . - -lemma [code_post]: - "Nat 0 = 0" - "Nat 1 = 1" - "Nat (numeral k) = numeral k" - by (transfer, simp)+ - -lemma [code abstype]: - "Nat (integer_of_natural n) = n" - by transfer simp - -lemma [code abstract]: - "integer_of_natural (natural_of_nat n) = of_nat n" - by simp - -lemma [code abstract]: - "integer_of_natural (natural_of_integer k) = max 0 k" - by simp - -lemma [code_abbrev]: - "natural_of_integer (Code_Numeral_Types.Pos k) = numeral k" - by transfer simp - -lemma [code abstract]: - "integer_of_natural 0 = 0" - by transfer simp - -lemma [code abstract]: - "integer_of_natural 1 = 1" - by transfer simp - -lemma [code abstract]: - "integer_of_natural (Code_Numeral_Types.Suc n) = integer_of_natural n + 1" - by transfer simp - -lemma [code]: - "nat_of_natural = nat_of_integer \<circ> integer_of_natural" - by transfer (simp add: fun_eq_iff) - -lemma [code, code_unfold]: - "natural_case f g n = (if n = 0 then f else g (n - 1))" - by (cases n rule: natural.exhaust) (simp_all, simp add: Suc_def) - -declare natural.recs [code del] - -lemma [code abstract]: - "integer_of_natural (m + n) = integer_of_natural m + integer_of_natural n" - by transfer simp - -lemma [code abstract]: - "integer_of_natural (m - n) = max 0 (integer_of_natural m - integer_of_natural n)" - by transfer simp - -lemma [code abstract]: - "integer_of_natural (m * n) = integer_of_natural m * integer_of_natural n" - by transfer (simp add: of_nat_mult) - -lemma [code abstract]: - "integer_of_natural (m div n) = integer_of_natural m div integer_of_natural n" - by transfer (simp add: zdiv_int) - -lemma [code abstract]: - "integer_of_natural (m mod n) = integer_of_natural m mod integer_of_natural n" - by transfer (simp add: zmod_int) - -lemma [code]: - "HOL.equal m n \<longleftrightarrow> HOL.equal (integer_of_natural m) (integer_of_natural n)" - by transfer (simp add: equal) - -lemma [code nbe]: - "HOL.equal n (n::natural) \<longleftrightarrow> True" - by (simp add: equal) - -lemma [code]: - "m \<le> n \<longleftrightarrow> integer_of_natural m \<le> integer_of_natural n" - by transfer simp - -lemma [code]: - "m < n \<longleftrightarrow> integer_of_natural m < integer_of_natural n" - by transfer simp - -hide_const (open) Nat - - -code_reflect Code_Numeral_Types - datatypes natural = _ - functions integer_of_natural natural_of_integer - -end -
--- a/src/HOL/Library/Code_Real_Approx_By_Float.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Library/Code_Real_Approx_By_Float.thy Fri Feb 15 08:31:31 2013 +0100 @@ -1,7 +1,7 @@ (* Authors: Florian Haftmann, Johannes Hölzl, Tobias Nipkow *) theory Code_Real_Approx_By_Float -imports Complex_Main "~~/src/HOL/Library/Code_Integer" +imports Complex_Main "~~/src/HOL/Library/Code_Target_Int" begin text{* \textbf{WARNING} This theory implements mathematical reals by machine @@ -119,15 +119,19 @@ (OCaml "Pervasives.asin") declare arcsin_def[code del] -definition real_of_int :: "int \<Rightarrow> real" where - "real_of_int \<equiv> of_int" +definition real_of_integer :: "integer \<Rightarrow> real" where + "real_of_integer = of_int \<circ> int_of_integer" -code_const real_of_int +code_const real_of_integer (SML "Real.fromInt") (OCaml "Pervasives.float (Big'_int.int'_of'_big'_int (_))") -lemma of_int_eq_real_of_int[code_unfold]: "of_int = real_of_int" - unfolding real_of_int_def .. +definition real_of_int :: "int \<Rightarrow> real" where + [code_abbrev]: "real_of_int = of_int" + +lemma [code]: + "real_of_int = real_of_integer \<circ> integer_of_int" + by (simp add: fun_eq_iff real_of_integer_def real_of_int_def) lemma [code_unfold del]: "0 \<equiv> (of_rat 0 :: real)" @@ -155,3 +159,4 @@ end end +
--- a/src/HOL/Library/Code_Target_Int.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Library/Code_Target_Int.thy Fri Feb 15 08:31:31 2013 +0100 @@ -5,7 +5,7 @@ header {* Implementation of integer numbers by target-language integers *} theory Code_Target_Int -imports Main "~~/src/HOL/Library/Code_Numeral_Types" +imports Main begin code_datatype int_of_integer @@ -54,7 +54,7 @@ by transfer simp lemma [code]: - "Int.dup k = int_of_integer (Code_Numeral_Types.dup (of_int k))" + "Int.dup k = int_of_integer (Code_Numeral.dup (of_int k))" by transfer simp lemma [code, code del]: @@ -66,7 +66,7 @@ lemma [code]: "pdivmod k l = map_pair int_of_integer int_of_integer - (Code_Numeral_Types.divmod_abs (of_int k) (of_int l))" + (Code_Numeral.divmod_abs (of_int k) (of_int l))" by (simp add: prod_eq_iff pdivmod_def) lemma [code]:
--- a/src/HOL/Library/Code_Target_Nat.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Library/Code_Target_Nat.thy Fri Feb 15 08:31:31 2013 +0100 @@ -5,7 +5,7 @@ header {* Implementation of natural numbers by target-language integers *} theory Code_Target_Nat -imports Code_Abstract_Nat Code_Numeral_Types +imports Code_Abstract_Nat begin subsection {* Implementation for @{typ nat} *}
--- a/src/HOL/Library/DAList.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Library/DAList.thy Fri Feb 15 08:31:31 2013 +0100 @@ -136,7 +136,7 @@ instantiation alist :: (exhaustive, exhaustive) exhaustive begin -fun exhaustive_alist :: "(('a, 'b) alist => (bool * term list) option) => code_numeral => (bool * term list) option" +fun exhaustive_alist :: "(('a, 'b) alist => (bool * term list) option) => natural => (bool * term list) option" where "exhaustive_alist f i = (if i = 0 then None else case f empty of Some ts => Some ts | None => exhaustive_alist (%a. Quickcheck_Exhaustive.exhaustive (%k. Quickcheck_Exhaustive.exhaustive (%v. f (update k v a)) (i - 1)) (i - 1)) (i - 1))" @@ -148,7 +148,7 @@ instantiation alist :: (full_exhaustive, full_exhaustive) full_exhaustive begin -fun full_exhaustive_alist :: "(('a, 'b) alist * (unit => term) => (bool * term list) option) => code_numeral => (bool * term list) option" +fun full_exhaustive_alist :: "(('a, 'b) alist * (unit => term) => (bool * term list) option) => natural => (bool * term list) option" where "full_exhaustive_alist f i = (if i = 0 then None else case f valterm_empty of Some ts => Some ts | None => full_exhaustive_alist (%a. Quickcheck_Exhaustive.full_exhaustive (%k. Quickcheck_Exhaustive.full_exhaustive (%v. f (valterm_update k v a)) (i - 1)) (i - 1)) (i - 1))"
--- a/src/HOL/Library/Efficient_Nat.thy Fri Feb 15 08:31:30 2013 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,305 +0,0 @@ -(* Title: HOL/Library/Efficient_Nat.thy - Author: Stefan Berghofer, Florian Haftmann, TU Muenchen -*) - -header {* Implementation of natural numbers by target-language integers *} - -theory Efficient_Nat -imports Code_Binary_Nat Code_Integer Main -begin - -text {* - The efficiency of the generated code for natural numbers can be improved - drastically by implementing natural numbers by target-language - integers. To do this, just include this theory. -*} - -subsection {* Target language fundamentals *} - -text {* - For ML, we map @{typ nat} to target language integers, where we - ensure that values are always non-negative. -*} - -code_type nat - (SML "IntInf.int") - (OCaml "Big'_int.big'_int") - (Eval "int") - -text {* - For Haskell and Scala we define our own @{typ nat} type. The reason - is that we have to distinguish type class instances for @{typ nat} - and @{typ int}. -*} - -code_include Haskell "Nat" -{*newtype Nat = Nat Integer deriving (Eq, Show, Read); - -instance Num Nat where { - fromInteger k = Nat (if k >= 0 then k else 0); - Nat n + Nat m = Nat (n + m); - Nat n - Nat m = fromInteger (n - m); - Nat n * Nat m = Nat (n * m); - abs n = n; - signum _ = 1; - negate n = error "negate Nat"; -}; - -instance Ord Nat where { - Nat n <= Nat m = n <= m; - Nat n < Nat m = n < m; -}; - -instance Real Nat where { - toRational (Nat n) = toRational n; -}; - -instance Enum Nat where { - toEnum k = fromInteger (toEnum k); - fromEnum (Nat n) = fromEnum n; -}; - -instance Integral Nat where { - toInteger (Nat n) = n; - divMod n m = quotRem n m; - quotRem (Nat n) (Nat m) - | (m == 0) = (0, Nat n) - | otherwise = (Nat k, Nat l) where (k, l) = quotRem n m; -}; -*} - -code_reserved Haskell Nat - -code_include Scala "Nat" -{*object Nat { - - def apply(numeral: BigInt): Nat = new Nat(numeral max 0) - def apply(numeral: Int): Nat = Nat(BigInt(numeral)) - def apply(numeral: String): Nat = Nat(BigInt(numeral)) - -} - -class Nat private(private val value: BigInt) { - - override def hashCode(): Int = this.value.hashCode() - - override def equals(that: Any): Boolean = that match { - case that: Nat => this equals that - case _ => false - } - - override def toString(): String = this.value.toString - - def equals(that: Nat): Boolean = this.value == that.value - - def as_BigInt: BigInt = this.value - def as_Int: Int = if (this.value >= scala.Int.MinValue && this.value <= scala.Int.MaxValue) - this.value.intValue - else error("Int value out of range: " + this.value.toString) - - def +(that: Nat): Nat = new Nat(this.value + that.value) - def -(that: Nat): Nat = Nat(this.value - that.value) - def *(that: Nat): Nat = new Nat(this.value * that.value) - - def /%(that: Nat): (Nat, Nat) = if (that.value == 0) (new Nat(0), this) - else { - val (k, l) = this.value /% that.value - (new Nat(k), new Nat(l)) - } - - def <=(that: Nat): Boolean = this.value <= that.value - - def <(that: Nat): Boolean = this.value < that.value - -} -*} - -code_reserved Scala Nat - -code_type nat - (Haskell "Nat.Nat") - (Scala "Nat") - -code_instance nat :: equal - (Haskell -) - -setup {* - fold (Numeral.add_code @{const_name nat_of_num} - false Code_Printer.literal_positive_numeral) ["SML", "OCaml", "Haskell", "Scala"] -*} - -code_const "0::nat" - (SML "0") - (OCaml "Big'_int.zero'_big'_int") - (Haskell "0") - (Scala "Nat(0)") - - -subsection {* Conversions *} - -text {* - Since natural numbers are implemented - using integers in ML, the coercion function @{term "int"} of type - @{typ "nat \<Rightarrow> int"} is simply implemented by the identity function. - For the @{const nat} function for converting an integer to a natural - number, we give a specific implementation using an ML expression that - returns its input value, provided that it is non-negative, and otherwise - returns @{text "0"}. -*} - -definition int :: "nat \<Rightarrow> int" where - [code_abbrev]: "int = of_nat" - -code_const int - (SML "_") - (OCaml "_") - -code_const nat - (SML "IntInf.max/ (0,/ _)") - (OCaml "Big'_int.max'_big'_int/ Big'_int.zero'_big'_int") - (Eval "Integer.max/ 0") - -text {* For Haskell and Scala, things are slightly different again. *} - -code_const int and nat - (Haskell "Prelude.toInteger" and "Prelude.fromInteger") - (Scala "!_.as'_BigInt" and "Nat") - -text {* Alternativ implementation for @{const of_nat} *} - -lemma [code]: - "of_nat n = (if n = 0 then 0 else - let - (q, m) = divmod_nat n 2; - q' = 2 * of_nat q - in if m = 0 then q' else q' + 1)" -proof - - from mod_div_equality have *: "of_nat n = of_nat (n div 2 * 2 + n mod 2)" by simp - show ?thesis - apply (simp add: Let_def divmod_nat_div_mod mod_2_not_eq_zero_eq_one_nat - of_nat_mult - of_nat_add [symmetric]) - apply (auto simp add: of_nat_mult) - apply (simp add: * of_nat_mult add_commute mult_commute) - done -qed - -text {* Conversion from and to code numerals *} - -code_const Code_Numeral.of_nat - (SML "IntInf.toInt") - (OCaml "_") - (Haskell "!(Prelude.fromInteger/ ./ Prelude.toInteger)") - (Scala "!Natural(_.as'_BigInt)") - (Eval "_") - -code_const Code_Numeral.nat_of - (SML "IntInf.fromInt") - (OCaml "_") - (Haskell "!(Prelude.fromInteger/ ./ Prelude.toInteger)") - (Scala "!Nat(_.as'_BigInt)") - (Eval "_") - - -subsection {* Target language arithmetic *} - -code_const "plus \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat" - (SML "IntInf.+/ ((_),/ (_))") - (OCaml "Big'_int.add'_big'_int") - (Haskell infixl 6 "+") - (Scala infixl 7 "+") - (Eval infixl 8 "+") - -code_const "minus \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat" - (SML "IntInf.max/ (0, IntInf.-/ ((_),/ (_)))") - (OCaml "Big'_int.max'_big'_int/ Big'_int.zero'_big'_int/ (Big'_int.sub'_big'_int/ _/ _)") - (Haskell infixl 6 "-") - (Scala infixl 7 "-") - (Eval "Integer.max/ 0/ (_ -/ _)") - -code_const Code_Binary_Nat.dup - (SML "IntInf.*/ (2,/ (_))") - (OCaml "Big'_int.mult'_big'_int/ 2") - (Haskell "!(2 * _)") - (Scala "!(2 * _)") - (Eval "!(2 * _)") - -code_const Code_Binary_Nat.sub - (SML "!(raise/ Fail/ \"sub\")") - (OCaml "failwith/ \"sub\"") - (Haskell "error/ \"sub\"") - (Scala "!sys.error(\"sub\")") - -code_const "times \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat" - (SML "IntInf.*/ ((_),/ (_))") - (OCaml "Big'_int.mult'_big'_int") - (Haskell infixl 7 "*") - (Scala infixl 8 "*") - (Eval infixl 9 "*") - -code_const divmod_nat - (SML "IntInf.divMod/ ((_),/ (_))") - (OCaml "Big'_int.quomod'_big'_int") - (Haskell "divMod") - (Scala infixl 8 "/%") - (Eval "Integer.div'_mod") - -code_const "HOL.equal \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool" - (SML "!((_ : IntInf.int) = _)") - (OCaml "Big'_int.eq'_big'_int") - (Haskell infix 4 "==") - (Scala infixl 5 "==") - (Eval infixl 6 "=") - -code_const "less_eq \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool" - (SML "IntInf.<=/ ((_),/ (_))") - (OCaml "Big'_int.le'_big'_int") - (Haskell infix 4 "<=") - (Scala infixl 4 "<=") - (Eval infixl 6 "<=") - -code_const "less \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool" - (SML "IntInf.</ ((_),/ (_))") - (OCaml "Big'_int.lt'_big'_int") - (Haskell infix 4 "<") - (Scala infixl 4 "<") - (Eval infixl 6 "<") - -code_const Num.num_of_nat - (SML "!(raise/ Fail/ \"num'_of'_nat\")") - (OCaml "failwith/ \"num'_of'_nat\"") - (Haskell "error/ \"num'_of'_nat\"") - (Scala "!sys.error(\"num'_of'_nat\")") - - -subsection {* Evaluation *} - -lemma [code, code del]: - "(Code_Evaluation.term_of \<Colon> nat \<Rightarrow> term) = Code_Evaluation.term_of" .. - -code_const "Code_Evaluation.term_of \<Colon> nat \<Rightarrow> term" - (SML "HOLogic.mk'_number/ HOLogic.natT") - -text {* - Evaluation with @{text "Quickcheck_Narrowing"} does not work yet, - since a couple of questions how to perform evaluations in Haskell are not that - clear yet. Therefore, we simply deactivate the narrowing-based quickcheck - from here on. -*} - -declare [[quickcheck_narrowing_active = false]] - - -code_modulename SML - Efficient_Nat Arith - -code_modulename OCaml - Efficient_Nat Arith - -code_modulename Haskell - Efficient_Nat Arith - -hide_const (open) int - -end -
--- a/src/HOL/Library/IArray.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Library/IArray.thy Fri Feb 15 08:31:31 2013 +0100 @@ -46,34 +46,34 @@ code_const IArray (SML "Vector.fromList") -primrec tabulate :: "code_numeral \<times> (code_numeral \<Rightarrow> 'a) \<Rightarrow> 'a iarray" where -"tabulate (n, f) = IArray (map (f \<circ> Code_Numeral.of_nat) [0..<Code_Numeral.nat_of n])" +primrec tabulate :: "integer \<times> (integer \<Rightarrow> 'a) \<Rightarrow> 'a iarray" where +"tabulate (n, f) = IArray (map (f \<circ> integer_of_nat) [0..<nat_of_integer n])" hide_const (open) tabulate lemma [code]: -"IArray.of_fun f n = IArray.tabulate (Code_Numeral.of_nat n, f \<circ> Code_Numeral.nat_of)" +"IArray.of_fun f n = IArray.tabulate (integer_of_nat n, f \<circ> nat_of_integer)" by simp code_const IArray.tabulate (SML "Vector.tabulate") -primrec sub' :: "'a iarray \<times> code_numeral \<Rightarrow> 'a" where -"sub' (as, n) = IArray.list_of as ! Code_Numeral.nat_of n" +primrec sub' :: "'a iarray \<times> integer \<Rightarrow> 'a" where +"sub' (as, n) = IArray.list_of as ! nat_of_integer n" hide_const (open) sub' lemma [code]: -"as !! n = IArray.sub' (as, Code_Numeral.of_nat n)" +"as !! n = IArray.sub' (as, integer_of_nat n)" by simp code_const IArray.sub' (SML "Vector.sub") -definition length' :: "'a iarray \<Rightarrow> code_numeral" where -[simp]: "length' as = Code_Numeral.of_nat (List.length (IArray.list_of as))" +definition length' :: "'a iarray \<Rightarrow> integer" where +[simp]: "length' as = integer_of_nat (List.length (IArray.list_of as))" hide_const (open) length' lemma [code]: -"IArray.length as = Code_Numeral.nat_of (IArray.length' as)" +"IArray.length as = nat_of_integer (IArray.length' as)" by simp code_const IArray.length'
--- a/src/HOL/Library/Multiset.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Library/Multiset.thy Fri Feb 15 08:31:31 2013 +0100 @@ -1326,7 +1326,7 @@ instantiation multiset :: (exhaustive) exhaustive begin -definition exhaustive_multiset :: "('a multiset => (bool * term list) option) => code_numeral => (bool * term list) option" +definition exhaustive_multiset :: "('a multiset => (bool * term list) option) => natural => (bool * term list) option" where "exhaustive_multiset f i = Quickcheck_Exhaustive.exhaustive (%xs. f (Bag xs)) i" @@ -1337,7 +1337,7 @@ instantiation multiset :: (full_exhaustive) full_exhaustive begin -definition full_exhaustive_multiset :: "('a multiset * (unit => term) => (bool * term list) option) => code_numeral => (bool * term list) option" +definition full_exhaustive_multiset :: "('a multiset * (unit => term) => (bool * term list) option) => natural => (bool * term list) option" where "full_exhaustive_multiset f i = Quickcheck_Exhaustive.full_exhaustive (%xs. f (bagify xs)) i"
--- a/src/HOL/Library/Predicate_Compile_Alternative_Defs.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Library/Predicate_Compile_Alternative_Defs.thy Fri Feb 15 08:31:31 2013 +0100 @@ -99,10 +99,10 @@ end fun enumerate_addups_nat compfuns (_ : typ) = absdummy @{typ nat} (Predicate_Compile_Aux.mk_iterate_upto compfuns @{typ "nat * nat"} - (absdummy @{typ code_numeral} (@{term "Pair :: nat => nat => nat * nat"} $ - (@{term "Code_Numeral.nat_of"} $ Bound 0) $ - (@{term "op - :: nat => nat => nat"} $ Bound 1 $ (@{term "Code_Numeral.nat_of"} $ Bound 0))), - @{term "0 :: code_numeral"}, @{term "Code_Numeral.of_nat"} $ Bound 0)) + (absdummy @{typ natural} (@{term "Pair :: nat => nat => nat * nat"} $ + (@{term "nat_of_natural"} $ Bound 0) $ + (@{term "op - :: nat => nat => nat"} $ Bound 1 $ (@{term "nat_of_natural"} $ Bound 0))), + @{term "0 :: natural"}, @{term "natural_of_nat"} $ Bound 0)) fun enumerate_nats compfuns (_ : typ) = let val (single_const, _) = strip_comb (Predicate_Compile_Aux.mk_single compfuns @{term "0 :: nat"}) @@ -111,8 +111,8 @@ absdummy @{typ nat} (absdummy @{typ nat} (Const (@{const_name If}, @{typ bool} --> T --> T --> T) $ (@{term "op = :: nat => nat => bool"} $ Bound 0 $ @{term "0::nat"}) $ - (Predicate_Compile_Aux.mk_iterate_upto compfuns @{typ nat} (@{term "Code_Numeral.nat_of"}, - @{term "0::code_numeral"}, @{term "Code_Numeral.of_nat"} $ Bound 1)) $ + (Predicate_Compile_Aux.mk_iterate_upto compfuns @{typ nat} (@{term "nat_of_natural"}, + @{term "0::natural"}, @{term "natural_of_nat"} $ Bound 1)) $ (single_const $ (@{term "op + :: nat => nat => nat"} $ Bound 1 $ Bound 0)))) end in
--- a/src/HOL/Library/Predicate_Compile_Quickcheck.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Library/Predicate_Compile_Quickcheck.thy Fri Feb 15 08:31:31 2013 +0100 @@ -10,4 +10,4 @@ setup {* Predicate_Compile_Quickcheck.setup *} -end \ No newline at end of file +end
--- a/src/HOL/Limited_Sequence.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Limited_Sequence.thy Fri Feb 15 08:31:31 2013 +0100 @@ -9,7 +9,7 @@ subsection {* Depth-Limited Sequence *} -type_synonym 'a dseq = "code_numeral \<Rightarrow> bool \<Rightarrow> 'a lazy_sequence option" +type_synonym 'a dseq = "natural \<Rightarrow> bool \<Rightarrow> 'a lazy_sequence option" definition empty :: "'a dseq" where @@ -19,11 +19,11 @@ where "single x = (\<lambda>_ _. Some (Lazy_Sequence.single x))" -definition eval :: "'a dseq \<Rightarrow> code_numeral \<Rightarrow> bool \<Rightarrow> 'a lazy_sequence option" +definition eval :: "'a dseq \<Rightarrow> natural \<Rightarrow> bool \<Rightarrow> 'a lazy_sequence option" where [simp]: "eval f i pol = f i pol" -definition yield :: "'a dseq \<Rightarrow> code_numeral \<Rightarrow> bool \<Rightarrow> ('a \<times> 'a dseq) option" +definition yield :: "'a dseq \<Rightarrow> natural \<Rightarrow> bool \<Rightarrow> ('a \<times> 'a dseq) option" where "yield f i pol = (case eval f i pol of None \<Rightarrow> None @@ -82,7 +82,7 @@ subsection {* Positive Depth-Limited Sequence *} -type_synonym 'a pos_dseq = "code_numeral \<Rightarrow> 'a Lazy_Sequence.lazy_sequence" +type_synonym 'a pos_dseq = "natural \<Rightarrow> 'a Lazy_Sequence.lazy_sequence" definition pos_empty :: "'a pos_dseq" where @@ -112,7 +112,7 @@ where "pos_if_seq b = (if b then pos_single () else pos_empty)" -definition pos_iterate_upto :: "(code_numeral \<Rightarrow> 'a) \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<Rightarrow> 'a pos_dseq" +definition pos_iterate_upto :: "(natural \<Rightarrow> 'a) \<Rightarrow> natural \<Rightarrow> natural \<Rightarrow> 'a pos_dseq" where "pos_iterate_upto f n m = (\<lambda>i. Lazy_Sequence.iterate_upto f n m)" @@ -123,7 +123,7 @@ subsection {* Negative Depth-Limited Sequence *} -type_synonym 'a neg_dseq = "code_numeral \<Rightarrow> 'a Lazy_Sequence.hit_bound_lazy_sequence" +type_synonym 'a neg_dseq = "natural \<Rightarrow> 'a Lazy_Sequence.hit_bound_lazy_sequence" definition neg_empty :: "'a neg_dseq" where @@ -178,16 +178,16 @@ ML {* signature LIMITED_SEQUENCE = sig - type 'a dseq = int -> bool -> 'a Lazy_Sequence.lazy_sequence option + type 'a dseq = Code_Numeral.natural -> bool -> 'a Lazy_Sequence.lazy_sequence option val map : ('a -> 'b) -> 'a dseq -> 'b dseq - val yield : 'a dseq -> int -> bool -> ('a * 'a dseq) option - val yieldn : int -> 'a dseq -> int -> bool -> 'a list * 'a dseq + val yield : 'a dseq -> Code_Numeral.natural -> bool -> ('a * 'a dseq) option + val yieldn : int -> 'a dseq -> Code_Numeral.natural -> bool -> 'a list * 'a dseq end; structure Limited_Sequence : LIMITED_SEQUENCE = struct -type 'a dseq = int -> bool -> 'a Lazy_Sequence.lazy_sequence option +type 'a dseq = Code_Numeral.natural -> bool -> 'a Lazy_Sequence.lazy_sequence option fun map f = @{code Limited_Sequence.map} f;
--- a/src/HOL/Num.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Num.thy Fri Feb 15 08:31:31 2013 +0100 @@ -545,7 +545,8 @@ end -lemma nat_of_num_numeral: "nat_of_num = numeral" +lemma nat_of_num_numeral [code_abbrev]: + "nat_of_num = numeral" proof fix n have "numeral n = nat_of_num n" @@ -553,6 +554,12 @@ then show "nat_of_num n = numeral n" by simp qed +lemma nat_of_num_code [code]: + "nat_of_num One = 1" + "nat_of_num (Bit0 n) = (let m = nat_of_num n in m + m)" + "nat_of_num (Bit1 n) = (let m = nat_of_num n in Suc (m + m))" + by (simp_all add: Let_def) + subsubsection {* Equality: class @{text semiring_char_0} *} @@ -1097,6 +1104,7 @@ hide_const (open) One Bit0 Bit1 BitM inc pow sqr sub dbl dbl_inc dbl_dec + subsection {* code module namespace *} code_modulename SML @@ -1110,3 +1118,4 @@ end +
--- a/src/HOL/Predicate.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Predicate.thy Fri Feb 15 08:31:31 2013 +0100 @@ -679,14 +679,15 @@ text {* Lazy Evaluation of an indexed function *} -function iterate_upto :: "(code_numeral \<Rightarrow> 'a) \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<Rightarrow> 'a Predicate.pred" +function iterate_upto :: "(natural \<Rightarrow> 'a) \<Rightarrow> natural \<Rightarrow> natural \<Rightarrow> 'a Predicate.pred" where "iterate_upto f n m = Predicate.Seq (%u. if n > m then Predicate.Empty else Predicate.Insert (f n) (iterate_upto f (n + 1) m))" by pat_completeness auto -termination by (relation "measure (%(f, n, m). Code_Numeral.nat_of (m + 1 - n))") auto +termination by (relation "measure (%(f, n, m). nat_of_natural (m + 1 - n))") + (auto simp add: less_natural_def) text {* Misc *}
--- a/src/HOL/Predicate_Compile_Examples/Predicate_Compile_Tests.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Predicate_Compile_Examples/Predicate_Compile_Tests.thy Fri Feb 15 08:31:31 2013 +0100 @@ -29,7 +29,7 @@ thm True'.equation thm True'.dseq_equation thm True'.random_dseq_equation -values [expected "{()}" ]"{x. True'}" +values [expected "{()}"] "{x. True'}" values [expected "{}" dseq 0] "{x. True'}" values [expected "{()}" dseq 1] "{x. True'}" values [expected "{()}" dseq 2] "{x. True'}" @@ -119,22 +119,22 @@ code_pred nested_tuples . -inductive JamesBond :: "nat => int => code_numeral => bool" +inductive JamesBond :: "nat => int => natural => bool" where "JamesBond 0 0 7" code_pred JamesBond . -values [expected "{(0::nat, 0::int , 7::code_numeral)}"] "{(a, b, c). JamesBond a b c}" -values [expected "{(0::nat, 7::code_numeral, 0:: int)}"] "{(a, c, b). JamesBond a b c}" -values [expected "{(0::int, 0::nat, 7::code_numeral)}"] "{(b, a, c). JamesBond a b c}" -values [expected "{(0::int, 7::code_numeral, 0::nat)}"] "{(b, c, a). JamesBond a b c}" -values [expected "{(7::code_numeral, 0::nat, 0::int)}"] "{(c, a, b). JamesBond a b c}" -values [expected "{(7::code_numeral, 0::int, 0::nat)}"] "{(c, b, a). JamesBond a b c}" +values [expected "{(0::nat, 0::int , 7::natural)}"] "{(a, b, c). JamesBond a b c}" +values [expected "{(0::nat, 7::natural, 0:: int)}"] "{(a, c, b). JamesBond a b c}" +values [expected "{(0::int, 0::nat, 7::natural)}"] "{(b, a, c). JamesBond a b c}" +values [expected "{(0::int, 7::natural, 0::nat)}"] "{(b, c, a). JamesBond a b c}" +values [expected "{(7::natural, 0::nat, 0::int)}"] "{(c, a, b). JamesBond a b c}" +values [expected "{(7::natural, 0::int, 0::nat)}"] "{(c, b, a). JamesBond a b c}" -values [expected "{(7::code_numeral, 0::int)}"] "{(a, b). JamesBond 0 b a}" -values [expected "{(7::code_numeral, 0::nat)}"] "{(c, a). JamesBond a 0 c}" -values [expected "{(0::nat, 7::code_numeral)}"] "{(a, c). JamesBond a 0 c}" +values [expected "{(7::natural, 0::int)}"] "{(a, b). JamesBond 0 b a}" +values [expected "{(7::natural, 0::nat)}"] "{(c, a). JamesBond a 0 c}" +values [expected "{(0::nat, 7::natural)}"] "{(a, c). JamesBond a 0 c}" subsection {* Alternative Rules *}
--- a/src/HOL/Proofs/Extraction/Euclid.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Proofs/Extraction/Euclid.thy Fri Feb 15 08:31:31 2013 +0100 @@ -10,7 +10,7 @@ imports "~~/src/HOL/Number_Theory/UniqueFactorization" Util - "~~/src/HOL/Library/Efficient_Nat" + "~~/src/HOL/Library/Code_Target_Numeral" begin text {*
--- a/src/HOL/Proofs/Extraction/Pigeonhole.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Proofs/Extraction/Pigeonhole.thy Fri Feb 15 08:31:31 2013 +0100 @@ -5,7 +5,7 @@ header {* The pigeonhole principle *} theory Pigeonhole -imports Util "~~/src/HOL/Library/Efficient_Nat" +imports Util "~~/src/HOL/Library/Code_Target_Numeral" begin text {* @@ -237,11 +237,11 @@ end definition - "test n u = pigeonhole n (\<lambda>m. m - 1)" + "test n u = pigeonhole (nat_of_integer n) (\<lambda>m. m - 1)" definition - "test' n u = pigeonhole_slow n (\<lambda>m. m - 1)" + "test' n u = pigeonhole_slow (nat_of_integer n) (\<lambda>m. m - 1)" definition - "test'' u = pigeonhole 8 (op ! [0, 1, 2, 3, 4, 5, 6, 3, 7, 8])" + "test'' u = pigeonhole 8 (List.nth [0, 1, 2, 3, 4, 5, 6, 3, 7, 8])" ML "timeit (@{code test} 10)" ML "timeit (@{code test'} 10)"
--- a/src/HOL/Proofs/Lambda/WeakNorm.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Proofs/Lambda/WeakNorm.thy Fri Feb 15 08:31:31 2013 +0100 @@ -6,7 +6,7 @@ header {* Weak normalization for simply-typed lambda calculus *} theory WeakNorm -imports LambdaType NormalForm "~~/src/HOL/Library/Code_Integer" +imports LambdaType NormalForm "~~/src/HOL/Library/Code_Target_Int" begin text {* @@ -387,14 +387,16 @@ *} ML {* +val nat_of_integer = @{code nat} o @{code int_of_integer}; + fun dBtype_of_typ (Type ("fun", [T, U])) = @{code Fun} (dBtype_of_typ T, dBtype_of_typ U) | dBtype_of_typ (TFree (s, _)) = (case raw_explode s of - ["'", a] => @{code Atom} (@{code nat} (ord a - 97)) + ["'", a] => @{code Atom} (nat_of_integer (ord a - 97)) | _ => error "dBtype_of_typ: variable name") | dBtype_of_typ _ = error "dBtype_of_typ: bad type"; -fun dB_of_term (Bound i) = @{code dB.Var} (@{code nat} i) +fun dB_of_term (Bound i) = @{code dB.Var} (nat_of_integer i) | dB_of_term (t $ u) = @{code dB.App} (dB_of_term t, dB_of_term u) | dB_of_term (Abs (_, _, t)) = @{code dB.Abs} (dB_of_term t) | dB_of_term _ = error "dB_of_term: bad term"; @@ -402,23 +404,23 @@ fun term_of_dB Ts (Type ("fun", [T, U])) (@{code dB.Abs} dBt) = Abs ("x", T, term_of_dB (T :: Ts) U dBt) | term_of_dB Ts _ dBt = term_of_dB' Ts dBt -and term_of_dB' Ts (@{code dB.Var} n) = Bound (@{code int_of_nat} n) +and term_of_dB' Ts (@{code dB.Var} n) = Bound (@{code integer_of_nat} n) | term_of_dB' Ts (@{code dB.App} (dBt, dBu)) = let val t = term_of_dB' Ts dBt in case fastype_of1 (Ts, t) of - Type ("fun", [T, U]) => t $ term_of_dB Ts T dBu + Type ("fun", [T, _]) => t $ term_of_dB Ts T dBu | _ => error "term_of_dB: function type expected" end | term_of_dB' _ _ = error "term_of_dB: term not in normal form"; fun typing_of_term Ts e (Bound i) = - @{code Var} (e, @{code nat} i, dBtype_of_typ (nth Ts i)) + @{code Var} (e, nat_of_integer i, dBtype_of_typ (nth Ts i)) | typing_of_term Ts e (t $ u) = (case fastype_of1 (Ts, t) of Type ("fun", [T, U]) => @{code App} (e, dB_of_term t, dBtype_of_typ T, dBtype_of_typ U, dB_of_term u, typing_of_term Ts e t, typing_of_term Ts e u) | _ => error "typing_of_term: function type expected") - | typing_of_term Ts e (Abs (s, T, t)) = + | typing_of_term Ts e (Abs (_, T, t)) = let val dBT = dBtype_of_typ T in @{code Abs} (e, dBT, dB_of_term t, dBtype_of_typ (fastype_of1 (T :: Ts, t)),
--- a/src/HOL/Quickcheck_Benchmark/Needham_Schroeder_Base.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Quickcheck_Benchmark/Needham_Schroeder_Base.thy Fri Feb 15 08:31:31 2013 +0100 @@ -125,8 +125,8 @@ [code]: "cps_of_set (set xs) f = find_first f xs" sorry -consts pos_cps_of_set :: "'a set => ('a => (bool * term list) option) => code_numeral => (bool * term list) option" -consts neg_cps_of_set :: "'a set => ('a Quickcheck_Exhaustive.unknown => term list Quickcheck_Exhaustive.three_valued) => code_numeral => term list Quickcheck_Exhaustive.three_valued" +consts pos_cps_of_set :: "'a set => ('a => (bool * term list) option) => natural => (bool * term list) option" +consts neg_cps_of_set :: "'a set => ('a Quickcheck_Exhaustive.unknown => term list Quickcheck_Exhaustive.three_valued) => natural => term list Quickcheck_Exhaustive.three_valued" lemma [code]: "pos_cps_of_set (set xs) f i = find_first f xs"
--- a/src/HOL/Quickcheck_Examples/Completeness.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Quickcheck_Examples/Completeness.thy Fri Feb 15 08:31:31 2013 +0100 @@ -16,6 +16,10 @@ "is_some (Some t) = True" | "is_some None = False" +lemma is_some_is_not_None: + "is_some x \<longleftrightarrow> x \<noteq> None" + by (cases x) simp_all + setup {* Exhaustive_Generators.setup_exhaustive_datatype_interpretation *} subsection {* Defining the size of values *} @@ -36,12 +40,12 @@ end -instantiation code_numeral :: size +instantiation natural :: size begin -definition size_code_numeral :: "code_numeral => nat" +definition size_natural :: "natural => nat" where - "size_code_numeral = Code_Numeral.nat_of" + "size_natural = nat_of_natural" instance .. @@ -74,96 +78,86 @@ class complete = exhaustive + size + assumes - complete: "(\<exists> v. size v \<le> n \<and> is_some (f v)) \<longleftrightarrow> is_some (exhaustive_class.exhaustive f (Code_Numeral.of_nat n))" + complete: "(\<exists> v. size v \<le> n \<and> is_some (f v)) \<longleftrightarrow> is_some (exhaustive_class.exhaustive f (natural_of_nat n))" lemma complete_imp1: - "size (v :: 'a :: complete) \<le> n \<Longrightarrow> is_some (f v) \<Longrightarrow> is_some (exhaustive_class.exhaustive f (Code_Numeral.of_nat n))" + "size (v :: 'a :: complete) \<le> n \<Longrightarrow> is_some (f v) \<Longrightarrow> is_some (exhaustive_class.exhaustive f (natural_of_nat n))" by (metis complete) lemma complete_imp2: - assumes "is_some (exhaustive_class.exhaustive f (Code_Numeral.of_nat n))" + assumes "is_some (exhaustive_class.exhaustive f (natural_of_nat n))" obtains v where "size (v :: 'a :: complete) \<le> n" "is_some (f v)" using assms by (metis complete) subsubsection {* Instance Proofs *} -declare exhaustive'.simps [simp del] +declare exhaustive_int'.simps [simp del] lemma complete_exhaustive': - "(\<exists> i. j <= i & i <= k & is_some (f i)) \<longleftrightarrow> is_some (Quickcheck_Exhaustive.exhaustive' f k j)" -proof (induct rule: Quickcheck_Exhaustive.exhaustive'.induct[of _ f k j]) + "(\<exists> i. j <= i & i <= k & is_some (f i)) \<longleftrightarrow> is_some (Quickcheck_Exhaustive.exhaustive_int' f k j)" +proof (induct rule: Quickcheck_Exhaustive.exhaustive_int'.induct[of _ f k j]) case (1 f d i) show ?case proof (cases "f i") case None from this 1 show ?thesis - unfolding exhaustive'.simps[of _ _ i] Quickcheck_Exhaustive.orelse_def + unfolding exhaustive_int'.simps[of _ _ i] Quickcheck_Exhaustive.orelse_def + apply (auto simp add: add1_zle_eq dest: less_imp_le) apply auto - apply (metis is_some.simps(2) order_le_neq_trans zless_imp_add1_zle) - apply (metis add1_zle_eq less_int_def) done next case Some from this show ?thesis - unfolding exhaustive'.simps[of _ _ i] Quickcheck_Exhaustive.orelse_def by auto + unfolding exhaustive_int'.simps[of _ _ i] Quickcheck_Exhaustive.orelse_def by auto qed qed -lemma int_of_nat: - "Code_Numeral.int_of (Code_Numeral.of_nat n) = int n" -unfolding int_of_def by simp - instance int :: complete proof fix n f - show "(\<exists>v. size (v :: int) \<le> n \<and> is_some (f v)) = is_some (exhaustive_class.exhaustive f (Code_Numeral.of_nat n))" + show "(\<exists>v. size (v :: int) \<le> n \<and> is_some (f v)) = is_some (exhaustive_class.exhaustive f (natural_of_nat n))" unfolding exhaustive_int_def complete_exhaustive'[symmetric] apply auto apply (rule_tac x="v" in exI) - unfolding size_int_def by (metis int_of_nat abs_le_iff minus_le_iff nat_le_iff)+ + unfolding size_int_def by (metis abs_le_iff minus_le_iff nat_le_iff)+ qed -declare exhaustive_code_numeral'.simps[simp del] +declare exhaustive_natural'.simps[simp del] -lemma complete_code_numeral': +lemma complete_natural': "(\<exists>n. j \<le> n \<and> n \<le> k \<and> is_some (f n)) = - is_some (Quickcheck_Exhaustive.exhaustive_code_numeral' f k j)" -proof (induct rule: exhaustive_code_numeral'.induct[of _ f k j]) + is_some (Quickcheck_Exhaustive.exhaustive_natural' f k j)" +proof (induct rule: exhaustive_natural'.induct[of _ f k j]) case (1 f k j) - show "(\<exists>n\<ge>j. n \<le> k \<and> is_some (f n)) = is_some (Quickcheck_Exhaustive.exhaustive_code_numeral' f k j)" - unfolding exhaustive_code_numeral'.simps[of f k j] Quickcheck_Exhaustive.orelse_def - apply auto + show "(\<exists>n\<ge>j. n \<le> k \<and> is_some (f n)) = is_some (Quickcheck_Exhaustive.exhaustive_natural' f k j)" + unfolding exhaustive_natural'.simps [of f k j] Quickcheck_Exhaustive.orelse_def apply (auto split: option.split) - apply (insert 1[symmetric]) - apply simp - apply (metis is_some.simps(2) less_eq_code_numeral_def not_less_eq_eq order_antisym) - apply simp - apply (split option.split_asm) - defer apply fastforce - apply simp by (metis Suc_leD) + apply (auto simp add: less_eq_natural_def less_natural_def 1 [symmetric] dest: Suc_leD) + apply (metis is_some.simps(2) natural_eqI not_less_eq_eq order_antisym) + done qed -instance code_numeral :: complete +instance natural :: complete proof fix n f - show "(\<exists>v. size (v :: code_numeral) \<le> n \<and> is_some (f v)) \<longleftrightarrow> is_some (exhaustive_class.exhaustive f (Code_Numeral.of_nat n))" - unfolding exhaustive_code_numeral_def complete_code_numeral'[symmetric] - by (auto simp add: size_code_numeral_def) + show "(\<exists>v. size (v :: natural) \<le> n \<and> is_some (f v)) \<longleftrightarrow> is_some (exhaustive_class.exhaustive f (natural_of_nat n))" + unfolding exhaustive_natural_def complete_natural' [symmetric] + by (auto simp add: size_natural_def less_eq_natural_def) qed instance nat :: complete proof fix n f - show "(\<exists>v. size (v :: nat) \<le> n \<and> is_some (f v)) \<longleftrightarrow> is_some (exhaustive_class.exhaustive f (Code_Numeral.of_nat n))" - unfolding exhaustive_nat_def complete[of n "%x. f (Code_Numeral.nat_of x)", symmetric] + show "(\<exists>v. size (v :: nat) \<le> n \<and> is_some (f v)) \<longleftrightarrow> is_some (exhaustive_class.exhaustive f (natural_of_nat n))" + unfolding exhaustive_nat_def complete[of n "%x. f (nat_of_natural x)", symmetric] apply auto - apply (rule_tac x="Code_Numeral.of_nat v" in exI) - apply (auto simp add: size_code_numeral_def size_nat_def) done + apply (rule_tac x="natural_of_nat v" in exI) + apply (auto simp add: size_natural_def size_nat_def) done qed instance list :: (complete) complete proof fix n f - show "(\<exists> v. size (v :: 'a list) \<le> n \<and> is_some (f (v :: 'a list))) \<longleftrightarrow> is_some (exhaustive_class.exhaustive f (Code_Numeral.of_nat n))" + show "(\<exists> v. size (v :: 'a list) \<le> n \<and> is_some (f (v :: 'a list))) \<longleftrightarrow> is_some (exhaustive_class.exhaustive f (natural_of_nat n))" proof (induct n arbitrary: f) case 0 { fix v have "size (v :: 'a list) > 0" by (induct v) auto } @@ -174,25 +168,25 @@ proof assume "\<exists>v. Completeness.size_class.size v \<le> Suc n \<and> is_some (f v)" then obtain v where v: "size v \<le> Suc n" "is_some (f v)" by blast - show "is_some (exhaustive_class.exhaustive f (Code_Numeral.of_nat (Suc n)))" + show "is_some (exhaustive_class.exhaustive f (natural_of_nat (Suc n)))" proof (cases "v") case Nil from this v show ?thesis - unfolding list.exhaustive_list.simps[of _ "Code_Numeral.of_nat (Suc n)"] Quickcheck_Exhaustive.orelse_def - by (auto split: option.split) + unfolding list.exhaustive_list.simps[of _ "natural_of_nat (Suc n)"] Quickcheck_Exhaustive.orelse_def + by (auto split: option.split simp add: less_natural_def) next case (Cons v' vs') from Cons v have size_v': "Completeness.size_class.size v' \<le> n" and "Completeness.size_class.size vs' \<le> n" by auto - from Suc v Cons this have "is_some (exhaustive_class.exhaustive (\<lambda>xs. f (v' # xs)) (Code_Numeral.of_nat n))" + from Suc v Cons this have "is_some (exhaustive_class.exhaustive (\<lambda>xs. f (v' # xs)) (natural_of_nat n))" by metis - from complete_imp1[OF size_v', of "%x. (exhaustive_class.exhaustive (\<lambda>xs. f (x # xs)) (Code_Numeral.of_nat n))", OF this] + from complete_imp1[OF size_v', of "%x. (exhaustive_class.exhaustive (\<lambda>xs. f (x # xs)) (natural_of_nat n))", OF this] show ?thesis - unfolding list.exhaustive_list.simps[of _ "Code_Numeral.of_nat (Suc n)"] Quickcheck_Exhaustive.orelse_def - by (auto split: option.split) + unfolding list.exhaustive_list.simps[of _ "natural_of_nat (Suc n)"] Quickcheck_Exhaustive.orelse_def + by (auto split: option.split simp add: less_natural_def) qed next - assume is_some: "is_some (exhaustive_class.exhaustive f (Code_Numeral.of_nat (Suc n)))" + assume is_some: "is_some (exhaustive_class.exhaustive f (natural_of_nat (Suc n)))" show "\<exists>v. size v \<le> Suc n \<and> is_some (f v)" proof (cases "f []") case Some @@ -201,12 +195,12 @@ next case None with is_some have - "is_some (exhaustive_class.exhaustive (\<lambda>x. exhaustive_class.exhaustive (\<lambda>xs. f (x # xs)) (Code_Numeral.of_nat n)) (Code_Numeral.of_nat n))" - unfolding list.exhaustive_list.simps[of _ "Code_Numeral.of_nat (Suc n)"] Quickcheck_Exhaustive.orelse_def - by simp + "is_some (exhaustive_class.exhaustive (\<lambda>x. exhaustive_class.exhaustive (\<lambda>xs. f (x # xs)) (natural_of_nat n)) (natural_of_nat n))" + unfolding list.exhaustive_list.simps[of _ "natural_of_nat (Suc n)"] Quickcheck_Exhaustive.orelse_def + by (simp add: less_natural_def) then obtain v' where v: "size v' \<le> n" - "is_some (exhaustive_class.exhaustive (\<lambda>xs. f (v' # xs)) (Code_Numeral.of_nat n))" + "is_some (exhaustive_class.exhaustive (\<lambda>xs. f (v' # xs)) (natural_of_nat n))" by (rule complete_imp2) with Suc[of "%xs. f (v' # xs)"] obtain vs' where vs': "size vs' \<le> n" "is_some (f (v' # vs'))" @@ -219,3 +213,4 @@ qed end +
--- a/src/HOL/Quickcheck_Examples/Hotel_Example.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Quickcheck_Examples/Hotel_Example.thy Fri Feb 15 08:31:31 2013 +0100 @@ -105,8 +105,8 @@ [code]: "cps_of_set (set xs) f = find_first f xs" sorry -consts pos_cps_of_set :: "'a set => ('a => (bool * term list) option) => code_numeral => (bool * term list) option" -consts neg_cps_of_set :: "'a set => ('a Quickcheck_Exhaustive.unknown => term list Quickcheck_Exhaustive.three_valued) => code_numeral => term list Quickcheck_Exhaustive.three_valued" +consts pos_cps_of_set :: "'a set => ('a => (bool * term list) option) => natural => (bool * term list) option" +consts neg_cps_of_set :: "'a set => ('a Quickcheck_Exhaustive.unknown => term list Quickcheck_Exhaustive.three_valued) => natural => term list Quickcheck_Exhaustive.three_valued" lemma [code]: "pos_cps_of_set (set xs) f i = find_first f xs"
--- a/src/HOL/Quickcheck_Exhaustive.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Quickcheck_Exhaustive.thy Fri Feb 15 08:31:31 2013 +0100 @@ -16,42 +16,78 @@ subsection {* exhaustive generator type classes *} class exhaustive = term_of + - fixes exhaustive :: "('a \<Rightarrow> (bool * term list) option) \<Rightarrow> code_numeral \<Rightarrow> (bool * term list) option" + fixes exhaustive :: "('a \<Rightarrow> (bool * term list) option) \<Rightarrow> natural \<Rightarrow> (bool * term list) option" class full_exhaustive = term_of + - fixes full_exhaustive :: "('a * (unit => term) \<Rightarrow> (bool * term list) option) \<Rightarrow> code_numeral \<Rightarrow> (bool * term list) option" + fixes full_exhaustive :: "('a * (unit => term) \<Rightarrow> (bool * term list) option) \<Rightarrow> natural \<Rightarrow> (bool * term list) option" -instantiation code_numeral :: full_exhaustive +instantiation natural :: full_exhaustive begin -function full_exhaustive_code_numeral' :: "(code_numeral * (unit => term) => (bool * term list) option) => code_numeral => code_numeral => (bool * term list) option" - where "full_exhaustive_code_numeral' f d i = +function full_exhaustive_natural' :: "(natural * (unit => term) => (bool * term list) option) => natural => natural => (bool * term list) option" + where "full_exhaustive_natural' f d i = (if d < i then None - else (f (i, %_. Code_Evaluation.term_of i)) orelse (full_exhaustive_code_numeral' f d (i + 1)))" + else (f (i, %_. Code_Evaluation.term_of i)) orelse (full_exhaustive_natural' f d (i + 1)))" by pat_completeness auto termination - by (relation "measure (%(_, d, i). Code_Numeral.nat_of (d + 1 - i))") auto + by (relation "measure (%(_, d, i). nat_of_natural (d + 1 - i))") + (auto simp add: less_natural_def) -definition "full_exhaustive f d = full_exhaustive_code_numeral' f d 0" +definition "full_exhaustive f d = full_exhaustive_natural' f d 0" instance .. end -instantiation code_numeral :: exhaustive +instantiation natural :: exhaustive begin -function exhaustive_code_numeral' :: "(code_numeral => (bool * term list) option) => code_numeral => code_numeral => (bool * term list) option" - where "exhaustive_code_numeral' f d i = +function exhaustive_natural' :: "(natural => (bool * term list) option) => natural => natural => (bool * term list) option" + where "exhaustive_natural' f d i = (if d < i then None - else (f i orelse exhaustive_code_numeral' f d (i + 1)))" + else (f i orelse exhaustive_natural' f d (i + 1)))" by pat_completeness auto termination - by (relation "measure (%(_, d, i). Code_Numeral.nat_of (d + 1 - i))") auto + by (relation "measure (%(_, d, i). nat_of_natural (d + 1 - i))") + (auto simp add: less_natural_def) + +definition "exhaustive f d = exhaustive_natural' f d 0" + +instance .. + +end + +instantiation integer :: exhaustive +begin + +function exhaustive_integer' :: "(integer => (bool * term list) option) => integer => integer => (bool * term list) option" + where "exhaustive_integer' f d i = (if d < i then None else (f i orelse exhaustive_integer' f d (i + 1)))" +by pat_completeness auto -definition "exhaustive f d = exhaustive_code_numeral' f d 0" +termination + by (relation "measure (%(_, d, i). nat_of_integer (d + 1 - i))") + (auto simp add: less_integer_def nat_of_integer_def) + +definition "exhaustive f d = exhaustive_integer' f (integer_of_natural d) (- (integer_of_natural d))" + +instance .. + +end + +instantiation integer :: full_exhaustive +begin + +function full_exhaustive_integer' :: "(integer * (unit => term) => (bool * term list) option) => integer => integer => (bool * term list) option" + where "full_exhaustive_integer' f d i = (if d < i then None else (case f (i, %_. Code_Evaluation.term_of i) of Some t => Some t | None => full_exhaustive_integer' f d (i + 1)))" +by pat_completeness auto + +termination + by (relation "measure (%(_, d, i). nat_of_integer (d + 1 - i))") + (auto simp add: less_integer_def nat_of_integer_def) + +definition "full_exhaustive f d = full_exhaustive_integer' f (integer_of_natural d) (- (integer_of_natural d))" instance .. @@ -60,7 +96,7 @@ instantiation nat :: exhaustive begin -definition "exhaustive f d = exhaustive (%x. f (Code_Numeral.nat_of x)) d" +definition "exhaustive f d = exhaustive (%x. f (nat_of_natural x)) d" instance .. @@ -69,7 +105,7 @@ instantiation nat :: full_exhaustive begin -definition "full_exhaustive f d = full_exhaustive (%(x, xt). f (Code_Numeral.nat_of x, %_. Code_Evaluation.term_of (Code_Numeral.nat_of x))) d" +definition "full_exhaustive f d = full_exhaustive (%(x, xt). f (nat_of_natural x, %_. Code_Evaluation.term_of (nat_of_natural x))) d" instance .. @@ -78,14 +114,15 @@ instantiation int :: exhaustive begin -function exhaustive' :: "(int => (bool * term list) option) => int => int => (bool * term list) option" - where "exhaustive' f d i = (if d < i then None else (f i orelse exhaustive' f d (i + 1)))" +function exhaustive_int' :: "(int => (bool * term list) option) => int => int => (bool * term list) option" + where "exhaustive_int' f d i = (if d < i then None else (f i orelse exhaustive_int' f d (i + 1)))" by pat_completeness auto termination by (relation "measure (%(_, d, i). nat (d + 1 - i))") auto -definition "exhaustive f d = exhaustive' f (Code_Numeral.int_of d) (- (Code_Numeral.int_of d))" +definition "exhaustive f d = exhaustive_int' f (int_of_integer (integer_of_natural d)) + (- (int_of_integer (integer_of_natural d)))" instance .. @@ -94,14 +131,15 @@ instantiation int :: full_exhaustive begin -function full_exhaustive' :: "(int * (unit => term) => (bool * term list) option) => int => int => (bool * term list) option" - where "full_exhaustive' f d i = (if d < i then None else (case f (i, %_. Code_Evaluation.term_of i) of Some t => Some t | None => full_exhaustive' f d (i + 1)))" +function full_exhaustive_int' :: "(int * (unit => term) => (bool * term list) option) => int => int => (bool * term list) option" + where "full_exhaustive_int' f d i = (if d < i then None else (case f (i, %_. Code_Evaluation.term_of i) of Some t => Some t | None => full_exhaustive_int' f d (i + 1)))" by pat_completeness auto termination by (relation "measure (%(_, d, i). nat (d + 1 - i))") auto -definition "full_exhaustive f d = full_exhaustive' f (Code_Numeral.int_of d) (- (Code_Numeral.int_of d))" +definition "full_exhaustive f d = full_exhaustive_int' f (int_of_integer (integer_of_natural d)) + (- (int_of_integer (integer_of_natural d)))" instance .. @@ -154,14 +192,14 @@ instantiation "fun" :: ("{equal, exhaustive}", exhaustive) exhaustive begin -fun exhaustive_fun' :: "(('a => 'b) => (bool * term list) option) => code_numeral => code_numeral => (bool * term list) option" +fun exhaustive_fun' :: "(('a => 'b) => (bool * term list) option) => natural => natural => (bool * term list) option" where "exhaustive_fun' f i d = (exhaustive (%b. f (%_. b)) d) orelse (if i > 1 then exhaustive_fun' (%g. exhaustive (%a. exhaustive (%b. f (g(a := b))) d) d) (i - 1) d else None)" -definition exhaustive_fun :: "(('a => 'b) => (bool * term list) option) => code_numeral => (bool * term list) option" +definition exhaustive_fun :: "(('a => 'b) => (bool * term list) option) => natural => (bool * term list) option" where "exhaustive_fun f d = exhaustive_fun' f d d" @@ -176,14 +214,14 @@ instantiation "fun" :: ("{equal, full_exhaustive}", full_exhaustive) full_exhaustive begin -fun full_exhaustive_fun' :: "(('a => 'b) * (unit => term) => (bool * term list) option) => code_numeral => code_numeral => (bool * term list) option" +fun full_exhaustive_fun' :: "(('a => 'b) * (unit => term) => (bool * term list) option) => natural => natural => (bool * term list) option" where "full_exhaustive_fun' f i d = (full_exhaustive (%v. f (valtermify_absdummy v)) d) orelse (if i > 1 then full_exhaustive_fun' (%g. full_exhaustive (%a. full_exhaustive (%b. f (valtermify_fun_upd g a b)) d) d) (i - 1) d else None)" -definition full_exhaustive_fun :: "(('a => 'b) * (unit => term) => (bool * term list) option) => code_numeral => (bool * term list) option" +definition full_exhaustive_fun :: "(('a => 'b) * (unit => term) => (bool * term list) option) => natural => (bool * term list) option" where "full_exhaustive_fun f d = full_exhaustive_fun' f d d" @@ -197,7 +235,7 @@ fixes check_all :: "('a * (unit \<Rightarrow> term) \<Rightarrow> (bool * term list) option) \<Rightarrow> (bool * term list) option" fixes enum_term_of :: "'a itself \<Rightarrow> unit \<Rightarrow> term list" -fun check_all_n_lists :: "(('a :: check_all) list * (unit \<Rightarrow> term list) \<Rightarrow> (bool * term list) option) \<Rightarrow> code_numeral \<Rightarrow> (bool * term list) option" +fun check_all_n_lists :: "(('a :: check_all) list * (unit \<Rightarrow> term list) \<Rightarrow> (bool * term list) option) \<Rightarrow> natural \<Rightarrow> (bool * term list) option" where "check_all_n_lists f n = (if n = 0 then f ([], (%_. [])) else check_all (%(x, xt). check_all_n_lists (%(xs, xst). f ((x # xs), (%_. (xt () # xst ())))) (n - 1)))" @@ -227,7 +265,7 @@ (let mk_term = mk_map_term (%_. Typerep.typerep (TYPE('a))) (%_. Typerep.typerep (TYPE('b))) (enum_term_of (TYPE('a))); enum = (Enum.enum :: 'a list) - in check_all_n_lists (\<lambda>(ys, yst). f (the o map_of (zip enum ys), mk_term yst)) (Code_Numeral.of_nat (length enum)))" + in check_all_n_lists (\<lambda>(ys, yst). f (the o map_of (zip enum ys), mk_term yst)) (natural_of_nat (length enum)))" definition enum_term_of_fun :: "('a => 'b) itself => unit => term list" where @@ -470,12 +508,12 @@ subsection {* Bounded universal quantifiers *} class bounded_forall = - fixes bounded_forall :: "('a \<Rightarrow> bool) \<Rightarrow> code_numeral \<Rightarrow> bool" + fixes bounded_forall :: "('a \<Rightarrow> bool) \<Rightarrow> natural \<Rightarrow> bool" subsection {* Fast exhaustive combinators *} class fast_exhaustive = term_of + - fixes fast_exhaustive :: "('a \<Rightarrow> unit) \<Rightarrow> code_numeral \<Rightarrow> unit" + fixes fast_exhaustive :: "('a \<Rightarrow> unit) \<Rightarrow> natural \<Rightarrow> unit" axiomatization throw_Counterexample :: "term list => unit" axiomatization catch_Counterexample :: "unit => term list option" @@ -513,7 +551,7 @@ where "cps_not n = (%c. case n (%u. Some []) of None => c () | Some _ => None)" -type_synonym 'a pos_bound_cps = "('a => (bool * term list) option) => code_numeral => (bool * term list) option" +type_synonym 'a pos_bound_cps = "('a => (bool * term list) option) => natural => (bool * term list) option" definition pos_bound_cps_empty :: "'a pos_bound_cps" where @@ -538,7 +576,7 @@ datatype 'a unknown = Unknown | Known 'a datatype 'a three_valued = Unknown_value | Value 'a | No_value -type_synonym 'a neg_bound_cps = "('a unknown => term list three_valued) => code_numeral => term list three_valued" +type_synonym 'a neg_bound_cps = "('a unknown => term list three_valued) => natural => term list three_valued" definition neg_bound_cps_empty :: "'a neg_bound_cps" where @@ -573,7 +611,7 @@ axiomatization unknown :: 'a notation (output) unknown ("?") - + ML_file "Tools/Quickcheck/exhaustive_generators.ML" setup {* Exhaustive_Generators.setup *} @@ -588,15 +626,19 @@ no_notation orelse (infixr "orelse" 55) hide_fact - exhaustive'_def - exhaustive_code_numeral'_def + exhaustive_int'_def + exhaustive_integer'_def + exhaustive_natural'_def hide_const valtermify_absdummy valtermify_fun_upd valterm_emptyset valtermify_insert valtermify_pair valtermify_Inl valtermify_Inr termify_fun_upd term_emptyset termify_insert termify_pair setify hide_const (open) - exhaustive full_exhaustive exhaustive' exhaustive_code_numeral' full_exhaustive_code_numeral' + exhaustive full_exhaustive + exhaustive_int' full_exhaustive_int' + exhaustive_integer' full_exhaustive_integer' + exhaustive_natural' full_exhaustive_natural' throw_Counterexample catch_Counterexample check_all enum_term_of orelse unknown mk_map_term check_all_n_lists check_all_subsets
--- a/src/HOL/Quickcheck_Narrowing.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Quickcheck_Narrowing.thy Fri Feb 15 08:31:31 2013 +0100 @@ -9,188 +9,26 @@ subsection {* Counterexample generator *} -text {* We create a new target for the necessary code generation setup. *} +subsubsection {* Code generation setup *} setup {* Code_Target.extend_target ("Haskell_Quickcheck", (Code_Haskell.target, K I)) *} -subsubsection {* Code generation setup *} - code_type typerep (Haskell_Quickcheck "Typerep") code_const Typerep.Typerep (Haskell_Quickcheck "Typerep") +code_type integer + (Haskell_Quickcheck "Prelude.Int") + code_reserved Haskell_Quickcheck Typerep -subsubsection {* Type @{text "code_int"} for Haskell Quickcheck's Int type *} - -typedef code_int = "UNIV \<Colon> int set" - morphisms int_of of_int by rule - -lemma of_int_int_of [simp]: - "of_int (int_of k) = k" - by (rule int_of_inverse) - -lemma int_of_of_int [simp]: - "int_of (of_int n) = n" - by (rule of_int_inverse) (rule UNIV_I) - -lemma code_int: - "(\<And>n\<Colon>code_int. PROP P n) \<equiv> (\<And>n\<Colon>int. PROP P (of_int n))" -proof - fix n :: int - assume "\<And>n\<Colon>code_int. PROP P n" - then show "PROP P (of_int n)" . -next - fix n :: code_int - assume "\<And>n\<Colon>int. PROP P (of_int n)" - then have "PROP P (of_int (int_of n))" . - then show "PROP P n" by simp -qed - - -lemma int_of_inject [simp]: - "int_of k = int_of l \<longleftrightarrow> k = l" - by (rule int_of_inject) - -lemma of_int_inject [simp]: - "of_int n = of_int m \<longleftrightarrow> n = m" - by (rule of_int_inject) (rule UNIV_I)+ - -instantiation code_int :: equal -begin - -definition - "HOL.equal k l \<longleftrightarrow> HOL.equal (int_of k) (int_of l)" - -instance proof -qed (auto simp add: equal_code_int_def equal_int_def equal_int_refl) - -end - -definition nat_of :: "code_int => nat" -where - "nat_of i = nat (int_of i)" - -instantiation code_int :: "{minus, linordered_semidom, semiring_div, neg_numeral, linorder}" -begin - -definition [simp, code del]: - "0 = of_int 0" - -definition [simp, code del]: - "1 = of_int 1" - -definition [simp, code del]: - "n + m = of_int (int_of n + int_of m)" - -definition [simp, code del]: - "- n = of_int (- int_of n)" - -definition [simp, code del]: - "n - m = of_int (int_of n - int_of m)" - -definition [simp, code del]: - "n * m = of_int (int_of n * int_of m)" - -definition [simp, code del]: - "n div m = of_int (int_of n div int_of m)" - -definition [simp, code del]: - "n mod m = of_int (int_of n mod int_of m)" - -definition [simp, code del]: - "n \<le> m \<longleftrightarrow> int_of n \<le> int_of m" - -definition [simp, code del]: - "n < m \<longleftrightarrow> int_of n < int_of m" - -instance proof -qed (auto simp add: code_int distrib_right zmult_zless_mono2) - -end - -lemma int_of_numeral [simp]: - "int_of (numeral k) = numeral k" - by (induct k) (simp_all only: numeral.simps plus_code_int_def - one_code_int_def of_int_inverse UNIV_I) - -definition Num :: "num \<Rightarrow> code_int" - where [code_abbrev]: "Num = numeral" - -lemma [code_abbrev]: - "- numeral k = (neg_numeral k :: code_int)" - by (unfold neg_numeral_def) simp - -code_datatype "0::code_int" Num - -lemma one_code_int_code [code, code_unfold]: - "(1\<Colon>code_int) = Numeral1" - by (simp only: numeral.simps) - -definition div_mod :: "code_int \<Rightarrow> code_int \<Rightarrow> code_int \<times> code_int" where - [code del]: "div_mod n m = (n div m, n mod m)" - -lemma [code]: - "n div m = fst (div_mod n m)" - unfolding div_mod_def by simp - -lemma [code]: - "n mod m = snd (div_mod n m)" - unfolding div_mod_def by simp - -lemma int_of_code [code]: - "int_of k = (if k = 0 then 0 - else (if k mod 2 = 0 then 2 * int_of (k div 2) else 2 * int_of (k div 2) + 1))" -proof - - have 1: "(int_of k div 2) * 2 + int_of k mod 2 = int_of k" - by (rule mod_div_equality) - have "int_of k mod 2 = 0 \<or> int_of k mod 2 = 1" by auto - from this show ?thesis - apply auto - apply (insert 1) by (auto simp add: mult_ac) -qed - - -code_instance code_numeral :: equal - (Haskell_Quickcheck -) - -setup {* fold (Numeral.add_code @{const_name Num} - false Code_Printer.literal_numeral) ["Haskell_Quickcheck"] *} - -code_type code_int - (Haskell_Quickcheck "Prelude.Int") - -code_const "0 \<Colon> code_int" - (Haskell_Quickcheck "0") - -code_const "1 \<Colon> code_int" - (Haskell_Quickcheck "1") - -code_const "minus \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> code_int" - (Haskell_Quickcheck infixl 6 "-") - -code_const div_mod - (Haskell_Quickcheck "divMod") - -code_const "HOL.equal \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool" - (Haskell_Quickcheck infix 4 "==") - -code_const "less_eq \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool" - (Haskell_Quickcheck infix 4 "<=") - -code_const "less \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool" - (Haskell_Quickcheck infix 4 "<") - -code_abort of_int - -hide_const (open) Num div_mod subsubsection {* Narrowing's deep representation of types and terms *} datatype narrowing_type = Narrowing_sum_of_products "narrowing_type list list" -datatype narrowing_term = Narrowing_variable "code_int list" narrowing_type | Narrowing_constructor code_int "narrowing_term list" +datatype narrowing_term = Narrowing_variable "integer list" narrowing_type | Narrowing_constructor integer "narrowing_term list" datatype 'a narrowing_cons = Narrowing_cons narrowing_type "(narrowing_term list => 'a) list" primrec map_cons :: "('a => 'b) => 'a narrowing_cons => 'b narrowing_cons" @@ -207,7 +45,7 @@ subsubsection {* Auxilary functions for Narrowing *} -consts nth :: "'a list => code_int => 'a" +consts nth :: "'a list => integer => 'a" code_const nth (Haskell_Quickcheck infixl 9 "!!") @@ -215,7 +53,7 @@ code_const error (Haskell_Quickcheck "error") -consts toEnum :: "code_int => char" +consts toEnum :: "integer => char" code_const toEnum (Haskell_Quickcheck "Prelude.toEnum") @@ -225,7 +63,7 @@ subsubsection {* Narrowing's basic operations *} -type_synonym 'a narrowing = "code_int => 'a narrowing_cons" +type_synonym 'a narrowing = "integer => 'a narrowing_cons" definition empty :: "'a narrowing" where @@ -267,35 +105,33 @@ using assms unfolding sum_def by (auto split: narrowing_cons.split narrowing_type.split) lemma [fundef_cong]: - assumes "f d = f' d" "(\<And>d'. 0 <= d' & d' < d ==> a d' = a' d')" + assumes "f d = f' d" "(\<And>d'. 0 \<le> d' \<and> d' < d \<Longrightarrow> a d' = a' d')" assumes "d = d'" shows "apply f a d = apply f' a' d'" proof - - note assms moreover - have "int_of (of_int 0) < int_of d' ==> int_of (of_int 0) <= int_of (of_int (int_of d' - int_of (of_int 1)))" - by (simp add: of_int_inverse) - moreover - have "int_of (of_int (int_of d' - int_of (of_int 1))) < int_of d'" - by (simp add: of_int_inverse) + note assms + moreover have "0 < d' \<Longrightarrow> 0 \<le> d' - 1" + by (simp add: less_integer_def less_eq_integer_def) ultimately show ?thesis - unfolding apply_def by (auto split: narrowing_cons.split narrowing_type.split simp add: Let_def) + by (auto simp add: apply_def Let_def + split: narrowing_cons.split narrowing_type.split) qed subsubsection {* Narrowing generator type class *} class narrowing = - fixes narrowing :: "code_int => 'a narrowing_cons" + fixes narrowing :: "integer => 'a narrowing_cons" datatype property = Universal narrowing_type "(narrowing_term => property)" "narrowing_term => Code_Evaluation.term" | Existential narrowing_type "(narrowing_term => property)" "narrowing_term => Code_Evaluation.term" | Property bool (* FIXME: hard-wired maximal depth of 100 here *) definition exists :: "('a :: {narrowing, partial_term_of} => property) => property" where - "exists f = (case narrowing (100 :: code_int) of Narrowing_cons ty cs => Existential ty (\<lambda> t. f (conv cs t)) (partial_term_of (TYPE('a))))" + "exists f = (case narrowing (100 :: integer) of Narrowing_cons ty cs => Existential ty (\<lambda> t. f (conv cs t)) (partial_term_of (TYPE('a))))" definition "all" :: "('a :: {narrowing, partial_term_of} => property) => property" where - "all f = (case narrowing (100 :: code_int) of Narrowing_cons ty cs => Universal ty (\<lambda>t. f (conv cs t)) (partial_term_of (TYPE('a))))" + "all f = (case narrowing (100 :: integer) of Narrowing_cons ty cs => Universal ty (\<lambda>t. f (conv cs t)) (partial_term_of (TYPE('a))))" subsubsection {* class @{text is_testable} *} @@ -343,14 +179,14 @@ where "narrowing_dummy_partial_term_of = partial_term_of" -definition narrowing_dummy_narrowing :: "code_int => ('a :: narrowing) narrowing_cons" +definition narrowing_dummy_narrowing :: "integer => ('a :: narrowing) narrowing_cons" where "narrowing_dummy_narrowing = narrowing" lemma [code]: "ensure_testable f = (let - x = narrowing_dummy_narrowing :: code_int => bool narrowing_cons; + x = narrowing_dummy_narrowing :: integer => bool narrowing_cons; y = narrowing_dummy_partial_term_of :: bool itself => narrowing_term => term; z = (conv :: _ => _ => unit) in f)" unfolding Let_def ensure_testable_def .. @@ -369,47 +205,76 @@ subsection {* Narrowing for integers *} -definition drawn_from :: "'a list => 'a narrowing_cons" -where "drawn_from xs = Narrowing_cons (Narrowing_sum_of_products (map (%_. []) xs)) (map (%x y. x) xs)" +definition drawn_from :: "'a list \<Rightarrow> 'a narrowing_cons" +where + "drawn_from xs = + Narrowing_cons (Narrowing_sum_of_products (map (\<lambda>_. []) xs)) (map (\<lambda>x _. x) xs)" -function around_zero :: "int => int list" +function around_zero :: "int \<Rightarrow> int list" where "around_zero i = (if i < 0 then [] else (if i = 0 then [0] else around_zero (i - 1) @ [i, -i]))" -by pat_completeness auto + by pat_completeness auto termination by (relation "measure nat") auto -declare around_zero.simps[simp del] +declare around_zero.simps [simp del] lemma length_around_zero: assumes "i >= 0" shows "length (around_zero i) = 2 * nat i + 1" -proof (induct rule: int_ge_induct[OF assms]) +proof (induct rule: int_ge_induct [OF assms]) case 1 from 1 show ?case by (simp add: around_zero.simps) next case (2 i) from 2 show ?case - by (simp add: around_zero.simps[of "i + 1"]) + by (simp add: around_zero.simps [of "i + 1"]) qed instantiation int :: narrowing begin definition - "narrowing_int d = (let (u :: _ => _ => unit) = conv; i = Quickcheck_Narrowing.int_of d in drawn_from (around_zero i))" + "narrowing_int d = (let (u :: _ \<Rightarrow> _ \<Rightarrow> unit) = conv; i = int_of_integer d + in drawn_from (around_zero i))" instance .. end -lemma [code, code del]: "partial_term_of (ty :: int itself) t == undefined" -by (rule partial_term_of_anything)+ +lemma [code, code del]: "partial_term_of (ty :: int itself) t \<equiv> undefined" + by (rule partial_term_of_anything)+ lemma [code]: - "partial_term_of (ty :: int itself) (Narrowing_variable p t) == Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Int.int'') [])" - "partial_term_of (ty :: int itself) (Narrowing_constructor i []) == (if i mod 2 = 0 then - Code_Evaluation.term_of (- (int_of i) div 2) else Code_Evaluation.term_of ((int_of i + 1) div 2))" -by (rule partial_term_of_anything)+ + "partial_term_of (ty :: int itself) (Narrowing_variable p t) \<equiv> + Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Int.int'') [])" + "partial_term_of (ty :: int itself) (Narrowing_constructor i []) \<equiv> + (if i mod 2 = 0 + then Code_Evaluation.term_of (- (int_of_integer i) div 2) + else Code_Evaluation.term_of ((int_of_integer i + 1) div 2))" + by (rule partial_term_of_anything)+ + +instantiation integer :: narrowing +begin + +definition + "narrowing_integer d = (let (u :: _ \<Rightarrow> _ \<Rightarrow> unit) = conv; i = int_of_integer d + in drawn_from (map integer_of_int (around_zero i)))" + +instance .. + +end + +lemma [code, code del]: "partial_term_of (ty :: integer itself) t \<equiv> undefined" + by (rule partial_term_of_anything)+ + +lemma [code]: + "partial_term_of (ty :: integer itself) (Narrowing_variable p t) \<equiv> + Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Code_Numeral.integer'') [])" + "partial_term_of (ty :: integer itself) (Narrowing_constructor i []) \<equiv> + (if i mod 2 = 0 + then Code_Evaluation.term_of (- i div 2) + else Code_Evaluation.term_of ((i + 1) div 2))" + by (rule partial_term_of_anything)+ subsection {* The @{text find_unused_assms} command *} @@ -418,9 +283,10 @@ subsection {* Closing up *} -hide_type code_int narrowing_type narrowing_term narrowing_cons property -hide_const int_of of_int nat_of map_cons nth error toEnum marker empty Narrowing_cons conv non_empty ensure_testable all exists drawn_from around_zero +hide_type narrowing_type narrowing_term narrowing_cons property +hide_const map_cons nth error toEnum marker empty Narrowing_cons conv non_empty ensure_testable all exists drawn_from around_zero hide_const (open) Narrowing_variable Narrowing_constructor "apply" sum cons hide_fact empty_def cons_def conv.simps non_empty.simps apply_def sum_def ensure_testable_def all_def exists_def end +
--- a/src/HOL/Quickcheck_Random.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Quickcheck_Random.thy Fri Feb 15 08:31:31 2013 +0100 @@ -21,7 +21,7 @@ subsection {* The @{text random} class *} class random = typerep + - fixes random :: "code_numeral \<Rightarrow> Random.seed \<Rightarrow> ('a \<times> (unit \<Rightarrow> term)) \<times> Random.seed" + fixes random :: "natural \<Rightarrow> Random.seed \<Rightarrow> ('a \<times> (unit \<Rightarrow> term)) \<times> Random.seed" subsection {* Fundamental and numeric types*} @@ -41,7 +41,7 @@ begin definition - random_itself :: "code_numeral \<Rightarrow> Random.seed \<Rightarrow> ('a itself \<times> (unit \<Rightarrow> term)) \<times> Random.seed" + random_itself :: "natural \<Rightarrow> Random.seed \<Rightarrow> ('a itself \<times> (unit \<Rightarrow> term)) \<times> Random.seed" where "random_itself _ = Pair (Code_Evaluation.valtermify TYPE('a))" instance .. @@ -71,11 +71,11 @@ instantiation nat :: random begin -definition random_nat :: "code_numeral \<Rightarrow> Random.seed +definition random_nat :: "natural \<Rightarrow> Random.seed \<Rightarrow> (nat \<times> (unit \<Rightarrow> Code_Evaluation.term)) \<times> Random.seed" where "random_nat i = Random.range (i + 1) \<circ>\<rightarrow> (\<lambda>k. Pair ( - let n = Code_Numeral.nat_of k + let n = nat_of_natural k in (n, \<lambda>_. Code_Evaluation.term_of n)))" instance .. @@ -87,13 +87,39 @@ definition "random i = Random.range (2 * i + 1) \<circ>\<rightarrow> (\<lambda>k. Pair ( - let j = (if k \<ge> i then Code_Numeral.int_of (k - i) else - Code_Numeral.int_of (i - k)) + let j = (if k \<ge> i then int (nat_of_natural (k - i)) else - (int (nat_of_natural (i - k)))) in (j, \<lambda>_. Code_Evaluation.term_of j)))" instance .. end +instantiation natural :: random +begin + +definition random_natural :: "natural \<Rightarrow> Random.seed + \<Rightarrow> (natural \<times> (unit \<Rightarrow> Code_Evaluation.term)) \<times> Random.seed" +where + "random_natural i = Random.range (i + 1) \<circ>\<rightarrow> (\<lambda>n. Pair (n, \<lambda>_. Code_Evaluation.term_of n))" + +instance .. + +end + +instantiation integer :: random +begin + +definition random_integer :: "natural \<Rightarrow> Random.seed + \<Rightarrow> (integer \<times> (unit \<Rightarrow> Code_Evaluation.term)) \<times> Random.seed" +where + "random_integer i = Random.range (2 * i + 1) \<circ>\<rightarrow> (\<lambda>k. Pair ( + let j = (if k \<ge> i then integer_of_natural (k - i) else - (integer_of_natural (i - k))) + in (j, \<lambda>_. Code_Evaluation.term_of j)))" + +instance .. + +end + subsection {* Complex generators *} @@ -114,7 +140,7 @@ begin definition - random_fun :: "code_numeral \<Rightarrow> Random.seed \<Rightarrow> (('a \<Rightarrow> 'b) \<times> (unit \<Rightarrow> term)) \<times> Random.seed" + random_fun :: "natural \<Rightarrow> Random.seed \<Rightarrow> (('a \<Rightarrow> 'b) \<times> (unit \<Rightarrow> term)) \<times> Random.seed" where "random i = random_fun_lift (random i)" instance .. @@ -126,7 +152,7 @@ definition collapse :: "('a \<Rightarrow> ('a \<Rightarrow> 'b \<times> 'a) \<times> 'a) \<Rightarrow> 'a \<Rightarrow> 'b \<times> 'a" where "collapse f = (f \<circ>\<rightarrow> id)" -definition beyond :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" +definition beyond :: "natural \<Rightarrow> natural \<Rightarrow> natural" where "beyond k l = (if l > k then l else 0)" lemma beyond_zero: "beyond k 0 = 0" @@ -155,13 +181,13 @@ "random_aux_set i j = collapse (Random.select_weight [(1, Pair valterm_emptyset), (i, random j \<circ>\<rightarrow> (%x. random_aux_set (i - 1) j \<circ>\<rightarrow> (%s. Pair (valtermify_insert x s))))])" -proof (induct i rule: code_numeral.induct) +proof (induct i rule: natural.induct) case zero show ?case by (subst select_weight_drop_zero [symmetric]) - (simp add: random_aux_set.simps [simplified]) + (simp add: random_aux_set.simps [simplified] less_natural_def) next case (Suc i) - show ?case by (simp only: random_aux_set.simps(2) [of "i"] Suc_code_numeral_minus_one) + show ?case by (simp only: random_aux_set.simps(2) [of "i"] Suc_natural_minus_one) qed definition "random_set i = random_aux_set i i" @@ -171,11 +197,11 @@ end lemma random_aux_rec: - fixes random_aux :: "code_numeral \<Rightarrow> 'a" + fixes random_aux :: "natural \<Rightarrow> 'a" assumes "random_aux 0 = rhs 0" and "\<And>k. random_aux (Code_Numeral.Suc k) = rhs (Code_Numeral.Suc k)" shows "random_aux k = rhs k" - using assms by (rule code_numeral.induct) + using assms by (rule natural.induct) subsection {* Deriving random generators for datatypes *}
--- a/src/HOL/ROOT Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/ROOT Fri Feb 15 08:31:31 2013 +0100 @@ -28,8 +28,6 @@ Code_Char_ord Product_Lexorder Product_Order - Code_Integer - Efficient_Nat (* Code_Prolog FIXME cf. 76965c356d2a *) Code_Real_Approx_By_Float Code_Target_Numeral @@ -282,7 +280,6 @@ theories [document = false] "~~/src/HOL/Library/Countable" "~~/src/HOL/Library/Monad_Syntax" - "~~/src/HOL/Library/Code_Natural" "~~/src/HOL/Library/LaTeXsugar" theories Imperative_HOL_ex files "document/root.bib" "document/root.tex" @@ -299,7 +296,7 @@ description {* Examples for program extraction in Higher-Order Logic *} options [condition = ISABELLE_POLYML, proofs = 2, parallel_proofs = 0] theories [document = false] - "~~/src/HOL/Library/Efficient_Nat" + "~~/src/HOL/Library/Code_Target_Numeral" "~~/src/HOL/Library/Monad_Syntax" "~~/src/HOL/Number_Theory/Primes" "~~/src/HOL/Number_Theory/UniqueFactorization" @@ -315,7 +312,7 @@ session "HOL-Proofs-Lambda" in "Proofs/Lambda" = "HOL-Proofs" + options [document_graph, print_mode = "no_brackets", proofs = 2, parallel_proofs = 0] theories [document = false] - "~~/src/HOL/Library/Code_Integer" + "~~/src/HOL/Library/Code_Target_Int" theories Eta StrongNorm
--- a/src/HOL/Random.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Random.thy Fri Feb 15 08:31:31 2013 +0100 @@ -13,21 +13,21 @@ subsection {* Auxiliary functions *} -fun log :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" where +fun log :: "natural \<Rightarrow> natural \<Rightarrow> natural" where "log b i = (if b \<le> 1 \<or> i < b then 1 else 1 + log b (i div b))" -definition inc_shift :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" where +definition inc_shift :: "natural \<Rightarrow> natural \<Rightarrow> natural" where "inc_shift v k = (if v = k then 1 else k + 1)" -definition minus_shift :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" where +definition minus_shift :: "natural \<Rightarrow> natural \<Rightarrow> natural \<Rightarrow> natural" where "minus_shift r k l = (if k < l then r + k - l else k - l)" subsection {* Random seeds *} -type_synonym seed = "code_numeral \<times> code_numeral" +type_synonym seed = "natural \<times> natural" -primrec "next" :: "seed \<Rightarrow> code_numeral \<times> seed" where +primrec "next" :: "seed \<Rightarrow> natural \<times> seed" where "next (v, w) = (let k = v div 53668; v' = minus_shift 2147483563 ((v mod 53668) * 40014) (k * 12211); @@ -47,55 +47,55 @@ subsection {* Base selectors *} -fun iterate :: "code_numeral \<Rightarrow> ('b \<Rightarrow> 'a \<Rightarrow> 'b \<times> 'a) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<times> 'a" where +fun iterate :: "natural \<Rightarrow> ('b \<Rightarrow> 'a \<Rightarrow> 'b \<times> 'a) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<times> 'a" where "iterate k f x = (if k = 0 then Pair x else f x \<circ>\<rightarrow> iterate (k - 1) f)" -definition range :: "code_numeral \<Rightarrow> seed \<Rightarrow> code_numeral \<times> seed" where +definition range :: "natural \<Rightarrow> seed \<Rightarrow> natural \<times> seed" where "range k = iterate (log 2147483561 k) (\<lambda>l. next \<circ>\<rightarrow> (\<lambda>v. Pair (v + l * 2147483561))) 1 \<circ>\<rightarrow> (\<lambda>v. Pair (v mod k))" lemma range: "k > 0 \<Longrightarrow> fst (range k s) < k" - by (simp add: range_def split_def del: log.simps iterate.simps) + by (simp add: range_def split_def less_natural_def del: log.simps iterate.simps) definition select :: "'a list \<Rightarrow> seed \<Rightarrow> 'a \<times> seed" where - "select xs = range (Code_Numeral.of_nat (length xs)) - \<circ>\<rightarrow> (\<lambda>k. Pair (nth xs (Code_Numeral.nat_of k)))" + "select xs = range (natural_of_nat (length xs)) + \<circ>\<rightarrow> (\<lambda>k. Pair (nth xs (nat_of_natural k)))" lemma select: assumes "xs \<noteq> []" shows "fst (select xs s) \<in> set xs" proof - - from assms have "Code_Numeral.of_nat (length xs) > 0" by simp + from assms have "natural_of_nat (length xs) > 0" by (simp add: less_natural_def) with range have - "fst (range (Code_Numeral.of_nat (length xs)) s) < Code_Numeral.of_nat (length xs)" by best + "fst (range (natural_of_nat (length xs)) s) < natural_of_nat (length xs)" by best then have - "Code_Numeral.nat_of (fst (range (Code_Numeral.of_nat (length xs)) s)) < length xs" by simp + "nat_of_natural (fst (range (natural_of_nat (length xs)) s)) < length xs" by (simp add: less_natural_def) then show ?thesis by (simp add: split_beta select_def) qed -primrec pick :: "(code_numeral \<times> 'a) list \<Rightarrow> code_numeral \<Rightarrow> 'a" where +primrec pick :: "(natural \<times> 'a) list \<Rightarrow> natural \<Rightarrow> 'a" where "pick (x # xs) i = (if i < fst x then snd x else pick xs (i - fst x))" lemma pick_member: "i < listsum (map fst xs) \<Longrightarrow> pick xs i \<in> set (map snd xs)" - by (induct xs arbitrary: i) simp_all + by (induct xs arbitrary: i) (simp_all add: less_natural_def) lemma pick_drop_zero: "pick (filter (\<lambda>(k, _). k > 0) xs) = pick xs" - by (induct xs) (auto simp add: fun_eq_iff) + by (induct xs) (auto simp add: fun_eq_iff less_natural_def minus_natural_def) lemma pick_same: - "l < length xs \<Longrightarrow> Random.pick (map (Pair 1) xs) (Code_Numeral.of_nat l) = nth xs l" + "l < length xs \<Longrightarrow> Random.pick (map (Pair 1) xs) (natural_of_nat l) = nth xs l" proof (induct xs arbitrary: l) case Nil then show ?case by simp next - case (Cons x xs) then show ?case by (cases l) simp_all + case (Cons x xs) then show ?case by (cases l) (simp_all add: less_natural_def) qed -definition select_weight :: "(code_numeral \<times> 'a) list \<Rightarrow> seed \<Rightarrow> 'a \<times> seed" where +definition select_weight :: "(natural \<times> 'a) list \<Rightarrow> seed \<Rightarrow> 'a \<times> seed" where "select_weight xs = range (listsum (map fst xs)) \<circ>\<rightarrow> (\<lambda>k. Pair (pick xs k))" @@ -112,13 +112,13 @@ lemma select_weight_cons_zero: "select_weight ((0, x) # xs) = select_weight xs" - by (simp add: select_weight_def) + by (simp add: select_weight_def less_natural_def) lemma select_weight_drop_zero: "select_weight (filter (\<lambda>(k, _). k > 0) xs) = select_weight xs" proof - have "listsum (map fst [(k, _)\<leftarrow>xs . 0 < k]) = listsum (map fst xs)" - by (induct xs) auto + by (induct xs) (auto simp add: less_natural_def, simp add: plus_natural_def) then show ?thesis by (simp only: select_weight_def pick_drop_zero) qed @@ -126,13 +126,13 @@ assumes "xs \<noteq> []" shows "select_weight (map (Pair 1) xs) = select xs" proof - - have less: "\<And>s. fst (range (Code_Numeral.of_nat (length xs)) s) < Code_Numeral.of_nat (length xs)" - using assms by (intro range) simp - moreover have "listsum (map fst (map (Pair 1) xs)) = Code_Numeral.of_nat (length xs)" + have less: "\<And>s. fst (range (natural_of_nat (length xs)) s) < natural_of_nat (length xs)" + using assms by (intro range) (simp add: less_natural_def) + moreover have "listsum (map fst (map (Pair 1) xs)) = natural_of_nat (length xs)" by (induct xs) simp_all ultimately show ?thesis by (auto simp add: select_weight_def select_def scomp_def split_def - fun_eq_iff pick_same [symmetric]) + fun_eq_iff pick_same [symmetric] less_natural_def) qed @@ -147,7 +147,7 @@ open Random_Engine; -type seed = int * int; +type seed = Code_Numeral.natural * Code_Numeral.natural; local @@ -156,7 +156,7 @@ val now = Time.toMilliseconds (Time.now ()); val (q, s1) = IntInf.divMod (now, 2147483562); val s2 = q mod 2147483398; - in (s1 + 1, s2 + 1) end); + in pairself Code_Numeral.natural_of_integer (s1 + 1, s2 + 1) end); in @@ -188,3 +188,4 @@ no_notation scomp (infixl "\<circ>\<rightarrow>" 60) end +
--- a/src/HOL/Random_Pred.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Random_Pred.thy Fri Feb 15 08:31:31 2013 +0100 @@ -7,13 +7,13 @@ imports Quickcheck_Random begin -fun iter' :: "'a itself \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<Rightarrow> Random.seed \<Rightarrow> ('a::random) Predicate.pred" +fun iter' :: "'a itself \<Rightarrow> natural \<Rightarrow> natural \<Rightarrow> Random.seed \<Rightarrow> ('a::random) Predicate.pred" where "iter' T nrandom sz seed = (if nrandom = 0 then bot_class.bot else let ((x, _), seed') = Quickcheck_Random.random sz seed in Predicate.Seq (%u. Predicate.Insert x (iter' T (nrandom - 1) sz seed')))" -definition iter :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> Random.seed \<Rightarrow> ('a::random) Predicate.pred" +definition iter :: "natural \<Rightarrow> natural \<Rightarrow> Random.seed \<Rightarrow> ('a::random) Predicate.pred" where "iter nrandom sz seed = iter' (TYPE('a)) nrandom sz seed" @@ -48,7 +48,7 @@ where "if_randompred b = (if b then single () else empty)" -definition iterate_upto :: "(code_numeral \<Rightarrow> 'a) => code_numeral \<Rightarrow> code_numeral \<Rightarrow> 'a random_pred" +definition iterate_upto :: "(natural \<Rightarrow> 'a) => natural \<Rightarrow> natural \<Rightarrow> 'a random_pred" where "iterate_upto f n m = Pair (Predicate.iterate_upto f n m)"
--- a/src/HOL/Random_Sequence.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Random_Sequence.thy Fri Feb 15 08:31:31 2013 +0100 @@ -7,7 +7,7 @@ imports Random_Pred begin -type_synonym 'a random_dseq = "code_numeral \<Rightarrow> code_numeral \<Rightarrow> Random.seed \<Rightarrow> ('a Limited_Sequence.dseq \<times> Random.seed)" +type_synonym 'a random_dseq = "natural \<Rightarrow> natural \<Rightarrow> Random.seed \<Rightarrow> ('a Limited_Sequence.dseq \<times> Random.seed)" definition empty :: "'a random_dseq" where @@ -44,13 +44,13 @@ where "map f P = bind P (single o f)" -fun Random :: "(code_numeral \<Rightarrow> Random.seed \<Rightarrow> (('a \<times> (unit \<Rightarrow> term)) \<times> Random.seed)) \<Rightarrow> 'a random_dseq" +fun Random :: "(natural \<Rightarrow> Random.seed \<Rightarrow> (('a \<times> (unit \<Rightarrow> term)) \<times> Random.seed)) \<Rightarrow> 'a random_dseq" where "Random g nrandom = (%size. if nrandom <= 0 then (Pair Limited_Sequence.empty) else (scomp (g size) (%r. scomp (Random g (nrandom - 1) size) (%rs. Pair (Limited_Sequence.union (Limited_Sequence.single (fst r)) rs)))))" -type_synonym 'a pos_random_dseq = "code_numeral \<Rightarrow> code_numeral \<Rightarrow> Random.seed \<Rightarrow> 'a Limited_Sequence.pos_dseq" +type_synonym 'a pos_random_dseq = "natural \<Rightarrow> natural \<Rightarrow> Random.seed \<Rightarrow> 'a Limited_Sequence.pos_dseq" definition pos_empty :: "'a pos_random_dseq" where @@ -76,7 +76,7 @@ where "pos_if_random_dseq b = (if b then pos_single () else pos_empty)" -definition pos_iterate_upto :: "(code_numeral => 'a) => code_numeral => code_numeral => 'a pos_random_dseq" +definition pos_iterate_upto :: "(natural => 'a) => natural => natural => 'a pos_random_dseq" where "pos_iterate_upto f n m = (\<lambda>nrandom size seed. Limited_Sequence.pos_iterate_upto f n m)" @@ -85,18 +85,18 @@ "pos_map f P = pos_bind P (pos_single o f)" fun iter :: "(Random.seed \<Rightarrow> ('a \<times> (unit \<Rightarrow> term)) \<times> Random.seed) - \<Rightarrow> code_numeral \<Rightarrow> Random.seed \<Rightarrow> 'a Lazy_Sequence.lazy_sequence" + \<Rightarrow> natural \<Rightarrow> Random.seed \<Rightarrow> 'a Lazy_Sequence.lazy_sequence" where "iter random nrandom seed = (if nrandom = 0 then Lazy_Sequence.empty else Lazy_Sequence.Lazy_Sequence (%u. let ((x, _), seed') = random seed in Some (x, iter random (nrandom - 1) seed')))" -definition pos_Random :: "(code_numeral \<Rightarrow> Random.seed \<Rightarrow> ('a \<times> (unit \<Rightarrow> term)) \<times> Random.seed) +definition pos_Random :: "(natural \<Rightarrow> Random.seed \<Rightarrow> ('a \<times> (unit \<Rightarrow> term)) \<times> Random.seed) \<Rightarrow> 'a pos_random_dseq" where "pos_Random g = (%nrandom size seed depth. iter (g size) nrandom seed)" -type_synonym 'a neg_random_dseq = "code_numeral \<Rightarrow> code_numeral \<Rightarrow> Random.seed \<Rightarrow> 'a Limited_Sequence.neg_dseq" +type_synonym 'a neg_random_dseq = "natural \<Rightarrow> natural \<Rightarrow> Random.seed \<Rightarrow> 'a Limited_Sequence.neg_dseq" definition neg_empty :: "'a neg_random_dseq" where @@ -122,7 +122,7 @@ where "neg_if_random_dseq b = (if b then neg_single () else neg_empty)" -definition neg_iterate_upto :: "(code_numeral => 'a) => code_numeral => code_numeral => 'a neg_random_dseq" +definition neg_iterate_upto :: "(natural => 'a) => natural => natural => 'a neg_random_dseq" where "neg_iterate_upto f n m = (\<lambda>nrandom size seed. Limited_Sequence.neg_iterate_upto f n m)"
--- a/src/HOL/Rat.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Rat.thy Fri Feb 15 08:31:31 2013 +0100 @@ -1031,7 +1031,7 @@ definition "Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>num. Random.range i \<circ>\<rightarrow> (\<lambda>denom. Pair ( - let j = Code_Numeral.int_of (denom + 1) + let j = int_of_integer (integer_of_natural (denom + 1)) in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))" instance .. @@ -1045,7 +1045,8 @@ begin definition - "exhaustive_rat f d = Quickcheck_Exhaustive.exhaustive (%l. Quickcheck_Exhaustive.exhaustive (%k. f (Fract k (Code_Numeral.int_of l + 1))) d) d" + "exhaustive_rat f d = Quickcheck_Exhaustive.exhaustive + (\<lambda>l. Quickcheck_Exhaustive.exhaustive (\<lambda>k. f (Fract k (int_of_integer (integer_of_natural l) + 1))) d) d" instance .. @@ -1056,7 +1057,7 @@ definition "full_exhaustive_rat f d = Quickcheck_Exhaustive.full_exhaustive (%(l, _). Quickcheck_Exhaustive.full_exhaustive (%k. - f (let j = Code_Numeral.int_of l + 1 + f (let j = int_of_integer (integer_of_natural l) + 1 in valterm_fract k (j, %_. Code_Evaluation.term_of j))) d) d" instance .. @@ -1135,3 +1136,4 @@ declare Quotient_rat[quot_del] end +
--- a/src/HOL/Tools/Nitpick/nitpick_hol.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Tools/Nitpick/nitpick_hol.ML Fri Feb 15 08:31:31 2013 +0100 @@ -589,11 +589,11 @@ val is_real_datatype = is_some oo Datatype.get_info fun is_standard_datatype thy = the oo triple_lookup (type_match thy) -(* FIXME: Use antiquotation for "code_numeral" below or detect "rep_datatype", +(* FIXME: Use antiquotation for "natural" below or detect "rep_datatype", e.g., by adding a field to "Datatype_Aux.info". *) fun is_basic_datatype thy stds s = member (op =) [@{type_name prod}, @{type_name set}, @{type_name bool}, - @{type_name int}, "Code_Numeral.code_numeral"] s orelse + @{type_name int}, @{type_name natural}, @{type_name integer}] s orelse (s = @{type_name nat} andalso is_standard_datatype thy stds nat_T) fun repair_constr_type ctxt body_T' T =
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_compilations.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_compilations.ML Fri Feb 15 08:31:31 2013 +0100 @@ -31,7 +31,7 @@ fun mk_iterate_upto T (f, from, to) = list_comb (Const (@{const_name Predicate.iterate_upto}, - [@{typ code_numeral} --> T, @{typ code_numeral}, @{typ code_numeral}] ---> mk_monadT T), + [@{typ natural} --> T, @{typ natural}, @{typ natural}] ---> mk_monadT T), [f, from, to]) fun mk_not t = @@ -115,10 +115,10 @@ struct val resultT = @{typ "(bool * Code_Evaluation.term list) option"} -fun mk_monadT T = (T --> resultT) --> @{typ "code_numeral"} --> resultT +fun mk_monadT T = (T --> resultT) --> @{typ "natural"} --> resultT fun dest_monadT (Type ("fun", [Type ("fun", [T, @{typ "(bool * term list) option"}]), - @{typ "code_numeral => (bool * term list) option"}])) = T + @{typ "natural => (bool * term list) option"}])) = T | dest_monadT T = raise TYPE ("dest_monadT", [T], []); fun mk_empty T = Const (@{const_name Quickcheck_Exhaustive.pos_bound_cps_empty}, mk_monadT T); @@ -143,7 +143,7 @@ fun mk_not t = let val nT = @{typ "(unit Quickcheck_Exhaustive.unknown => - Code_Evaluation.term list Quickcheck_Exhaustive.three_valued) => code_numeral => + Code_Evaluation.term list Quickcheck_Exhaustive.three_valued) => natural => Code_Evaluation.term list Quickcheck_Exhaustive.three_valued"} val T = mk_monadT HOLogic.unitT in Const (@{const_name Quickcheck_Exhaustive.pos_bound_cps_not}, nT --> T) $ t end @@ -169,11 +169,11 @@ fun mk_monadT T = (Type (@{type_name "Quickcheck_Exhaustive.unknown"}, [T]) --> @{typ "Code_Evaluation.term list Quickcheck_Exhaustive.three_valued"}) - --> @{typ "code_numeral => Code_Evaluation.term list Quickcheck_Exhaustive.three_valued"} + --> @{typ "natural => Code_Evaluation.term list Quickcheck_Exhaustive.three_valued"} fun dest_monadT (Type ("fun", [Type ("fun", [Type (@{type_name "Quickcheck_Exhaustive.unknown"}, [T]), @{typ "term list Quickcheck_Exhaustive.three_valued"}]), - @{typ "code_numeral => term list Quickcheck_Exhaustive.three_valued"}])) = T + @{typ "natural => term list Quickcheck_Exhaustive.three_valued"}])) = T | dest_monadT T = raise TYPE ("dest_monadT", [T], []); fun mk_empty T = Const (@{const_name Quickcheck_Exhaustive.neg_bound_cps_empty}, mk_monadT T); @@ -199,7 +199,7 @@ let val T = mk_monadT HOLogic.unitT val pT = @{typ "(unit => (bool * Code_Evaluation.term list) option)"} - --> @{typ "code_numeral => (bool * Code_Evaluation.term list) option"} + --> @{typ "natural => (bool * Code_Evaluation.term list) option"} in Const (@{const_name Quickcheck_Exhaustive.neg_bound_cps_not}, pT --> T) $ t end fun mk_Enum _ = error "not implemented" @@ -251,7 +251,7 @@ fun mk_iterate_upto T (f, from, to) = list_comb (Const (@{const_name Random_Pred.iterate_upto}, - [@{typ code_numeral} --> T, @{typ code_numeral}, @{typ code_numeral}] ---> mk_randompredT T), + [@{typ natural} --> T, @{typ natural}, @{typ natural}] ---> mk_randompredT T), [f, from, to]) fun mk_not t = @@ -272,10 +272,10 @@ structure DSequence_CompFuns = struct -fun mk_dseqT T = Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ bool}, +fun mk_dseqT T = Type ("fun", [@{typ natural}, Type ("fun", [@{typ bool}, Type (@{type_name Option.option}, [Type (@{type_name Lazy_Sequence.lazy_sequence}, [T])])])]) -fun dest_dseqT (Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ bool}, +fun dest_dseqT (Type ("fun", [@{typ natural}, Type ("fun", [@{typ bool}, Type (@{type_name Option.option}, [Type (@{type_name Lazy_Sequence.lazy_sequence}, [T])])])])) = T | dest_dseqT T = raise TYPE ("dest_dseqT", [T], []); @@ -315,9 +315,9 @@ struct fun mk_pos_dseqT T = - @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [T]) + @{typ natural} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [T]) -fun dest_pos_dseqT (Type ("fun", [@{typ code_numeral}, +fun dest_pos_dseqT (Type ("fun", [@{typ natural}, Type (@{type_name Lazy_Sequence.lazy_sequence}, [T])])) = T | dest_pos_dseqT T = raise TYPE ("dest_pos_dseqT", [T], []); @@ -353,7 +353,7 @@ let val pT = mk_pos_dseqT HOLogic.unitT val nT = - @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, + @{typ natural} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [Type (@{type_name Option.option}, [@{typ unit}])]) in Const (@{const_name Limited_Sequence.pos_not_seq}, nT --> pT) $ t end @@ -375,10 +375,10 @@ structure New_Neg_DSequence_CompFuns = struct -fun mk_neg_dseqT T = @{typ code_numeral} --> +fun mk_neg_dseqT T = @{typ natural} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [Type (@{type_name Option.option}, [T])]) -fun dest_neg_dseqT (Type ("fun", [@{typ code_numeral}, +fun dest_neg_dseqT (Type ("fun", [@{typ natural}, Type (@{type_name Lazy_Sequence.lazy_sequence}, [Type (@{type_name Option.option}, [T])])])) = T | dest_neg_dseqT T = raise TYPE ("dest_neg_dseqT", [T], []); @@ -414,7 +414,7 @@ let val nT = mk_neg_dseqT HOLogic.unitT val pT = - @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, + @{typ natural} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [@{typ unit}]) in Const (@{const_name Limited_Sequence.neg_not_seq}, pT --> nT) $ t end @@ -437,11 +437,11 @@ struct fun mk_pos_random_dseqT T = - @{typ code_numeral} --> @{typ code_numeral} --> @{typ Random.seed} --> - @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [T]) + @{typ natural} --> @{typ natural} --> @{typ Random.seed} --> + @{typ natural} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [T]) -fun dest_pos_random_dseqT (Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ code_numeral}, - Type ("fun", [@{typ Random.seed}, Type ("fun", [@{typ code_numeral}, +fun dest_pos_random_dseqT (Type ("fun", [@{typ natural}, Type ("fun", [@{typ natural}, + Type ("fun", [@{typ Random.seed}, Type ("fun", [@{typ natural}, Type (@{type_name Lazy_Sequence.lazy_sequence}, [T])])])])])) = T | dest_pos_random_dseqT T = raise TYPE ("dest_random_dseqT", [T], []); @@ -473,15 +473,15 @@ fun mk_iterate_upto T (f, from, to) = list_comb (Const (@{const_name Random_Sequence.pos_iterate_upto}, - [@{typ code_numeral} --> T, @{typ code_numeral}, @{typ code_numeral}] + [@{typ natural} --> T, @{typ natural}, @{typ natural}] ---> mk_pos_random_dseqT T), [f, from, to]) fun mk_not t = let val pT = mk_pos_random_dseqT HOLogic.unitT - val nT = @{typ code_numeral} --> @{typ code_numeral} --> @{typ Random.seed} --> - @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, + val nT = @{typ natural} --> @{typ natural} --> @{typ Random.seed} --> + @{typ natural} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [Type (@{type_name Option.option}, [@{typ unit}])]) in Const (@{const_name Random_Sequence.pos_not_random_dseq}, nT --> pT) $ t end @@ -504,12 +504,12 @@ struct fun mk_neg_random_dseqT T = - @{typ code_numeral} --> @{typ code_numeral} --> @{typ Random.seed} --> - @{typ code_numeral} --> + @{typ natural} --> @{typ natural} --> @{typ Random.seed} --> + @{typ natural} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [Type (@{type_name Option.option}, [T])]) -fun dest_neg_random_dseqT (Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ code_numeral}, - Type ("fun", [@{typ Random.seed}, Type ("fun", [@{typ code_numeral}, +fun dest_neg_random_dseqT (Type ("fun", [@{typ natural}, Type ("fun", [@{typ natural}, + Type ("fun", [@{typ Random.seed}, Type ("fun", [@{typ natural}, Type (@{type_name Lazy_Sequence.lazy_sequence}, [Type (@{type_name Option.option}, [T])])])])])])) = T | dest_neg_random_dseqT T = raise TYPE ("dest_random_dseqT", [T], []); @@ -542,15 +542,15 @@ fun mk_iterate_upto T (f, from, to) = list_comb (Const (@{const_name Random_Sequence.neg_iterate_upto}, - [@{typ code_numeral} --> T, @{typ code_numeral}, @{typ code_numeral}] + [@{typ natural} --> T, @{typ natural}, @{typ natural}] ---> mk_neg_random_dseqT T), [f, from, to]) fun mk_not t = let val nT = mk_neg_random_dseqT HOLogic.unitT - val pT = @{typ code_numeral} --> @{typ code_numeral} --> @{typ Random.seed} --> - @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [@{typ unit}]) + val pT = @{typ natural} --> @{typ natural} --> @{typ Random.seed} --> + @{typ natural} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [@{typ unit}]) in Const (@{const_name Random_Sequence.neg_not_random_dseq}, pT --> nT) $ t end fun mk_map T1 T2 tf tp = Const (@{const_name Random_Sequence.neg_map}, @@ -572,10 +572,10 @@ struct fun mk_random_dseqT T = - @{typ code_numeral} --> @{typ code_numeral} --> @{typ Random.seed} --> + @{typ natural} --> @{typ natural} --> @{typ Random.seed} --> HOLogic.mk_prodT (DSequence_CompFuns.mk_dseqT T, @{typ Random.seed}) -fun dest_random_dseqT (Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ code_numeral}, +fun dest_random_dseqT (Type ("fun", [@{typ natural}, Type ("fun", [@{typ natural}, Type ("fun", [@{typ Random.seed}, Type (@{type_name Product_Type.prod}, [T, @{typ Random.seed}])])])])) = DSequence_CompFuns.dest_dseqT T | dest_random_dseqT T = raise TYPE ("dest_random_dseqT", [T], []);
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_core.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_core.ML Fri Feb 15 08:31:31 2013 +0100 @@ -27,15 +27,15 @@ val put_pred_random_result : (unit -> seed -> term Predicate.pred * seed) -> Proof.context -> Proof.context val put_dseq_result : (unit -> term Limited_Sequence.dseq) -> Proof.context -> Proof.context - val put_dseq_random_result : (unit -> int -> int -> seed -> term Limited_Sequence.dseq * seed) -> + val put_dseq_random_result : (unit -> Code_Numeral.natural -> Code_Numeral.natural -> seed -> term Limited_Sequence.dseq * seed) -> Proof.context -> Proof.context - val put_new_dseq_result : (unit -> int -> term Lazy_Sequence.lazy_sequence) -> + val put_new_dseq_result : (unit -> Code_Numeral.natural -> term Lazy_Sequence.lazy_sequence) -> Proof.context -> Proof.context val put_lseq_random_result : - (unit -> int -> int -> seed -> int -> term Lazy_Sequence.lazy_sequence) -> + (unit -> Code_Numeral.natural -> Code_Numeral.natural -> seed -> Code_Numeral.natural -> term Lazy_Sequence.lazy_sequence) -> Proof.context -> Proof.context val put_lseq_random_stats_result : - (unit -> int -> int -> seed -> int -> (term * int) Lazy_Sequence.lazy_sequence) -> + (unit -> Code_Numeral.natural -> Code_Numeral.natural -> seed -> Code_Numeral.natural -> (term * Code_Numeral.natural) Lazy_Sequence.lazy_sequence) -> Proof.context -> Proof.context val code_pred_intro_attrib : attribute @@ -66,6 +66,8 @@ structure Predicate_Compile_Core : PREDICATE_COMPILE_CORE = struct +type random_seed = Random_Engine.seed + open Predicate_Compile_Aux; open Core_Data; open Mode_Inference; @@ -294,9 +296,9 @@ additional_arguments = fn names => let val depth_name = singleton (Name.variant_list names) "depth" - in [Free (depth_name, @{typ code_numeral})] end, + in [Free (depth_name, @{typ natural})] end, modify_funT = (fn T => let val (Ts, U) = strip_type T - val Ts' = [@{typ code_numeral}] in (Ts @ Ts') ---> U end), + val Ts' = [@{typ natural}] in (Ts @ Ts') ---> U end), wrap_compilation = fn compfuns => fn s => fn T => fn mode => fn additional_arguments => fn compilation => let @@ -305,7 +307,7 @@ val T' = mk_monadT compfuns (HOLogic.mk_tupleT Ts) val if_const = Const (@{const_name "If"}, @{typ bool} --> T' --> T' --> T') in - if_const $ HOLogic.mk_eq (depth, @{term "0 :: code_numeral"}) + if_const $ HOLogic.mk_eq (depth, @{term "0 :: natural"}) $ mk_empty compfuns (dest_monadT compfuns T') $ compilation end, @@ -314,8 +316,8 @@ let val [depth] = additional_arguments val depth' = - Const (@{const_name Groups.minus}, @{typ "code_numeral => code_numeral => code_numeral"}) - $ depth $ Const (@{const_name Groups.one}, @{typ "Code_Numeral.code_numeral"}) + Const (@{const_name Groups.minus}, @{typ "natural => natural => natural"}) + $ depth $ Const (@{const_name Groups.one}, @{typ "natural"}) in [depth'] end } @@ -326,18 +328,18 @@ compfuns = Predicate_Comp_Funs.compfuns, mk_random = (fn T => fn additional_arguments => list_comb (Const(@{const_name Random_Pred.iter}, - [@{typ code_numeral}, @{typ code_numeral}, @{typ Random.seed}] ---> + [@{typ natural}, @{typ natural}, @{typ Random.seed}] ---> Predicate_Comp_Funs.mk_monadT T), additional_arguments)), modify_funT = (fn T => let val (Ts, U) = strip_type T - val Ts' = [@{typ code_numeral}, @{typ code_numeral}, @{typ Random.seed}] + val Ts' = [@{typ natural}, @{typ natural}, @{typ Random.seed}] in (Ts @ Ts') ---> U end), additional_arguments = (fn names => let val [nrandom, size, seed] = Name.variant_list names ["nrandom", "size", "seed"] in - [Free (nrandom, @{typ code_numeral}), Free (size, @{typ code_numeral}), + [Free (nrandom, @{typ natural}), Free (size, @{typ natural}), Free (seed, @{typ Random.seed})] end), wrap_compilation = K (K (K (K (K I)))) @@ -352,20 +354,20 @@ compfuns = Predicate_Comp_Funs.compfuns, mk_random = (fn T => fn additional_arguments => list_comb (Const(@{const_name Random_Pred.iter}, - [@{typ code_numeral}, @{typ code_numeral}, @{typ Random.seed}] ---> + [@{typ natural}, @{typ natural}, @{typ Random.seed}] ---> Predicate_Comp_Funs.mk_monadT T), tl additional_arguments)), modify_funT = (fn T => let val (Ts, U) = strip_type T - val Ts' = [@{typ code_numeral}, @{typ code_numeral}, @{typ code_numeral}, + val Ts' = [@{typ natural}, @{typ natural}, @{typ natural}, @{typ Random.seed}] in (Ts @ Ts') ---> U end), additional_arguments = (fn names => let val [depth, nrandom, size, seed] = Name.variant_list names ["depth", "nrandom", "size", "seed"] in - [Free (depth, @{typ code_numeral}), Free (nrandom, @{typ code_numeral}), - Free (size, @{typ code_numeral}), Free (seed, @{typ Random.seed})] + [Free (depth, @{typ natural}), Free (nrandom, @{typ natural}), + Free (size, @{typ natural}), Free (seed, @{typ Random.seed})] end), wrap_compilation = fn compfuns => fn _ => fn T => fn mode => fn additional_arguments => fn compilation => @@ -376,7 +378,7 @@ val T' = mk_monadT compfuns (HOLogic.mk_tupleT Ts) val if_const = Const (@{const_name "If"}, @{typ bool} --> T' --> T' --> T') in - if_const $ HOLogic.mk_eq (depth, @{term "0 :: code_numeral"}) + if_const $ HOLogic.mk_eq (depth, @{term "0 :: natural"}) $ mk_empty compfuns (dest_monadT compfuns T') $ compilation end, @@ -385,8 +387,8 @@ let val [depth, nrandom, size, seed] = additional_arguments val depth' = - Const (@{const_name Groups.minus}, @{typ "code_numeral => code_numeral => code_numeral"}) - $ depth $ Const (@{const_name Groups.one}, @{typ "Code_Numeral.code_numeral"}) + Const (@{const_name Groups.minus}, @{typ "natural => natural => natural"}) + $ depth $ Const (@{const_name Groups.one}, @{typ "natural"}) in [depth', nrandom, size, seed] end } @@ -424,10 +426,10 @@ mk_random = (fn T => fn _ => let val random = Const (@{const_name Quickcheck_Random.random}, - @{typ code_numeral} --> @{typ Random.seed} --> + @{typ natural} --> @{typ Random.seed} --> HOLogic.mk_prodT (HOLogic.mk_prodT (T, @{typ "unit => term"}), @{typ Random.seed})) in - Const (@{const_name Random_Sequence.Random}, (@{typ code_numeral} --> @{typ Random.seed} --> + Const (@{const_name Random_Sequence.Random}, (@{typ natural} --> @{typ Random.seed} --> HOLogic.mk_prodT (HOLogic.mk_prodT (T, @{typ "unit => term"}), @{typ Random.seed})) --> Random_Sequence_CompFuns.mk_random_dseqT T) $ random end), @@ -461,10 +463,10 @@ mk_random = (fn T => fn _ => let val random = Const (@{const_name Quickcheck_Random.random}, - @{typ code_numeral} --> @{typ Random.seed} --> + @{typ natural} --> @{typ Random.seed} --> HOLogic.mk_prodT (HOLogic.mk_prodT (T, @{typ "unit => term"}), @{typ Random.seed})) in - Const (@{const_name Random_Sequence.pos_Random}, (@{typ code_numeral} --> @{typ Random.seed} --> + Const (@{const_name Random_Sequence.pos_Random}, (@{typ natural} --> @{typ Random.seed} --> HOLogic.mk_prodT (HOLogic.mk_prodT (T, @{typ "unit => term"}), @{typ Random.seed})) --> New_Pos_Random_Sequence_CompFuns.mk_pos_random_dseqT T) $ random end), @@ -496,7 +498,7 @@ mk_random = (fn T => fn _ => Const (@{const_name "Lazy_Sequence.small_lazy_class.small_lazy"}, - @{typ "Code_Numeral.code_numeral"} --> Type (@{type_name "Lazy_Sequence.lazy_sequence"}, [T]))), + @{typ "natural"} --> Type (@{type_name "Lazy_Sequence.lazy_sequence"}, [T]))), modify_funT = I, additional_arguments = K [], wrap_compilation = K (K (K (K (K I)))) @@ -526,7 +528,7 @@ (fn T => fn _ => Const (@{const_name "Quickcheck_Exhaustive.exhaustive"}, (T --> @{typ "(bool * term list) option"}) --> - @{typ "code_numeral => (bool * term list) option"})), + @{typ "natural => (bool * term list) option"})), modify_funT = I, additional_arguments = K [], wrap_compilation = K (K (K (K (K I)))) @@ -1655,7 +1657,7 @@ structure Dseq_Random_Result = Proof_Data ( - type T = unit -> int -> int -> seed -> term Limited_Sequence.dseq * seed + type T = unit -> Code_Numeral.natural -> Code_Numeral.natural -> seed -> term Limited_Sequence.dseq * seed (* FIXME avoid user error with non-user text *) fun init _ () = error "Dseq_Random_Result" ); @@ -1663,7 +1665,7 @@ structure New_Dseq_Result = Proof_Data ( - type T = unit -> int -> term Lazy_Sequence.lazy_sequence + type T = unit -> Code_Numeral.natural -> term Lazy_Sequence.lazy_sequence (* FIXME avoid user error with non-user text *) fun init _ () = error "New_Dseq_Random_Result" ); @@ -1671,7 +1673,7 @@ structure Lseq_Random_Result = Proof_Data ( - type T = unit -> int -> int -> seed -> int -> term Lazy_Sequence.lazy_sequence + type T = unit -> Code_Numeral.natural -> Code_Numeral.natural -> seed -> Code_Numeral.natural -> term Lazy_Sequence.lazy_sequence (* FIXME avoid user error with non-user text *) fun init _ () = error "Lseq_Random_Result" ); @@ -1679,7 +1681,7 @@ structure Lseq_Random_Stats_Result = Proof_Data ( - type T = unit -> int -> int -> seed -> int -> (term * int) Lazy_Sequence.lazy_sequence + type T = unit -> Code_Numeral.natural -> Code_Numeral.natural -> seed -> Code_Numeral.natural -> (term * Code_Numeral.natural) Lazy_Sequence.lazy_sequence (* FIXME avoid user error with non-user text *) fun init _ () = error "Lseq_Random_Stats_Result" ); @@ -1795,7 +1797,7 @@ fun count' i [] = i | count' i (x' :: xs) = if x = x' then count' (i + 1) xs else count' i xs in count' 0 xs end - fun accumulate xs = map (fn x => (x, count xs x)) (sort int_ord (distinct (op =) xs)) + fun accumulate xs = (map (fn x => (x, count xs x)) o sort int_ord o distinct (op =)) xs; val comp_modifiers = case compilation of Pred => predicate_comp_modifiers @@ -1811,12 +1813,12 @@ val additional_arguments = case compilation of Pred => [] - | Random => map (HOLogic.mk_number @{typ "code_numeral"}) arguments @ - [@{term "(1, 1) :: code_numeral * code_numeral"}] + | Random => map (HOLogic.mk_number @{typ "natural"}) arguments @ + [@{term "(1, 1) :: natural * natural"}] | Annotated => [] - | Depth_Limited => [HOLogic.mk_number @{typ "code_numeral"} (hd arguments)] - | Depth_Limited_Random => map (HOLogic.mk_number @{typ "code_numeral"}) arguments @ - [@{term "(1, 1) :: code_numeral * code_numeral"}] + | Depth_Limited => [HOLogic.mk_number @{typ "natural"} (hd arguments)] + | Depth_Limited_Random => map (HOLogic.mk_number @{typ "natural"}) arguments @ + [@{term "(1, 1) :: natural * natural"}] | DSeq => [] | Pos_Random_DSeq => [] | New_Pos_Random_DSeq => [] @@ -1825,9 +1827,9 @@ val T = dest_monadT compfuns (fastype_of t); val t' = if stats andalso compilation = New_Pos_Random_DSeq then - mk_map compfuns T (HOLogic.mk_prodT (HOLogic.termT, @{typ code_numeral})) + mk_map compfuns T (HOLogic.mk_prodT (HOLogic.termT, @{typ natural})) (absdummy T (HOLogic.mk_prod (HOLogic.term_of_const T $ Bound 0, - @{term Code_Numeral.of_nat} $ (HOLogic.size_const T $ Bound 0)))) t + @{term natural_of_nat} $ (HOLogic.size_const T $ Bound 0)))) t else mk_map compfuns T HOLogic.termT (HOLogic.term_of_const T) t val thy = Proof_Context.theory_of ctxt @@ -1841,7 +1843,7 @@ |> Random_Engine.run))*) Pos_Random_DSeq => let - val [nrandom, size, depth] = arguments + val [nrandom, size, depth] = map Code_Numeral.natural_of_integer arguments in rpair NONE (TimeLimit.timeLimit time_limit (fn () => fst (Limited_Sequence.yieldn k (Code_Runtime.dynamic_value_strict (Dseq_Random_Result.get, put_dseq_random_result, "Predicate_Compile_Core.put_dseq_random_result") @@ -1853,10 +1855,10 @@ | DSeq => rpair NONE (TimeLimit.timeLimit time_limit (fn () => fst (Limited_Sequence.yieldn k (Code_Runtime.dynamic_value_strict (Dseq_Result.get, put_dseq_result, "Predicate_Compile_Core.put_dseq_result") - thy NONE Limited_Sequence.map t' []) (the_single arguments) true)) ()) + thy NONE Limited_Sequence.map t' []) (Code_Numeral.natural_of_integer (the_single arguments)) true)) ()) | Pos_Generator_DSeq => let - val depth = (the_single arguments) + val depth = Code_Numeral.natural_of_integer (the_single arguments) in rpair NONE (TimeLimit.timeLimit time_limit (fn () => fst (Lazy_Sequence.yieldn k (Code_Runtime.dynamic_value_strict (New_Dseq_Result.get, put_new_dseq_result, "Predicate_Compile_Core.put_new_dseq_result") @@ -1865,11 +1867,12 @@ end | New_Pos_Random_DSeq => let - val [nrandom, size, depth] = arguments + val [nrandom, size, depth] = map Code_Numeral.natural_of_integer arguments val seed = Random_Engine.next_seed () in if stats then - apsnd (SOME o accumulate) (split_list (TimeLimit.timeLimit time_limit + apsnd (SOME o accumulate o map Code_Numeral.integer_of_natural) + (split_list (TimeLimit.timeLimit time_limit (fn () => fst (Lazy_Sequence.yieldn k (Code_Runtime.dynamic_value_strict (Lseq_Random_Stats_Result.get, put_lseq_random_stats_result, "Predicate_Compile_Core.put_lseq_random_stats_result")
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_quickcheck.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_quickcheck.ML Fri Feb 15 08:31:31 2013 +0100 @@ -9,17 +9,17 @@ type seed = Random_Engine.seed (*val quickcheck : Proof.context -> term -> int -> term list option*) val put_pred_result : - (unit -> int -> int -> int -> seed -> term list Predicate.pred) -> + (unit -> Code_Numeral.natural -> Code_Numeral.natural -> Code_Numeral.natural -> seed -> term list Predicate.pred) -> Proof.context -> Proof.context; val put_dseq_result : - (unit -> int -> int -> seed -> term list Limited_Sequence.dseq * seed) -> + (unit -> Code_Numeral.natural -> Code_Numeral.natural -> seed -> term list Limited_Sequence.dseq * seed) -> Proof.context -> Proof.context; val put_lseq_result : - (unit -> int -> int -> seed -> int -> term list Lazy_Sequence.lazy_sequence) -> + (unit -> Code_Numeral.natural -> Code_Numeral.natural -> seed -> Code_Numeral.natural -> term list Lazy_Sequence.lazy_sequence) -> Proof.context -> Proof.context; - val put_new_dseq_result : (unit -> int -> term list Lazy_Sequence.lazy_sequence) -> + val put_new_dseq_result : (unit -> Code_Numeral.natural -> term list Lazy_Sequence.lazy_sequence) -> Proof.context -> Proof.context - val put_cps_result : (unit -> int -> (bool * term list) option) -> + val put_cps_result : (unit -> Code_Numeral.natural -> (bool * term list) option) -> Proof.context -> Proof.context val test_goals : (Predicate_Compile_Aux.compilation * bool) -> Proof.context -> bool * bool -> (string * typ) list -> (term * term list) list @@ -41,7 +41,7 @@ structure Pred_Result = Proof_Data ( - type T = unit -> int -> int -> int -> seed -> term list Predicate.pred + type T = unit -> Code_Numeral.natural -> Code_Numeral.natural -> Code_Numeral.natural -> seed -> term list Predicate.pred (* FIXME avoid user error with non-user text *) fun init _ () = error "Pred_Result" ); @@ -49,7 +49,7 @@ structure Dseq_Result = Proof_Data ( - type T = unit -> int -> int -> seed -> term list Limited_Sequence.dseq * seed + type T = unit -> Code_Numeral.natural -> Code_Numeral.natural -> seed -> term list Limited_Sequence.dseq * seed (* FIXME avoid user error with non-user text *) fun init _ () = error "Dseq_Result" ); @@ -57,7 +57,7 @@ structure Lseq_Result = Proof_Data ( - type T = unit -> int -> int -> seed -> int -> term list Lazy_Sequence.lazy_sequence + type T = unit -> Code_Numeral.natural -> Code_Numeral.natural -> seed -> Code_Numeral.natural -> term list Lazy_Sequence.lazy_sequence (* FIXME avoid user error with non-user text *) fun init _ () = error "Lseq_Result" ); @@ -65,7 +65,7 @@ structure New_Dseq_Result = Proof_Data ( - type T = unit -> int -> term list Lazy_Sequence.lazy_sequence + type T = unit -> Code_Numeral.natural -> term list Lazy_Sequence.lazy_sequence (* FIXME avoid user error with non-user text *) fun init _ () = error "New_Dseq_Random_Result" ); @@ -73,7 +73,7 @@ structure CPS_Result = Proof_Data ( - type T = unit -> int -> (bool * term list) option + type T = unit -> Code_Numeral.natural -> (bool * term list) option (* FIXME avoid user error with non-user text *) fun init _ () = error "CPS_Result" ); @@ -141,7 +141,7 @@ show_intermediate_results = s_ir, show_proof_trace = s_pt, show_modes = s_m, show_mode_inference = s_mi, show_compilation = s_c, show_caught_failures = s_cf, show_invalid_clauses = s_ic, skip_proof = s_p, - compilation = c, inductify = i, specialise = sp, detect_switches = ds, function_flattening = f_f, + compilation = c, inductify = i, specialise = sp, detect_switches = ds, function_flattening = _, fail_safe_function_flattening = fs_ff, no_higher_order_predicate = no_ho, smart_depth_limiting = sm_dl, no_topmost_reordering = re}) = (Options { expected_modes = e_m, proposed_modes = p_m, proposed_names = p_n, show_steps = s_s, @@ -158,7 +158,7 @@ show_mode_inference = s_mi, show_compilation = s_c, show_caught_failures = s_cf, show_invalid_clauses = s_ic, skip_proof = s_p, compilation = c, inductify = i, specialise = sp, detect_switches = ds, function_flattening = f_f, - fail_safe_function_flattening = fs_ff, no_higher_order_predicate = no_ho, + fail_safe_function_flattening = _, no_higher_order_predicate = no_ho, smart_depth_limiting = sm_dl, no_topmost_reordering = re}) = (Options { expected_modes = e_m, proposed_modes = p_m, proposed_names = p_n, show_steps = s_s, show_intermediate_results = s_ir, show_proof_trace = s_pt, show_modes = s_m, @@ -174,7 +174,7 @@ show_mode_inference = s_mi, show_compilation = s_c, show_caught_failures = s_cf, show_invalid_clauses = s_ic, skip_proof = s_p, compilation = c, inductify = i, specialise = sp, detect_switches = ds, function_flattening = f_f, - fail_safe_function_flattening = fs_ff, no_higher_order_predicate = no_ho, + fail_safe_function_flattening = fs_ff, no_higher_order_predicate = _, smart_depth_limiting = sm_dl, no_topmost_reordering = re}) = (Options { expected_modes = e_m, proposed_modes = p_m, proposed_names = p_n, show_steps = s_s, show_intermediate_results = s_ir, show_proof_trace = s_pt, show_modes = s_m, @@ -214,10 +214,6 @@ val mk_cpsT = Predicate_Compile_Aux.mk_monadT Pos_Bounded_CPS_Comp_Funs.compfuns -val mk_cps_return = - Predicate_Compile_Aux.mk_single Pos_Bounded_CPS_Comp_Funs.compfuns -val mk_cps_bind = - Predicate_Compile_Aux.mk_bind Pos_Bounded_CPS_Comp_Funs.compfuns val mk_split_lambda = HOLogic.tupled_lambda o HOLogic.mk_tuple @@ -232,9 +228,9 @@ val ((((full_constname, constT), vs'), intro), thy1) = Predicate_Compile_Aux.define_quickcheck_predicate t' thy val thy2 = Context.theory_map (Predicate_Compile_Alternative_Defs.add_thm intro) thy1 - val (thy3, preproc_time) = cpu_time "predicate preprocessing" + val (thy3, _) = cpu_time "predicate preprocessing" (fn () => Predicate_Compile.preprocess options (Const (full_constname, constT)) thy2) - val (thy4, core_comp_time) = cpu_time "random_dseq core compilation" + val (thy4, _) = cpu_time "random_dseq core compilation" (fn () => case compilation of Pos_Random_DSeq => @@ -261,7 +257,7 @@ | New_Pos_Random_DSeq => mk_new_randompredT (HOLogic.mk_tupleT (map snd vs')) | Pos_Generator_DSeq => mk_new_dseqT (HOLogic.mk_tupleT (map snd vs')) | Depth_Limited_Random => - [@{typ code_numeral}, @{typ code_numeral}, @{typ code_numeral}, + [@{typ natural}, @{typ natural}, @{typ natural}, @{typ Random.seed}] ---> mk_predT (HOLogic.mk_tupleT (map snd vs')) | Pos_Generator_CPS => mk_cpsT (HOLogic.mk_tupleT (map snd vs')) in @@ -285,7 +281,7 @@ HOLogic.mk_prod (@{term "True"}, HOLogic.mk_list @{typ term} (map2 HOLogic.mk_term_of (map snd vs') (map Free vs')))) | Depth_Limited_Random => fold_rev absdummy - [@{typ code_numeral}, @{typ code_numeral}, @{typ code_numeral}, + [@{typ natural}, @{typ natural}, @{typ natural}, @{typ Random.seed}] (mk_bind' (list_comb (prog, map Bound (3 downto 0)), mk_split_lambda (map Free vs') (mk_return' (HOLogic.mk_list @{typ term} @@ -340,7 +336,7 @@ (fn proc => fn g => fn depth => g depth |> Option.map (apsnd (map proc))) qc_term [] in - fn size => fn nrandom => Option.map snd o compiled_term + fn _ => fn _ => Option.map snd o compiled_term end | Depth_Limited_Random => let @@ -382,11 +378,12 @@ (* quickcheck interface functions *) -fun compile_term' compilation options ctxt (t, eval_terms) = +fun compile_term' compilation options ctxt (t, _) = let val size = Config.get ctxt Quickcheck.size val c = compile_term compilation options ctxt t - val counterexample = try_upto_depth ctxt (c size (!nrandom)) + val counterexample = try_upto_depth ctxt (c (Code_Numeral.natural_of_integer size) + (Code_Numeral.natural_of_integer (!nrandom)) o Code_Numeral.natural_of_integer) in Quickcheck.Result {counterexample = Option.map (pair true o (curry (op ~~)) (Term.add_free_names t [])) counterexample, @@ -403,7 +400,7 @@ end -fun test_goals options ctxt catch_code_errors insts goals = +fun test_goals options ctxt _ insts goals = let val (compilation, fail_safe_function_flattening) = options val function_flattening = Config.get ctxt (Quickcheck.allow_function_inversion)
--- a/src/HOL/Tools/Qelim/cooper.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Tools/Qelim/cooper.ML Fri Feb 15 08:31:31 2013 +0100 @@ -267,23 +267,23 @@ end | _ => addC $ (mulC $ one $ tm) $ zero; -fun lin (vs as x::_) (Const (@{const_name Not}, _) $ (Const (@{const_name Orderings.less}, T) $ s $ t)) = +fun lin (vs as _::_) (Const (@{const_name Not}, _) $ (Const (@{const_name Orderings.less}, T) $ s $ t)) = lin vs (Const (@{const_name Orderings.less_eq}, T) $ t $ s) - | lin (vs as x::_) (Const (@{const_name Not},_) $ (Const(@{const_name Orderings.less_eq}, T) $ s $ t)) = + | lin (vs as _::_) (Const (@{const_name Not},_) $ (Const(@{const_name Orderings.less_eq}, T) $ s $ t)) = lin vs (Const (@{const_name Orderings.less}, T) $ t $ s) | lin vs (Const (@{const_name Not},T)$t) = Const (@{const_name Not},T)$ (lin vs t) - | lin (vs as x::_) (Const(@{const_name Rings.dvd},_)$d$t) = + | lin (vs as _::_) (Const(@{const_name Rings.dvd},_)$d$t) = HOLogic.mk_binrel @{const_name Rings.dvd} (numeral1 abs d, lint vs t) | lin (vs as x::_) ((b as Const(@{const_name HOL.eq},_))$s$t) = (case lint vs (subC$t$s) of - (t as a$(m$c$y)$r) => + (t as _$(m$c$y)$r) => if x <> y then b$zero$t else if dest_number c < 0 then b$(m$(numeral1 ~ c)$y)$r else b$(m$c$y)$(linear_neg r) | t => b$zero$t) | lin (vs as x::_) (b$s$t) = (case lint vs (subC$t$s) of - (t as a$(m$c$y)$r) => + (t as _$(m$c$y)$r) => if x <> y then b$zero$t else if dest_number c < 0 then b$(m$(numeral1 ~ c)$y)$r else b$(linear_neg r)$(m$c$y) @@ -303,7 +303,7 @@ | is_intrel _ = false; fun linearize_conv ctxt vs ct = case term_of ct of - Const(@{const_name Rings.dvd},_)$d$t => + Const(@{const_name Rings.dvd},_)$_$_ => let val th = Conv.binop_conv (lint_conv ctxt vs) ct val (d',t') = Thm.dest_binop (Thm.rhs_of th) @@ -565,9 +565,9 @@ Qelim.gen_qelim_conv (Simplifier.rewrite conv_ss) (Simplifier.rewrite presburger_ss) (Simplifier.rewrite conv_ss) (cons o term_of) (Misc_Legacy.term_frees (term_of p)) (linearize_conv ctxt) (integer_nnf_conv ctxt) (cooperex_conv ctxt) p - handle CTERM s => raise COOPER "bad cterm" - | THM s => raise COOPER "bad thm" - | TYPE s => raise COOPER "bad type" + handle CTERM _ => raise COOPER "bad cterm" + | THM _ => raise COOPER "bad thm" + | TYPE _ => raise COOPER "bad type" fun add_bools t = let @@ -593,14 +593,14 @@ local structure Proc = Cooper_Procedure in -fun num_of_term vs (Free vT) = Proc.Bound (find_index (fn vT' => vT' = vT) vs) - | num_of_term vs (Term.Bound i) = Proc.Bound i - | num_of_term vs @{term "0::int"} = Proc.C 0 - | num_of_term vs @{term "1::int"} = Proc.C 1 +fun num_of_term vs (Free vT) = Proc.Bound (Proc.nat_of_integer (find_index (fn vT' => vT' = vT) vs)) + | num_of_term vs (Term.Bound i) = Proc.Bound (Proc.nat_of_integer i) + | num_of_term vs @{term "0::int"} = Proc.C (Proc.Int_of_integer 0) + | num_of_term vs @{term "1::int"} = Proc.C (Proc.Int_of_integer 1) | num_of_term vs (t as Const (@{const_name numeral}, _) $ _) = - Proc.C (dest_number t) + Proc.C (Proc.Int_of_integer (dest_number t)) | num_of_term vs (t as Const (@{const_name neg_numeral}, _) $ _) = - Proc.Neg (Proc.C (dest_number t)) + Proc.Neg (Proc.C (Proc.Int_of_integer (dest_number t))) | num_of_term vs (Const (@{const_name Groups.uminus}, _) $ t') = Proc.Neg (num_of_term vs t') | num_of_term vs (Const (@{const_name Groups.plus}, _) $ t1 $ t2) = @@ -609,9 +609,9 @@ Proc.Sub (num_of_term vs t1, num_of_term vs t2) | num_of_term vs (Const (@{const_name Groups.times}, _) $ t1 $ t2) = (case perhaps_number t1 - of SOME n => Proc.Mul (n, num_of_term vs t2) + of SOME n => Proc.Mul (Proc.Int_of_integer n, num_of_term vs t2) | NONE => (case perhaps_number t2 - of SOME n => Proc.Mul (n, num_of_term vs t1) + of SOME n => Proc.Mul (Proc.Int_of_integer n, num_of_term vs t1) | NONE => raise COOPER "reification: unsupported kind of multiplication")) | num_of_term _ _ = raise COOPER "reification: bad term"; @@ -639,13 +639,13 @@ Proc.Lt (Proc.Sub (num_of_term vs t1, num_of_term vs t2)) | fm_of_term ps vs (Const (@{const_name Rings.dvd}, _) $ t1 $ t2) = (case perhaps_number t1 - of SOME n => Proc.Dvd (n, num_of_term vs t2) + of SOME n => Proc.Dvd (Proc.Int_of_integer n, num_of_term vs t2) | NONE => raise COOPER "reification: unsupported dvd") | fm_of_term ps vs t = let val n = find_index (fn t' => t aconv t') ps - in if n > 0 then Proc.Closed n else raise COOPER "reification: unknown term" end; + in if n > 0 then Proc.Closed (Proc.nat_of_integer n) else raise COOPER "reification: unknown term" end; -fun term_of_num vs (Proc.C i) = HOLogic.mk_number HOLogic.intT i - | term_of_num vs (Proc.Bound n) = Free (nth vs n) +fun term_of_num vs (Proc.C i) = HOLogic.mk_number HOLogic.intT (Proc.integer_of_int i) + | term_of_num vs (Proc.Bound n) = Free (nth vs (Proc.integer_of_nat n)) | term_of_num vs (Proc.Neg t') = @{term "uminus :: int => _"} $ term_of_num vs t' | term_of_num vs (Proc.Add (t1, t2)) = @@ -653,7 +653,7 @@ | term_of_num vs (Proc.Sub (t1, t2)) = @{term "op - :: int => _"} $ term_of_num vs t1 $ term_of_num vs t2 | term_of_num vs (Proc.Mul (i, t2)) = - @{term "op * :: int => _"} $ HOLogic.mk_number HOLogic.intT i $ term_of_num vs t2 + @{term "op * :: int => _"} $ HOLogic.mk_number HOLogic.intT (Proc.integer_of_int i) $ term_of_num vs t2 | term_of_num vs (Proc.Cn (n, i, t')) = term_of_num vs (Proc.Add (Proc.Mul (i, Proc.Bound n), t')); @@ -671,9 +671,9 @@ | term_of_fm ps vs (Proc.Gt t') = @{term "op < :: int => _ "} $ @{term "0::int"} $ term_of_num vs t' | term_of_fm ps vs (Proc.Ge t') = @{term "op <= :: int => _ "} $ @{term "0::int"} $ term_of_num vs t' | term_of_fm ps vs (Proc.Dvd (i, t')) = @{term "op dvd :: int => _ "} $ - HOLogic.mk_number HOLogic.intT i $ term_of_num vs t' + HOLogic.mk_number HOLogic.intT (Proc.integer_of_int i) $ term_of_num vs t' | term_of_fm ps vs (Proc.NDvd (i, t')) = term_of_fm ps vs (Proc.Not (Proc.Dvd (i, t'))) - | term_of_fm ps vs (Proc.Closed n) = nth ps n + | term_of_fm ps vs (Proc.Closed n) = nth ps (Proc.integer_of_nat n) | term_of_fm ps vs (Proc.NClosed n) = term_of_fm ps vs (Proc.Not (Proc.Closed n)); fun procedure t = @@ -701,7 +701,7 @@ fun strip_objall ct = case term_of ct of - Const (@{const_name All}, _) $ Abs (xn,xT,p) => + Const (@{const_name All}, _) $ Abs (xn,_,_) => let val (a,(v,t')) = (apsnd (Thm.dest_abs (SOME xn)) o Thm.dest_comb) ct in apfst (cons (a,v)) (strip_objall t') end @@ -782,7 +782,7 @@ in h [] ct end end; -fun generalize_tac f = CSUBGOAL (fn (p, i) => PRIMITIVE (fn st => +fun generalize_tac f = CSUBGOAL (fn (p, _) => PRIMITIVE (fn st => let fun all T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat "all"} fun gen x t = Thm.apply (all (ctyp_of_term x)) (Thm.lambda x t)
--- a/src/HOL/Tools/Qelim/cooper_procedure.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Tools/Qelim/cooper_procedure.ML Fri Feb 15 08:31:31 2013 +0100 @@ -1,57 +1,60 @@ (* Generated from Cooper.thy; DO NOT EDIT! *) structure Cooper_Procedure : sig + val id : 'a -> 'a type 'a equal val equal : 'a equal -> 'a -> 'a -> bool val eq : 'a equal -> 'a -> 'a -> bool - val suc : int -> int - datatype num = C of int | Bound of int | Cn of int * int * num | Neg of num | - Add of num * num | Sub of num * num | Mul of int * num - datatype fm = T | F | Lt of num | Le of num | Gt of num | Ge of num | - Eq of num | NEq of num | Dvd of int * num | NDvd of int * num | Not of fm | - And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm | E of fm | - A of fm | Closed of int | NClosed of int + datatype inta = Int_of_integer of int + datatype nat = Nat of int + datatype num = One | Bit0 of num | Bit1 of num + type 'a ord + val less_eq : 'a ord -> 'a -> 'a -> bool + val less : 'a ord -> 'a -> 'a -> bool + val ord_integer : int ord + val max : 'a ord -> 'a -> 'a -> 'a + val nat_of_integer : int -> nat + val integer_of_nat : nat -> int + val plus_nat : nat -> nat -> nat + val suc : nat -> nat + datatype numa = C of inta | Bound of nat | Cn of nat * inta * numa | + Neg of numa | Add of numa * numa | Sub of numa * numa | Mul of inta * numa + datatype fm = T | F | Lt of numa | Le of numa | Gt of numa | Ge of numa | + Eq of numa | NEq of numa | Dvd of inta * numa | NDvd of inta * numa | + Not of fm | And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm + | E of fm | A of fm | Closed of nat | NClosed of nat val map : ('a -> 'b) -> 'a list -> 'b list - val equal_numa : num -> num -> bool + val disjuncts : fm -> fm list + val foldr : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b + val equal_nat : nat -> nat -> bool + val integer_of_int : inta -> int + val equal_inta : inta -> inta -> bool + val equal_numa : numa -> numa -> bool val equal_fm : fm -> fm -> bool val djf : ('a -> fm) -> 'a -> fm -> fm - val foldr : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b val evaldjf : ('a -> fm) -> 'a list -> fm - val disjuncts : fm -> fm list val dj : (fm -> fm) -> fm -> fm - val prep : fm -> fm - val conj : fm -> fm -> fm - val disj : fm -> fm -> fm - val nota : fm -> fm - val iffa : fm -> fm -> fm - val impa : fm -> fm -> fm - type 'a times - val times : 'a times -> 'a -> 'a -> 'a - type 'a dvd - val times_dvd : 'a dvd -> 'a times - type 'a diva - val dvd_div : 'a diva -> 'a dvd - val diva : 'a diva -> 'a -> 'a -> 'a - val moda : 'a diva -> 'a -> 'a -> 'a - type 'a zero - val zero : 'a zero -> 'a - type 'a no_zero_divisors - val times_no_zero_divisors : 'a no_zero_divisors -> 'a times - val zero_no_zero_divisors : 'a no_zero_divisors -> 'a zero - type 'a semigroup_mult - val times_semigroup_mult : 'a semigroup_mult -> 'a times + val minus_nat : nat -> nat -> nat + val zero_nat : nat + val minusinf : fm -> fm + val numsubst0 : numa -> numa -> numa + val subst0 : numa -> fm -> fm type 'a plus val plus : 'a plus -> 'a -> 'a -> 'a type 'a semigroup_add val plus_semigroup_add : 'a semigroup_add -> 'a plus + type 'a cancel_semigroup_add + val semigroup_add_cancel_semigroup_add : + 'a cancel_semigroup_add -> 'a semigroup_add type 'a ab_semigroup_add val semigroup_add_ab_semigroup_add : 'a ab_semigroup_add -> 'a semigroup_add - type 'a semiring - val ab_semigroup_add_semiring : 'a semiring -> 'a ab_semigroup_add - val semigroup_mult_semiring : 'a semiring -> 'a semigroup_mult - type 'a mult_zero - val times_mult_zero : 'a mult_zero -> 'a times - val zero_mult_zero : 'a mult_zero -> 'a zero + type 'a cancel_ab_semigroup_add + val ab_semigroup_add_cancel_ab_semigroup_add : + 'a cancel_ab_semigroup_add -> 'a ab_semigroup_add + val cancel_semigroup_add_cancel_ab_semigroup_add : + 'a cancel_ab_semigroup_add -> 'a cancel_semigroup_add + type 'a zero + val zero : 'a zero -> 'a type 'a monoid_add val semigroup_add_monoid_add : 'a monoid_add -> 'a semigroup_add val zero_monoid_add : 'a monoid_add -> 'a zero @@ -59,25 +62,29 @@ val ab_semigroup_add_comm_monoid_add : 'a comm_monoid_add -> 'a ab_semigroup_add val monoid_add_comm_monoid_add : 'a comm_monoid_add -> 'a monoid_add + type 'a cancel_comm_monoid_add + val cancel_ab_semigroup_add_cancel_comm_monoid_add : + 'a cancel_comm_monoid_add -> 'a cancel_ab_semigroup_add + val comm_monoid_add_cancel_comm_monoid_add : + 'a cancel_comm_monoid_add -> 'a comm_monoid_add + type 'a times + val times : 'a times -> 'a -> 'a -> 'a + type 'a mult_zero + val times_mult_zero : 'a mult_zero -> 'a times + val zero_mult_zero : 'a mult_zero -> 'a zero + type 'a semigroup_mult + val times_semigroup_mult : 'a semigroup_mult -> 'a times + type 'a semiring + val ab_semigroup_add_semiring : 'a semiring -> 'a ab_semigroup_add + val semigroup_mult_semiring : 'a semiring -> 'a semigroup_mult type 'a semiring_0 val comm_monoid_add_semiring_0 : 'a semiring_0 -> 'a comm_monoid_add val mult_zero_semiring_0 : 'a semiring_0 -> 'a mult_zero val semiring_semiring_0 : 'a semiring_0 -> 'a semiring - type 'a one - val one : 'a one -> 'a - type 'a power - val one_power : 'a power -> 'a one - val times_power : 'a power -> 'a times - type 'a monoid_mult - val semigroup_mult_monoid_mult : 'a monoid_mult -> 'a semigroup_mult - val power_monoid_mult : 'a monoid_mult -> 'a power - type 'a zero_neq_one - val one_zero_neq_one : 'a zero_neq_one -> 'a one - val zero_zero_neq_one : 'a zero_neq_one -> 'a zero - type 'a semiring_1 - val monoid_mult_semiring_1 : 'a semiring_1 -> 'a monoid_mult - val semiring_0_semiring_1 : 'a semiring_1 -> 'a semiring_0 - val zero_neq_one_semiring_1 : 'a semiring_1 -> 'a zero_neq_one + type 'a semiring_0_cancel + val cancel_comm_monoid_add_semiring_0_cancel : + 'a semiring_0_cancel -> 'a cancel_comm_monoid_add + val semiring_0_semiring_0_cancel : 'a semiring_0_cancel -> 'a semiring_0 type 'a ab_semigroup_mult val semigroup_mult_ab_semigroup_mult : 'a ab_semigroup_mult -> 'a semigroup_mult @@ -87,42 +94,49 @@ type 'a comm_semiring_0 val comm_semiring_comm_semiring_0 : 'a comm_semiring_0 -> 'a comm_semiring val semiring_0_comm_semiring_0 : 'a comm_semiring_0 -> 'a semiring_0 + type 'a comm_semiring_0_cancel + val comm_semiring_0_comm_semiring_0_cancel : + 'a comm_semiring_0_cancel -> 'a comm_semiring_0 + val semiring_0_cancel_comm_semiring_0_cancel : + 'a comm_semiring_0_cancel -> 'a semiring_0_cancel + type 'a one + val one : 'a one -> 'a + type 'a power + val one_power : 'a power -> 'a one + val times_power : 'a power -> 'a times + type 'a monoid_mult + val semigroup_mult_monoid_mult : 'a monoid_mult -> 'a semigroup_mult + val power_monoid_mult : 'a monoid_mult -> 'a power + type 'a numeral + val one_numeral : 'a numeral -> 'a one + val semigroup_add_numeral : 'a numeral -> 'a semigroup_add + type 'a semiring_numeral + val monoid_mult_semiring_numeral : 'a semiring_numeral -> 'a monoid_mult + val numeral_semiring_numeral : 'a semiring_numeral -> 'a numeral + val semiring_semiring_numeral : 'a semiring_numeral -> 'a semiring + type 'a zero_neq_one + val one_zero_neq_one : 'a zero_neq_one -> 'a one + val zero_zero_neq_one : 'a zero_neq_one -> 'a zero + type 'a semiring_1 + val semiring_numeral_semiring_1 : 'a semiring_1 -> 'a semiring_numeral + val semiring_0_semiring_1 : 'a semiring_1 -> 'a semiring_0 + val zero_neq_one_semiring_1 : 'a semiring_1 -> 'a zero_neq_one + type 'a semiring_1_cancel + val semiring_0_cancel_semiring_1_cancel : + 'a semiring_1_cancel -> 'a semiring_0_cancel + val semiring_1_semiring_1_cancel : 'a semiring_1_cancel -> 'a semiring_1 type 'a comm_monoid_mult val ab_semigroup_mult_comm_monoid_mult : 'a comm_monoid_mult -> 'a ab_semigroup_mult val monoid_mult_comm_monoid_mult : 'a comm_monoid_mult -> 'a monoid_mult + type 'a dvd + val times_dvd : 'a dvd -> 'a times type 'a comm_semiring_1 val comm_monoid_mult_comm_semiring_1 : 'a comm_semiring_1 -> 'a comm_monoid_mult val comm_semiring_0_comm_semiring_1 : 'a comm_semiring_1 -> 'a comm_semiring_0 val dvd_comm_semiring_1 : 'a comm_semiring_1 -> 'a dvd val semiring_1_comm_semiring_1 : 'a comm_semiring_1 -> 'a semiring_1 - type 'a cancel_semigroup_add - val semigroup_add_cancel_semigroup_add : - 'a cancel_semigroup_add -> 'a semigroup_add - type 'a cancel_ab_semigroup_add - val ab_semigroup_add_cancel_ab_semigroup_add : - 'a cancel_ab_semigroup_add -> 'a ab_semigroup_add - val cancel_semigroup_add_cancel_ab_semigroup_add : - 'a cancel_ab_semigroup_add -> 'a cancel_semigroup_add - type 'a cancel_comm_monoid_add - val cancel_ab_semigroup_add_cancel_comm_monoid_add : - 'a cancel_comm_monoid_add -> 'a cancel_ab_semigroup_add - val comm_monoid_add_cancel_comm_monoid_add : - 'a cancel_comm_monoid_add -> 'a comm_monoid_add - type 'a semiring_0_cancel - val cancel_comm_monoid_add_semiring_0_cancel : - 'a semiring_0_cancel -> 'a cancel_comm_monoid_add - val semiring_0_semiring_0_cancel : 'a semiring_0_cancel -> 'a semiring_0 - type 'a semiring_1_cancel - val semiring_0_cancel_semiring_1_cancel : - 'a semiring_1_cancel -> 'a semiring_0_cancel - val semiring_1_semiring_1_cancel : 'a semiring_1_cancel -> 'a semiring_1 - type 'a comm_semiring_0_cancel - val comm_semiring_0_comm_semiring_0_cancel : - 'a comm_semiring_0_cancel -> 'a comm_semiring_0 - val semiring_0_cancel_comm_semiring_0_cancel : - 'a comm_semiring_0_cancel -> 'a semiring_0_cancel type 'a comm_semiring_1_cancel val comm_semiring_0_cancel_comm_semiring_1_cancel : 'a comm_semiring_1_cancel -> 'a comm_semiring_0_cancel @@ -130,107 +144,182 @@ 'a comm_semiring_1_cancel -> 'a comm_semiring_1 val semiring_1_cancel_comm_semiring_1_cancel : 'a comm_semiring_1_cancel -> 'a semiring_1_cancel + type 'a no_zero_divisors + val times_no_zero_divisors : 'a no_zero_divisors -> 'a times + val zero_no_zero_divisors : 'a no_zero_divisors -> 'a zero + type 'a diva + val dvd_div : 'a diva -> 'a dvd + val diva : 'a diva -> 'a -> 'a -> 'a + val moda : 'a diva -> 'a -> 'a -> 'a type 'a semiring_div val div_semiring_div : 'a semiring_div -> 'a diva val comm_semiring_1_cancel_semiring_div : 'a semiring_div -> 'a comm_semiring_1_cancel val no_zero_divisors_semiring_div : 'a semiring_div -> 'a no_zero_divisors - val dvd : 'a semiring_div * 'a equal -> 'a -> 'a -> bool - val abs_int : int -> int - val equal_int : int equal - val numadd : num * num -> num - val nummul : int -> num -> num - val numneg : num -> num - val numsub : num -> num -> num - val simpnum : num -> num - val one_inta : int - val zero_inta : int - val times_int : int times - val dvd_int : int dvd - val fst : 'a * 'b -> 'a - val sgn_int : int -> int + val plus_inta : inta -> inta -> inta + val plus_int : inta plus + val semigroup_add_int : inta semigroup_add + val cancel_semigroup_add_int : inta cancel_semigroup_add + val ab_semigroup_add_int : inta ab_semigroup_add + val cancel_ab_semigroup_add_int : inta cancel_ab_semigroup_add + val zero_inta : inta + val zero_int : inta zero + val monoid_add_int : inta monoid_add + val comm_monoid_add_int : inta comm_monoid_add + val cancel_comm_monoid_add_int : inta cancel_comm_monoid_add + val times_inta : inta -> inta -> inta + val times_int : inta times + val mult_zero_int : inta mult_zero + val semigroup_mult_int : inta semigroup_mult + val semiring_int : inta semiring + val semiring_0_int : inta semiring_0 + val semiring_0_cancel_int : inta semiring_0_cancel + val ab_semigroup_mult_int : inta ab_semigroup_mult + val comm_semiring_int : inta comm_semiring + val comm_semiring_0_int : inta comm_semiring_0 + val comm_semiring_0_cancel_int : inta comm_semiring_0_cancel + val one_inta : inta + val one_int : inta one + val power_int : inta power + val monoid_mult_int : inta monoid_mult + val numeral_int : inta numeral + val semiring_numeral_int : inta semiring_numeral + val zero_neq_one_int : inta zero_neq_one + val semiring_1_int : inta semiring_1 + val semiring_1_cancel_int : inta semiring_1_cancel + val comm_monoid_mult_int : inta comm_monoid_mult + val dvd_int : inta dvd + val comm_semiring_1_int : inta comm_semiring_1 + val comm_semiring_1_cancel_int : inta comm_semiring_1_cancel + val no_zero_divisors_int : inta no_zero_divisors + val sgn_integer : int -> int + val abs_integer : int -> int val apsnd : ('a -> 'b) -> 'c * 'a -> 'c * 'b - val divmod_int : int -> int -> int * int - val div_inta : int -> int -> int + val divmod_integer : int -> int -> int * int val snd : 'a * 'b -> 'b - val mod_int : int -> int -> int - val div_int : int diva - val zero_int : int zero - val no_zero_divisors_int : int no_zero_divisors - val semigroup_mult_int : int semigroup_mult - val plus_int : int plus - val semigroup_add_int : int semigroup_add - val ab_semigroup_add_int : int ab_semigroup_add - val semiring_int : int semiring - val mult_zero_int : int mult_zero - val monoid_add_int : int monoid_add - val comm_monoid_add_int : int comm_monoid_add - val semiring_0_int : int semiring_0 - val one_int : int one - val power_int : int power - val monoid_mult_int : int monoid_mult - val zero_neq_one_int : int zero_neq_one - val semiring_1_int : int semiring_1 - val ab_semigroup_mult_int : int ab_semigroup_mult - val comm_semiring_int : int comm_semiring - val comm_semiring_0_int : int comm_semiring_0 - val comm_monoid_mult_int : int comm_monoid_mult - val comm_semiring_1_int : int comm_semiring_1 - val cancel_semigroup_add_int : int cancel_semigroup_add - val cancel_ab_semigroup_add_int : int cancel_ab_semigroup_add - val cancel_comm_monoid_add_int : int cancel_comm_monoid_add - val semiring_0_cancel_int : int semiring_0_cancel - val semiring_1_cancel_int : int semiring_1_cancel - val comm_semiring_0_cancel_int : int comm_semiring_0_cancel - val comm_semiring_1_cancel_int : int comm_semiring_1_cancel - val semiring_div_int : int semiring_div + val mod_integer : int -> int -> int + val mod_int : inta -> inta -> inta + val fst : 'a * 'b -> 'a + val div_integer : int -> int -> int + val div_inta : inta -> inta -> inta + val div_int : inta diva + val semiring_div_int : inta semiring_div + val less_eq_int : inta -> inta -> bool + val uminus_int : inta -> inta + val nummul : inta -> numa -> numa + val numneg : numa -> numa + val less_eq_nat : nat -> nat -> bool + val numadd : numa * numa -> numa + val numsub : numa -> numa -> numa + val simpnum : numa -> numa + val less_int : inta -> inta -> bool + val equal_int : inta equal + val abs_int : inta -> inta + val nota : fm -> fm + val impa : fm -> fm -> fm + val iffa : fm -> fm -> fm + val disj : fm -> fm -> fm + val conj : fm -> fm -> fm + val dvd : 'a semiring_div * 'a equal -> 'a -> 'a -> bool val simpfm : fm -> fm - val qelim : fm -> (fm -> fm) -> fm - val maps : ('a -> 'b list) -> 'a list -> 'b list - val uptoa : int -> int -> int list - val minus_nat : int -> int -> int - val decrnum : num -> num - val decr : fm -> fm - val beta : fm -> num list - val gcd_int : int -> int -> int - val lcm_int : int -> int -> int - val zeta : fm -> int - val zsplit0 : num -> int * num - val zlfm : fm -> fm - val alpha : fm -> num list - val delta : fm -> int + val equal_num : numa equal + val gen_length : nat -> 'a list -> nat + val size_list : 'a list -> nat + val mirror : fm -> fm + val a_beta : fm -> inta -> fm val member : 'a equal -> 'a list -> 'a -> bool val remdups : 'a equal -> 'a list -> 'a list - val a_beta : fm -> int -> fm - val mirror : fm -> fm - val size_list : 'a list -> int - val equal_num : num equal - val unita : fm -> fm * (num list * int) - val numsubst0 : num -> num -> num - val subst0 : num -> fm -> fm - val minusinf : fm -> fm + val gcd_int : inta -> inta -> inta + val lcm_int : inta -> inta -> inta + val delta : fm -> inta + val alpha : fm -> numa list + val minus_int : inta -> inta -> inta + val zsplit0 : numa -> inta * numa + val zlfm : fm -> fm + val zeta : fm -> inta + val beta : fm -> numa list + val unita : fm -> fm * (numa list * inta) + val decrnum : numa -> numa + val decr : fm -> fm + val uptoa : inta -> inta -> inta list + val maps : ('a -> 'b list) -> 'a list -> 'b list val cooper : fm -> fm + val qelim : fm -> (fm -> fm) -> fm + val prep : fm -> fm val pa : fm -> fm end = struct +fun id x = (fn xa => xa) x; + type 'a equal = {equal : 'a -> 'a -> bool}; val equal = #equal : 'a equal -> 'a -> 'a -> bool; fun eq A_ a b = equal A_ a b; -fun suc n = n + (1 : IntInf.int); +datatype inta = Int_of_integer of int; + +datatype nat = Nat of int; + +datatype num = One | Bit0 of num | Bit1 of num; -datatype num = C of int | Bound of int | Cn of int * int * num | Neg of num | - Add of num * num | Sub of num * num | Mul of int * num; +type 'a ord = {less_eq : 'a -> 'a -> bool, less : 'a -> 'a -> bool}; +val less_eq = #less_eq : 'a ord -> 'a -> 'a -> bool; +val less = #less : 'a ord -> 'a -> 'a -> bool; + +val ord_integer = + {less_eq = (fn a => fn b => a <= b), less = (fn a => fn b => a < b)} : + int ord; + +fun max A_ a b = (if less_eq A_ a b then b else a); -datatype fm = T | F | Lt of num | Le of num | Gt of num | Ge of num | Eq of num - | NEq of num | Dvd of int * num | NDvd of int * num | Not of fm | - And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm | E of fm | - A of fm | Closed of int | NClosed of int; +fun nat_of_integer k = Nat (max ord_integer 0 k); + +fun integer_of_nat (Nat x) = x; + +fun plus_nat m n = Nat (integer_of_nat m + integer_of_nat n); + +fun suc n = plus_nat n (nat_of_integer (1 : IntInf.int)); + +datatype numa = C of inta | Bound of nat | Cn of nat * inta * numa | Neg of numa + | Add of numa * numa | Sub of numa * numa | Mul of inta * numa; + +datatype fm = T | F | Lt of numa | Le of numa | Gt of numa | Ge of numa | + Eq of numa | NEq of numa | Dvd of inta * numa | NDvd of inta * numa | + Not of fm | And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm | + E of fm | A of fm | Closed of nat | NClosed of nat; fun map f [] = [] | map f (x :: xs) = f x :: map f xs; +fun disjuncts (Or (p, q)) = disjuncts p @ disjuncts q + | disjuncts F = [] + | disjuncts T = [T] + | disjuncts (Lt v) = [Lt v] + | disjuncts (Le v) = [Le v] + | disjuncts (Gt v) = [Gt v] + | disjuncts (Ge v) = [Ge v] + | disjuncts (Eq v) = [Eq v] + | disjuncts (NEq v) = [NEq v] + | disjuncts (Dvd (v, va)) = [Dvd (v, va)] + | disjuncts (NDvd (v, va)) = [NDvd (v, va)] + | disjuncts (Not v) = [Not v] + | disjuncts (And (v, va)) = [And (v, va)] + | disjuncts (Imp (v, va)) = [Imp (v, va)] + | disjuncts (Iff (v, va)) = [Iff (v, va)] + | disjuncts (E v) = [E v] + | disjuncts (A v) = [A v] + | disjuncts (Closed v) = [Closed v] + | disjuncts (NClosed v) = [NClosed v]; + +fun foldr f [] = id + | foldr f (x :: xs) = f x o foldr f xs; + +fun equal_nat m n = integer_of_nat m = integer_of_nat n; + +fun integer_of_int (Int_of_integer k) = k; + +fun equal_inta k l = integer_of_int k = integer_of_int l; + fun equal_numa (Mul (inta, num)) (Sub (num1, num2)) = false | equal_numa (Sub (num1, num2)) (Mul (inta, num)) = false | equal_numa (Mul (inta, num)) (Add (num1, num2)) = false @@ -274,16 +363,17 @@ | equal_numa (Bound nat) (C inta) = false | equal_numa (C inta) (Bound nat) = false | equal_numa (Mul (intaa, numa)) (Mul (inta, num)) = - intaa = inta andalso equal_numa numa num + equal_inta intaa inta andalso equal_numa numa num | equal_numa (Sub (num1a, num2a)) (Sub (num1, num2)) = equal_numa num1a num1 andalso equal_numa num2a num2 | equal_numa (Add (num1a, num2a)) (Add (num1, num2)) = equal_numa num1a num1 andalso equal_numa num2a num2 | equal_numa (Neg numa) (Neg num) = equal_numa numa num | equal_numa (Cn (nata, intaa, numa)) (Cn (nat, inta, num)) = - nata = nat andalso (intaa = inta andalso equal_numa numa num) - | equal_numa (Bound nata) (Bound nat) = nata = nat - | equal_numa (C intaa) (C inta) = intaa = inta; + equal_nat nata nat andalso + (equal_inta intaa inta andalso equal_numa numa num) + | equal_numa (Bound nata) (Bound nat) = equal_nat nata nat + | equal_numa (C intaa) (C inta) = equal_inta intaa inta; fun equal_fm (NClosed nata) (Closed nat) = false | equal_fm (Closed nata) (NClosed nat) = false @@ -627,8 +717,8 @@ | equal_fm T (Lt num) = false | equal_fm F T = false | equal_fm T F = false - | equal_fm (NClosed nata) (NClosed nat) = nata = nat - | equal_fm (Closed nata) (Closed nat) = nata = nat + | equal_fm (NClosed nata) (NClosed nat) = equal_nat nata nat + | equal_fm (Closed nata) (Closed nat) = equal_nat nata nat | equal_fm (A fma) (A fm) = equal_fm fma fm | equal_fm (E fma) (E fm) = equal_fm fma fm | equal_fm (Iff (fm1a, fm2a)) (Iff (fm1, fm2)) = @@ -641,9 +731,9 @@ equal_fm fm1a fm1 andalso equal_fm fm2a fm2 | equal_fm (Not fma) (Not fm) = equal_fm fma fm | equal_fm (NDvd (intaa, numa)) (NDvd (inta, num)) = - intaa = inta andalso equal_numa numa num + equal_inta intaa inta andalso equal_numa numa num | equal_fm (Dvd (intaa, numa)) (Dvd (inta, num)) = - intaa = inta andalso equal_numa numa num + equal_inta intaa inta andalso equal_numa numa num | equal_fm (NEq numa) (NEq num) = equal_numa numa num | equal_fm (Eq numa) (Eq num) = equal_numa numa num | equal_fm (Ge numa) (Ge num) = equal_numa numa num @@ -666,32 +756,1457 @@ | E _ => Or (f p, q) | A _ => Or (f p, q) | Closed _ => Or (f p, q) | NClosed _ => Or (f p, q)))); -fun foldr f [] a = a - | foldr f (x :: xs) a = f x (foldr f xs a); - fun evaldjf f ps = foldr (djf f) ps F; -fun disjuncts (Or (p, q)) = disjuncts p @ disjuncts q - | disjuncts F = [] - | disjuncts T = [T] - | disjuncts (Lt v) = [Lt v] - | disjuncts (Le v) = [Le v] - | disjuncts (Gt v) = [Gt v] - | disjuncts (Ge v) = [Ge v] - | disjuncts (Eq v) = [Eq v] - | disjuncts (NEq v) = [NEq v] - | disjuncts (Dvd (v, va)) = [Dvd (v, va)] - | disjuncts (NDvd (v, va)) = [NDvd (v, va)] - | disjuncts (Not v) = [Not v] - | disjuncts (And (v, va)) = [And (v, va)] - | disjuncts (Imp (v, va)) = [Imp (v, va)] - | disjuncts (Iff (v, va)) = [Iff (v, va)] - | disjuncts (E v) = [E v] - | disjuncts (A v) = [A v] - | disjuncts (Closed v) = [Closed v] - | disjuncts (NClosed v) = [NClosed v]; +fun dj f p = evaldjf f (disjuncts p); + +fun minus_nat m n = + Nat (max ord_integer 0 (integer_of_nat m - integer_of_nat n)); + +val zero_nat : nat = Nat 0; + +fun minusinf (And (p, q)) = And (minusinf p, minusinf q) + | minusinf (Or (p, q)) = Or (minusinf p, minusinf q) + | minusinf T = T + | minusinf F = F + | minusinf (Lt (C bo)) = Lt (C bo) + | minusinf (Lt (Bound bp)) = Lt (Bound bp) + | minusinf (Lt (Neg bt)) = Lt (Neg bt) + | minusinf (Lt (Add (bu, bv))) = Lt (Add (bu, bv)) + | minusinf (Lt (Sub (bw, bx))) = Lt (Sub (bw, bx)) + | minusinf (Lt (Mul (by, bz))) = Lt (Mul (by, bz)) + | minusinf (Le (C co)) = Le (C co) + | minusinf (Le (Bound cp)) = Le (Bound cp) + | minusinf (Le (Neg ct)) = Le (Neg ct) + | minusinf (Le (Add (cu, cv))) = Le (Add (cu, cv)) + | minusinf (Le (Sub (cw, cx))) = Le (Sub (cw, cx)) + | minusinf (Le (Mul (cy, cz))) = Le (Mul (cy, cz)) + | minusinf (Gt (C doa)) = Gt (C doa) + | minusinf (Gt (Bound dp)) = Gt (Bound dp) + | minusinf (Gt (Neg dt)) = Gt (Neg dt) + | minusinf (Gt (Add (du, dv))) = Gt (Add (du, dv)) + | minusinf (Gt (Sub (dw, dx))) = Gt (Sub (dw, dx)) + | minusinf (Gt (Mul (dy, dz))) = Gt (Mul (dy, dz)) + | minusinf (Ge (C eo)) = Ge (C eo) + | minusinf (Ge (Bound ep)) = Ge (Bound ep) + | minusinf (Ge (Neg et)) = Ge (Neg et) + | minusinf (Ge (Add (eu, ev))) = Ge (Add (eu, ev)) + | minusinf (Ge (Sub (ew, ex))) = Ge (Sub (ew, ex)) + | minusinf (Ge (Mul (ey, ez))) = Ge (Mul (ey, ez)) + | minusinf (Eq (C fo)) = Eq (C fo) + | minusinf (Eq (Bound fp)) = Eq (Bound fp) + | minusinf (Eq (Neg ft)) = Eq (Neg ft) + | minusinf (Eq (Add (fu, fv))) = Eq (Add (fu, fv)) + | minusinf (Eq (Sub (fw, fx))) = Eq (Sub (fw, fx)) + | minusinf (Eq (Mul (fy, fz))) = Eq (Mul (fy, fz)) + | minusinf (NEq (C go)) = NEq (C go) + | minusinf (NEq (Bound gp)) = NEq (Bound gp) + | minusinf (NEq (Neg gt)) = NEq (Neg gt) + | minusinf (NEq (Add (gu, gv))) = NEq (Add (gu, gv)) + | minusinf (NEq (Sub (gw, gx))) = NEq (Sub (gw, gx)) + | minusinf (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz)) + | minusinf (Dvd (aa, ab)) = Dvd (aa, ab) + | minusinf (NDvd (ac, ad)) = NDvd (ac, ad) + | minusinf (Not ae) = Not ae + | minusinf (Imp (aj, ak)) = Imp (aj, ak) + | minusinf (Iff (al, am)) = Iff (al, am) + | minusinf (E an) = E an + | minusinf (A ao) = A ao + | minusinf (Closed ap) = Closed ap + | minusinf (NClosed aq) = NClosed aq + | minusinf (Lt (Cn (cm, c, e))) = + (if equal_nat cm zero_nat then T + else Lt (Cn (suc (minus_nat cm (nat_of_integer (1 : IntInf.int))), c, e))) + | minusinf (Le (Cn (dm, c, e))) = + (if equal_nat dm zero_nat then T + else Le (Cn (suc (minus_nat dm (nat_of_integer (1 : IntInf.int))), c, e))) + | minusinf (Gt (Cn (em, c, e))) = + (if equal_nat em zero_nat then F + else Gt (Cn (suc (minus_nat em (nat_of_integer (1 : IntInf.int))), c, e))) + | minusinf (Ge (Cn (fm, c, e))) = + (if equal_nat fm zero_nat then F + else Ge (Cn (suc (minus_nat fm (nat_of_integer (1 : IntInf.int))), c, e))) + | minusinf (Eq (Cn (gm, c, e))) = + (if equal_nat gm zero_nat then F + else Eq (Cn (suc (minus_nat gm (nat_of_integer (1 : IntInf.int))), c, e))) + | minusinf (NEq (Cn (hm, c, e))) = + (if equal_nat hm zero_nat then T + else NEq (Cn (suc (minus_nat hm (nat_of_integer (1 : IntInf.int))), c, + e))); + +fun numsubst0 t (C c) = C c + | numsubst0 t (Bound n) = (if equal_nat n zero_nat then t else Bound n) + | numsubst0 t (Neg a) = Neg (numsubst0 t a) + | numsubst0 t (Add (a, b)) = Add (numsubst0 t a, numsubst0 t b) + | numsubst0 t (Sub (a, b)) = Sub (numsubst0 t a, numsubst0 t b) + | numsubst0 t (Mul (i, a)) = Mul (i, numsubst0 t a) + | numsubst0 t (Cn (v, i, a)) = + (if equal_nat v zero_nat then Add (Mul (i, t), numsubst0 t a) + else Cn (suc (minus_nat v (nat_of_integer (1 : IntInf.int))), i, + numsubst0 t a)); + +fun subst0 t T = T + | subst0 t F = F + | subst0 t (Lt a) = Lt (numsubst0 t a) + | subst0 t (Le a) = Le (numsubst0 t a) + | subst0 t (Gt a) = Gt (numsubst0 t a) + | subst0 t (Ge a) = Ge (numsubst0 t a) + | subst0 t (Eq a) = Eq (numsubst0 t a) + | subst0 t (NEq a) = NEq (numsubst0 t a) + | subst0 t (Dvd (i, a)) = Dvd (i, numsubst0 t a) + | subst0 t (NDvd (i, a)) = NDvd (i, numsubst0 t a) + | subst0 t (Not p) = Not (subst0 t p) + | subst0 t (And (p, q)) = And (subst0 t p, subst0 t q) + | subst0 t (Or (p, q)) = Or (subst0 t p, subst0 t q) + | subst0 t (Imp (p, q)) = Imp (subst0 t p, subst0 t q) + | subst0 t (Iff (p, q)) = Iff (subst0 t p, subst0 t q) + | subst0 t (Closed p) = Closed p + | subst0 t (NClosed p) = NClosed p; + +type 'a plus = {plus : 'a -> 'a -> 'a}; +val plus = #plus : 'a plus -> 'a -> 'a -> 'a; + +type 'a semigroup_add = {plus_semigroup_add : 'a plus}; +val plus_semigroup_add = #plus_semigroup_add : 'a semigroup_add -> 'a plus; + +type 'a cancel_semigroup_add = + {semigroup_add_cancel_semigroup_add : 'a semigroup_add}; +val semigroup_add_cancel_semigroup_add = #semigroup_add_cancel_semigroup_add : + 'a cancel_semigroup_add -> 'a semigroup_add; + +type 'a ab_semigroup_add = {semigroup_add_ab_semigroup_add : 'a semigroup_add}; +val semigroup_add_ab_semigroup_add = #semigroup_add_ab_semigroup_add : + 'a ab_semigroup_add -> 'a semigroup_add; + +type 'a cancel_ab_semigroup_add = + {ab_semigroup_add_cancel_ab_semigroup_add : 'a ab_semigroup_add, + cancel_semigroup_add_cancel_ab_semigroup_add : 'a cancel_semigroup_add}; +val ab_semigroup_add_cancel_ab_semigroup_add = + #ab_semigroup_add_cancel_ab_semigroup_add : + 'a cancel_ab_semigroup_add -> 'a ab_semigroup_add; +val cancel_semigroup_add_cancel_ab_semigroup_add = + #cancel_semigroup_add_cancel_ab_semigroup_add : + 'a cancel_ab_semigroup_add -> 'a cancel_semigroup_add; + +type 'a zero = {zero : 'a}; +val zero = #zero : 'a zero -> 'a; + +type 'a monoid_add = + {semigroup_add_monoid_add : 'a semigroup_add, zero_monoid_add : 'a zero}; +val semigroup_add_monoid_add = #semigroup_add_monoid_add : + 'a monoid_add -> 'a semigroup_add; +val zero_monoid_add = #zero_monoid_add : 'a monoid_add -> 'a zero; + +type 'a comm_monoid_add = + {ab_semigroup_add_comm_monoid_add : 'a ab_semigroup_add, + monoid_add_comm_monoid_add : 'a monoid_add}; +val ab_semigroup_add_comm_monoid_add = #ab_semigroup_add_comm_monoid_add : + 'a comm_monoid_add -> 'a ab_semigroup_add; +val monoid_add_comm_monoid_add = #monoid_add_comm_monoid_add : + 'a comm_monoid_add -> 'a monoid_add; + +type 'a cancel_comm_monoid_add = + {cancel_ab_semigroup_add_cancel_comm_monoid_add : 'a cancel_ab_semigroup_add, + comm_monoid_add_cancel_comm_monoid_add : 'a comm_monoid_add}; +val cancel_ab_semigroup_add_cancel_comm_monoid_add = + #cancel_ab_semigroup_add_cancel_comm_monoid_add : + 'a cancel_comm_monoid_add -> 'a cancel_ab_semigroup_add; +val comm_monoid_add_cancel_comm_monoid_add = + #comm_monoid_add_cancel_comm_monoid_add : + 'a cancel_comm_monoid_add -> 'a comm_monoid_add; + +type 'a times = {times : 'a -> 'a -> 'a}; +val times = #times : 'a times -> 'a -> 'a -> 'a; + +type 'a mult_zero = {times_mult_zero : 'a times, zero_mult_zero : 'a zero}; +val times_mult_zero = #times_mult_zero : 'a mult_zero -> 'a times; +val zero_mult_zero = #zero_mult_zero : 'a mult_zero -> 'a zero; + +type 'a semigroup_mult = {times_semigroup_mult : 'a times}; +val times_semigroup_mult = #times_semigroup_mult : + 'a semigroup_mult -> 'a times; + +type 'a semiring = + {ab_semigroup_add_semiring : 'a ab_semigroup_add, + semigroup_mult_semiring : 'a semigroup_mult}; +val ab_semigroup_add_semiring = #ab_semigroup_add_semiring : + 'a semiring -> 'a ab_semigroup_add; +val semigroup_mult_semiring = #semigroup_mult_semiring : + 'a semiring -> 'a semigroup_mult; + +type 'a semiring_0 = + {comm_monoid_add_semiring_0 : 'a comm_monoid_add, + mult_zero_semiring_0 : 'a mult_zero, semiring_semiring_0 : 'a semiring}; +val comm_monoid_add_semiring_0 = #comm_monoid_add_semiring_0 : + 'a semiring_0 -> 'a comm_monoid_add; +val mult_zero_semiring_0 = #mult_zero_semiring_0 : + 'a semiring_0 -> 'a mult_zero; +val semiring_semiring_0 = #semiring_semiring_0 : 'a semiring_0 -> 'a semiring; + +type 'a semiring_0_cancel = + {cancel_comm_monoid_add_semiring_0_cancel : 'a cancel_comm_monoid_add, + semiring_0_semiring_0_cancel : 'a semiring_0}; +val cancel_comm_monoid_add_semiring_0_cancel = + #cancel_comm_monoid_add_semiring_0_cancel : + 'a semiring_0_cancel -> 'a cancel_comm_monoid_add; +val semiring_0_semiring_0_cancel = #semiring_0_semiring_0_cancel : + 'a semiring_0_cancel -> 'a semiring_0; + +type 'a ab_semigroup_mult = + {semigroup_mult_ab_semigroup_mult : 'a semigroup_mult}; +val semigroup_mult_ab_semigroup_mult = #semigroup_mult_ab_semigroup_mult : + 'a ab_semigroup_mult -> 'a semigroup_mult; + +type 'a comm_semiring = + {ab_semigroup_mult_comm_semiring : 'a ab_semigroup_mult, + semiring_comm_semiring : 'a semiring}; +val ab_semigroup_mult_comm_semiring = #ab_semigroup_mult_comm_semiring : + 'a comm_semiring -> 'a ab_semigroup_mult; +val semiring_comm_semiring = #semiring_comm_semiring : + 'a comm_semiring -> 'a semiring; + +type 'a comm_semiring_0 = + {comm_semiring_comm_semiring_0 : 'a comm_semiring, + semiring_0_comm_semiring_0 : 'a semiring_0}; +val comm_semiring_comm_semiring_0 = #comm_semiring_comm_semiring_0 : + 'a comm_semiring_0 -> 'a comm_semiring; +val semiring_0_comm_semiring_0 = #semiring_0_comm_semiring_0 : + 'a comm_semiring_0 -> 'a semiring_0; + +type 'a comm_semiring_0_cancel = + {comm_semiring_0_comm_semiring_0_cancel : 'a comm_semiring_0, + semiring_0_cancel_comm_semiring_0_cancel : 'a semiring_0_cancel}; +val comm_semiring_0_comm_semiring_0_cancel = + #comm_semiring_0_comm_semiring_0_cancel : + 'a comm_semiring_0_cancel -> 'a comm_semiring_0; +val semiring_0_cancel_comm_semiring_0_cancel = + #semiring_0_cancel_comm_semiring_0_cancel : + 'a comm_semiring_0_cancel -> 'a semiring_0_cancel; + +type 'a one = {one : 'a}; +val one = #one : 'a one -> 'a; + +type 'a power = {one_power : 'a one, times_power : 'a times}; +val one_power = #one_power : 'a power -> 'a one; +val times_power = #times_power : 'a power -> 'a times; + +type 'a monoid_mult = + {semigroup_mult_monoid_mult : 'a semigroup_mult, + power_monoid_mult : 'a power}; +val semigroup_mult_monoid_mult = #semigroup_mult_monoid_mult : + 'a monoid_mult -> 'a semigroup_mult; +val power_monoid_mult = #power_monoid_mult : 'a monoid_mult -> 'a power; + +type 'a numeral = + {one_numeral : 'a one, semigroup_add_numeral : 'a semigroup_add}; +val one_numeral = #one_numeral : 'a numeral -> 'a one; +val semigroup_add_numeral = #semigroup_add_numeral : + 'a numeral -> 'a semigroup_add; + +type 'a semiring_numeral = + {monoid_mult_semiring_numeral : 'a monoid_mult, + numeral_semiring_numeral : 'a numeral, + semiring_semiring_numeral : 'a semiring}; +val monoid_mult_semiring_numeral = #monoid_mult_semiring_numeral : + 'a semiring_numeral -> 'a monoid_mult; +val numeral_semiring_numeral = #numeral_semiring_numeral : + 'a semiring_numeral -> 'a numeral; +val semiring_semiring_numeral = #semiring_semiring_numeral : + 'a semiring_numeral -> 'a semiring; + +type 'a zero_neq_one = {one_zero_neq_one : 'a one, zero_zero_neq_one : 'a zero}; +val one_zero_neq_one = #one_zero_neq_one : 'a zero_neq_one -> 'a one; +val zero_zero_neq_one = #zero_zero_neq_one : 'a zero_neq_one -> 'a zero; + +type 'a semiring_1 = + {semiring_numeral_semiring_1 : 'a semiring_numeral, + semiring_0_semiring_1 : 'a semiring_0, + zero_neq_one_semiring_1 : 'a zero_neq_one}; +val semiring_numeral_semiring_1 = #semiring_numeral_semiring_1 : + 'a semiring_1 -> 'a semiring_numeral; +val semiring_0_semiring_1 = #semiring_0_semiring_1 : + 'a semiring_1 -> 'a semiring_0; +val zero_neq_one_semiring_1 = #zero_neq_one_semiring_1 : + 'a semiring_1 -> 'a zero_neq_one; + +type 'a semiring_1_cancel = + {semiring_0_cancel_semiring_1_cancel : 'a semiring_0_cancel, + semiring_1_semiring_1_cancel : 'a semiring_1}; +val semiring_0_cancel_semiring_1_cancel = #semiring_0_cancel_semiring_1_cancel : + 'a semiring_1_cancel -> 'a semiring_0_cancel; +val semiring_1_semiring_1_cancel = #semiring_1_semiring_1_cancel : + 'a semiring_1_cancel -> 'a semiring_1; + +type 'a comm_monoid_mult = + {ab_semigroup_mult_comm_monoid_mult : 'a ab_semigroup_mult, + monoid_mult_comm_monoid_mult : 'a monoid_mult}; +val ab_semigroup_mult_comm_monoid_mult = #ab_semigroup_mult_comm_monoid_mult : + 'a comm_monoid_mult -> 'a ab_semigroup_mult; +val monoid_mult_comm_monoid_mult = #monoid_mult_comm_monoid_mult : + 'a comm_monoid_mult -> 'a monoid_mult; + +type 'a dvd = {times_dvd : 'a times}; +val times_dvd = #times_dvd : 'a dvd -> 'a times; + +type 'a comm_semiring_1 = + {comm_monoid_mult_comm_semiring_1 : 'a comm_monoid_mult, + comm_semiring_0_comm_semiring_1 : 'a comm_semiring_0, + dvd_comm_semiring_1 : 'a dvd, semiring_1_comm_semiring_1 : 'a semiring_1}; +val comm_monoid_mult_comm_semiring_1 = #comm_monoid_mult_comm_semiring_1 : + 'a comm_semiring_1 -> 'a comm_monoid_mult; +val comm_semiring_0_comm_semiring_1 = #comm_semiring_0_comm_semiring_1 : + 'a comm_semiring_1 -> 'a comm_semiring_0; +val dvd_comm_semiring_1 = #dvd_comm_semiring_1 : 'a comm_semiring_1 -> 'a dvd; +val semiring_1_comm_semiring_1 = #semiring_1_comm_semiring_1 : + 'a comm_semiring_1 -> 'a semiring_1; + +type 'a comm_semiring_1_cancel = + {comm_semiring_0_cancel_comm_semiring_1_cancel : 'a comm_semiring_0_cancel, + comm_semiring_1_comm_semiring_1_cancel : 'a comm_semiring_1, + semiring_1_cancel_comm_semiring_1_cancel : 'a semiring_1_cancel}; +val comm_semiring_0_cancel_comm_semiring_1_cancel = + #comm_semiring_0_cancel_comm_semiring_1_cancel : + 'a comm_semiring_1_cancel -> 'a comm_semiring_0_cancel; +val comm_semiring_1_comm_semiring_1_cancel = + #comm_semiring_1_comm_semiring_1_cancel : + 'a comm_semiring_1_cancel -> 'a comm_semiring_1; +val semiring_1_cancel_comm_semiring_1_cancel = + #semiring_1_cancel_comm_semiring_1_cancel : + 'a comm_semiring_1_cancel -> 'a semiring_1_cancel; + +type 'a no_zero_divisors = + {times_no_zero_divisors : 'a times, zero_no_zero_divisors : 'a zero}; +val times_no_zero_divisors = #times_no_zero_divisors : + 'a no_zero_divisors -> 'a times; +val zero_no_zero_divisors = #zero_no_zero_divisors : + 'a no_zero_divisors -> 'a zero; + +type 'a diva = {dvd_div : 'a dvd, diva : 'a -> 'a -> 'a, moda : 'a -> 'a -> 'a}; +val dvd_div = #dvd_div : 'a diva -> 'a dvd; +val diva = #diva : 'a diva -> 'a -> 'a -> 'a; +val moda = #moda : 'a diva -> 'a -> 'a -> 'a; + +type 'a semiring_div = + {div_semiring_div : 'a diva, + comm_semiring_1_cancel_semiring_div : 'a comm_semiring_1_cancel, + no_zero_divisors_semiring_div : 'a no_zero_divisors}; +val div_semiring_div = #div_semiring_div : 'a semiring_div -> 'a diva; +val comm_semiring_1_cancel_semiring_div = #comm_semiring_1_cancel_semiring_div : + 'a semiring_div -> 'a comm_semiring_1_cancel; +val no_zero_divisors_semiring_div = #no_zero_divisors_semiring_div : + 'a semiring_div -> 'a no_zero_divisors; + +fun plus_inta k l = Int_of_integer (integer_of_int k + integer_of_int l); + +val plus_int = {plus = plus_inta} : inta plus; + +val semigroup_add_int = {plus_semigroup_add = plus_int} : inta semigroup_add; + +val cancel_semigroup_add_int = + {semigroup_add_cancel_semigroup_add = semigroup_add_int} : + inta cancel_semigroup_add; + +val ab_semigroup_add_int = {semigroup_add_ab_semigroup_add = semigroup_add_int} + : inta ab_semigroup_add; + +val cancel_ab_semigroup_add_int = + {ab_semigroup_add_cancel_ab_semigroup_add = ab_semigroup_add_int, + cancel_semigroup_add_cancel_ab_semigroup_add = cancel_semigroup_add_int} + : inta cancel_ab_semigroup_add; + +val zero_inta : inta = Int_of_integer 0; + +val zero_int = {zero = zero_inta} : inta zero; + +val monoid_add_int = + {semigroup_add_monoid_add = semigroup_add_int, zero_monoid_add = zero_int} : + inta monoid_add; + +val comm_monoid_add_int = + {ab_semigroup_add_comm_monoid_add = ab_semigroup_add_int, + monoid_add_comm_monoid_add = monoid_add_int} + : inta comm_monoid_add; + +val cancel_comm_monoid_add_int = + {cancel_ab_semigroup_add_cancel_comm_monoid_add = cancel_ab_semigroup_add_int, + comm_monoid_add_cancel_comm_monoid_add = comm_monoid_add_int} + : inta cancel_comm_monoid_add; + +fun times_inta k l = Int_of_integer (integer_of_int k * integer_of_int l); + +val times_int = {times = times_inta} : inta times; + +val mult_zero_int = {times_mult_zero = times_int, zero_mult_zero = zero_int} : + inta mult_zero; + +val semigroup_mult_int = {times_semigroup_mult = times_int} : + inta semigroup_mult; + +val semiring_int = + {ab_semigroup_add_semiring = ab_semigroup_add_int, + semigroup_mult_semiring = semigroup_mult_int} + : inta semiring; + +val semiring_0_int = + {comm_monoid_add_semiring_0 = comm_monoid_add_int, + mult_zero_semiring_0 = mult_zero_int, semiring_semiring_0 = semiring_int} + : inta semiring_0; + +val semiring_0_cancel_int = + {cancel_comm_monoid_add_semiring_0_cancel = cancel_comm_monoid_add_int, + semiring_0_semiring_0_cancel = semiring_0_int} + : inta semiring_0_cancel; + +val ab_semigroup_mult_int = + {semigroup_mult_ab_semigroup_mult = semigroup_mult_int} : + inta ab_semigroup_mult; + +val comm_semiring_int = + {ab_semigroup_mult_comm_semiring = ab_semigroup_mult_int, + semiring_comm_semiring = semiring_int} + : inta comm_semiring; + +val comm_semiring_0_int = + {comm_semiring_comm_semiring_0 = comm_semiring_int, + semiring_0_comm_semiring_0 = semiring_0_int} + : inta comm_semiring_0; + +val comm_semiring_0_cancel_int = + {comm_semiring_0_comm_semiring_0_cancel = comm_semiring_0_int, + semiring_0_cancel_comm_semiring_0_cancel = semiring_0_cancel_int} + : inta comm_semiring_0_cancel; + +val one_inta : inta = Int_of_integer (1 : IntInf.int); + +val one_int = {one = one_inta} : inta one; + +val power_int = {one_power = one_int, times_power = times_int} : inta power; + +val monoid_mult_int = + {semigroup_mult_monoid_mult = semigroup_mult_int, + power_monoid_mult = power_int} + : inta monoid_mult; + +val numeral_int = + {one_numeral = one_int, semigroup_add_numeral = semigroup_add_int} : + inta numeral; + +val semiring_numeral_int = + {monoid_mult_semiring_numeral = monoid_mult_int, + numeral_semiring_numeral = numeral_int, + semiring_semiring_numeral = semiring_int} + : inta semiring_numeral; + +val zero_neq_one_int = + {one_zero_neq_one = one_int, zero_zero_neq_one = zero_int} : + inta zero_neq_one; + +val semiring_1_int = + {semiring_numeral_semiring_1 = semiring_numeral_int, + semiring_0_semiring_1 = semiring_0_int, + zero_neq_one_semiring_1 = zero_neq_one_int} + : inta semiring_1; + +val semiring_1_cancel_int = + {semiring_0_cancel_semiring_1_cancel = semiring_0_cancel_int, + semiring_1_semiring_1_cancel = semiring_1_int} + : inta semiring_1_cancel; + +val comm_monoid_mult_int = + {ab_semigroup_mult_comm_monoid_mult = ab_semigroup_mult_int, + monoid_mult_comm_monoid_mult = monoid_mult_int} + : inta comm_monoid_mult; + +val dvd_int = {times_dvd = times_int} : inta dvd; + +val comm_semiring_1_int = + {comm_monoid_mult_comm_semiring_1 = comm_monoid_mult_int, + comm_semiring_0_comm_semiring_1 = comm_semiring_0_int, + dvd_comm_semiring_1 = dvd_int, semiring_1_comm_semiring_1 = semiring_1_int} + : inta comm_semiring_1; + +val comm_semiring_1_cancel_int = + {comm_semiring_0_cancel_comm_semiring_1_cancel = comm_semiring_0_cancel_int, + comm_semiring_1_comm_semiring_1_cancel = comm_semiring_1_int, + semiring_1_cancel_comm_semiring_1_cancel = semiring_1_cancel_int} + : inta comm_semiring_1_cancel; + +val no_zero_divisors_int = + {times_no_zero_divisors = times_int, zero_no_zero_divisors = zero_int} : + inta no_zero_divisors; + +fun sgn_integer k = + (if k = 0 then 0 + else (if k < 0 then ~ (1 : IntInf.int) else (1 : IntInf.int))); + +fun abs_integer k = (if k < 0 then ~ k else k); + +fun apsnd f (x, y) = (x, f y); + +fun divmod_integer k l = + (if k = 0 then (0, 0) + else (if l = 0 then (0, k) + else (apsnd o (fn a => fn b => a * b) o sgn_integer) l + (if sgn_integer k = sgn_integer l + then Integer.div_mod (abs k) (abs l) + else let + val (r, s) = Integer.div_mod (abs k) (abs l); + in + (if s = 0 then (~ r, 0) + else (~ r - (1 : IntInf.int), abs_integer l - s)) + end))); + +fun snd (a, b) = b; + +fun mod_integer k l = snd (divmod_integer k l); + +fun mod_int k l = + Int_of_integer (mod_integer (integer_of_int k) (integer_of_int l)); + +fun fst (a, b) = a; + +fun div_integer k l = fst (divmod_integer k l); + +fun div_inta k l = + Int_of_integer (div_integer (integer_of_int k) (integer_of_int l)); + +val div_int = {dvd_div = dvd_int, diva = div_inta, moda = mod_int} : inta diva; + +val semiring_div_int = + {div_semiring_div = div_int, + comm_semiring_1_cancel_semiring_div = comm_semiring_1_cancel_int, + no_zero_divisors_semiring_div = no_zero_divisors_int} + : inta semiring_div; + +fun less_eq_int k l = integer_of_int k <= integer_of_int l; + +fun uminus_int k = Int_of_integer (~ (integer_of_int k)); + +fun nummul i (C j) = C (times_inta i j) + | nummul i (Cn (n, c, t)) = Cn (n, times_inta c i, nummul i t) + | nummul i (Bound v) = Mul (i, Bound v) + | nummul i (Neg v) = Mul (i, Neg v) + | nummul i (Add (v, va)) = Mul (i, Add (v, va)) + | nummul i (Sub (v, va)) = Mul (i, Sub (v, va)) + | nummul i (Mul (v, va)) = Mul (i, Mul (v, va)); + +fun numneg t = nummul (uminus_int (Int_of_integer (1 : IntInf.int))) t; + +fun less_eq_nat m n = integer_of_nat m <= integer_of_nat n; + +fun numadd (Cn (n1, c1, r1), Cn (n2, c2, r2)) = + (if equal_nat n1 n2 + then let + val c = plus_inta c1 c2; + in + (if equal_inta c zero_inta then numadd (r1, r2) + else Cn (n1, c, numadd (r1, r2))) + end + else (if less_eq_nat n1 n2 + then Cn (n1, c1, numadd (r1, Add (Mul (c2, Bound n2), r2))) + else Cn (n2, c2, numadd (Add (Mul (c1, Bound n1), r1), r2)))) + | numadd (Cn (n1, c1, r1), C dd) = Cn (n1, c1, numadd (r1, C dd)) + | numadd (Cn (n1, c1, r1), Bound de) = Cn (n1, c1, numadd (r1, Bound de)) + | numadd (Cn (n1, c1, r1), Neg di) = Cn (n1, c1, numadd (r1, Neg di)) + | numadd (Cn (n1, c1, r1), Add (dj, dk)) = + Cn (n1, c1, numadd (r1, Add (dj, dk))) + | numadd (Cn (n1, c1, r1), Sub (dl, dm)) = + Cn (n1, c1, numadd (r1, Sub (dl, dm))) + | numadd (Cn (n1, c1, r1), Mul (dn, doa)) = + Cn (n1, c1, numadd (r1, Mul (dn, doa))) + | numadd (C w, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (C w, r2)) + | numadd (Bound x, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Bound x, r2)) + | numadd (Neg ac, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Neg ac, r2)) + | numadd (Add (ad, ae), Cn (n2, c2, r2)) = + Cn (n2, c2, numadd (Add (ad, ae), r2)) + | numadd (Sub (af, ag), Cn (n2, c2, r2)) = + Cn (n2, c2, numadd (Sub (af, ag), r2)) + | numadd (Mul (ah, ai), Cn (n2, c2, r2)) = + Cn (n2, c2, numadd (Mul (ah, ai), r2)) + | numadd (C b1, C b2) = C (plus_inta b1 b2) + | numadd (C aj, Bound bi) = Add (C aj, Bound bi) + | numadd (C aj, Neg bm) = Add (C aj, Neg bm) + | numadd (C aj, Add (bn, bo)) = Add (C aj, Add (bn, bo)) + | numadd (C aj, Sub (bp, bq)) = Add (C aj, Sub (bp, bq)) + | numadd (C aj, Mul (br, bs)) = Add (C aj, Mul (br, bs)) + | numadd (Bound ak, C cf) = Add (Bound ak, C cf) + | numadd (Bound ak, Bound cg) = Add (Bound ak, Bound cg) + | numadd (Bound ak, Neg ck) = Add (Bound ak, Neg ck) + | numadd (Bound ak, Add (cl, cm)) = Add (Bound ak, Add (cl, cm)) + | numadd (Bound ak, Sub (cn, co)) = Add (Bound ak, Sub (cn, co)) + | numadd (Bound ak, Mul (cp, cq)) = Add (Bound ak, Mul (cp, cq)) + | numadd (Neg ao, C en) = Add (Neg ao, C en) + | numadd (Neg ao, Bound eo) = Add (Neg ao, Bound eo) + | numadd (Neg ao, Neg et) = Add (Neg ao, Neg et) + | numadd (Neg ao, Add (eu, ev)) = Add (Neg ao, Add (eu, ev)) + | numadd (Neg ao, Sub (ew, ex)) = Add (Neg ao, Sub (ew, ex)) + | numadd (Neg ao, Mul (ey, ez)) = Add (Neg ao, Mul (ey, ez)) + | numadd (Add (ap, aq), C fm) = Add (Add (ap, aq), C fm) + | numadd (Add (ap, aq), Bound fna) = Add (Add (ap, aq), Bound fna) + | numadd (Add (ap, aq), Neg fr) = Add (Add (ap, aq), Neg fr) + | numadd (Add (ap, aq), Add (fs, ft)) = Add (Add (ap, aq), Add (fs, ft)) + | numadd (Add (ap, aq), Sub (fu, fv)) = Add (Add (ap, aq), Sub (fu, fv)) + | numadd (Add (ap, aq), Mul (fw, fx)) = Add (Add (ap, aq), Mul (fw, fx)) + | numadd (Sub (ar, asa), C gk) = Add (Sub (ar, asa), C gk) + | numadd (Sub (ar, asa), Bound gl) = Add (Sub (ar, asa), Bound gl) + | numadd (Sub (ar, asa), Neg gp) = Add (Sub (ar, asa), Neg gp) + | numadd (Sub (ar, asa), Add (gq, gr)) = Add (Sub (ar, asa), Add (gq, gr)) + | numadd (Sub (ar, asa), Sub (gs, gt)) = Add (Sub (ar, asa), Sub (gs, gt)) + | numadd (Sub (ar, asa), Mul (gu, gv)) = Add (Sub (ar, asa), Mul (gu, gv)) + | numadd (Mul (at, au), C hi) = Add (Mul (at, au), C hi) + | numadd (Mul (at, au), Bound hj) = Add (Mul (at, au), Bound hj) + | numadd (Mul (at, au), Neg hn) = Add (Mul (at, au), Neg hn) + | numadd (Mul (at, au), Add (ho, hp)) = Add (Mul (at, au), Add (ho, hp)) + | numadd (Mul (at, au), Sub (hq, hr)) = Add (Mul (at, au), Sub (hq, hr)) + | numadd (Mul (at, au), Mul (hs, ht)) = Add (Mul (at, au), Mul (hs, ht)); + +fun numsub s t = (if equal_numa s t then C zero_inta else numadd (s, numneg t)); + +fun simpnum (C j) = C j + | simpnum (Bound n) = Cn (n, Int_of_integer (1 : IntInf.int), C zero_inta) + | simpnum (Neg t) = numneg (simpnum t) + | simpnum (Add (t, s)) = numadd (simpnum t, simpnum s) + | simpnum (Sub (t, s)) = numsub (simpnum t) (simpnum s) + | simpnum (Mul (i, t)) = + (if equal_inta i zero_inta then C zero_inta else nummul i (simpnum t)) + | simpnum (Cn (v, va, vb)) = Cn (v, va, vb); + +fun less_int k l = integer_of_int k < integer_of_int l; + +val equal_int = {equal = equal_inta} : inta equal; + +fun abs_int i = (if less_int i zero_inta then uminus_int i else i); + +fun nota (Not p) = p + | nota T = F + | nota F = T + | nota (Lt v) = Not (Lt v) + | nota (Le v) = Not (Le v) + | nota (Gt v) = Not (Gt v) + | nota (Ge v) = Not (Ge v) + | nota (Eq v) = Not (Eq v) + | nota (NEq v) = Not (NEq v) + | nota (Dvd (v, va)) = Not (Dvd (v, va)) + | nota (NDvd (v, va)) = Not (NDvd (v, va)) + | nota (And (v, va)) = Not (And (v, va)) + | nota (Or (v, va)) = Not (Or (v, va)) + | nota (Imp (v, va)) = Not (Imp (v, va)) + | nota (Iff (v, va)) = Not (Iff (v, va)) + | nota (E v) = Not (E v) + | nota (A v) = Not (A v) + | nota (Closed v) = Not (Closed v) + | nota (NClosed v) = Not (NClosed v); + +fun impa p q = + (if equal_fm p F orelse equal_fm q T then T + else (if equal_fm p T then q + else (if equal_fm q F then nota p else Imp (p, q)))); + +fun iffa p q = + (if equal_fm p q then T + else (if equal_fm p (nota q) orelse equal_fm (nota p) q then F + else (if equal_fm p F then nota q + else (if equal_fm q F then nota p + else (if equal_fm p T then q + else (if equal_fm q T then p + else Iff (p, q))))))); + +fun disj p q = + (if equal_fm p T orelse equal_fm q T then T + else (if equal_fm p F then q else (if equal_fm q F then p else Or (p, q)))); + +fun conj p q = + (if equal_fm p F orelse equal_fm q F then F + else (if equal_fm p T then q + else (if equal_fm q T then p else And (p, q)))); + +fun dvd (A1_, A2_) a b = + eq A2_ (moda (div_semiring_div A1_) b a) + (zero ((zero_mult_zero o mult_zero_semiring_0 o semiring_0_semiring_1 o + semiring_1_comm_semiring_1 o + comm_semiring_1_comm_semiring_1_cancel o + comm_semiring_1_cancel_semiring_div) + A1_)); -fun dj f p = evaldjf f (disjuncts p); +fun simpfm (And (p, q)) = conj (simpfm p) (simpfm q) + | simpfm (Or (p, q)) = disj (simpfm p) (simpfm q) + | simpfm (Imp (p, q)) = impa (simpfm p) (simpfm q) + | simpfm (Iff (p, q)) = iffa (simpfm p) (simpfm q) + | simpfm (Not p) = nota (simpfm p) + | simpfm (Lt a) = + let + val aa = simpnum a; + in + (case aa of C v => (if less_int v zero_inta then T else F) + | Bound _ => Lt aa | Cn (_, _, _) => Lt aa | Neg _ => Lt aa + | Add (_, _) => Lt aa | Sub (_, _) => Lt aa | Mul (_, _) => Lt aa) + end + | simpfm (Le a) = + let + val aa = simpnum a; + in + (case aa of C v => (if less_eq_int v zero_inta then T else F) + | Bound _ => Le aa | Cn (_, _, _) => Le aa | Neg _ => Le aa + | Add (_, _) => Le aa | Sub (_, _) => Le aa | Mul (_, _) => Le aa) + end + | simpfm (Gt a) = + let + val aa = simpnum a; + in + (case aa of C v => (if less_int zero_inta v then T else F) + | Bound _ => Gt aa | Cn (_, _, _) => Gt aa | Neg _ => Gt aa + | Add (_, _) => Gt aa | Sub (_, _) => Gt aa | Mul (_, _) => Gt aa) + end + | simpfm (Ge a) = + let + val aa = simpnum a; + in + (case aa of C v => (if less_eq_int zero_inta v then T else F) + | Bound _ => Ge aa | Cn (_, _, _) => Ge aa | Neg _ => Ge aa + | Add (_, _) => Ge aa | Sub (_, _) => Ge aa | Mul (_, _) => Ge aa) + end + | simpfm (Eq a) = + let + val aa = simpnum a; + in + (case aa of C v => (if equal_inta v zero_inta then T else F) + | Bound _ => Eq aa | Cn (_, _, _) => Eq aa | Neg _ => Eq aa + | Add (_, _) => Eq aa | Sub (_, _) => Eq aa | Mul (_, _) => Eq aa) + end + | simpfm (NEq a) = + let + val aa = simpnum a; + in + (case aa of C v => (if not (equal_inta v zero_inta) then T else F) + | Bound _ => NEq aa | Cn (_, _, _) => NEq aa | Neg _ => NEq aa + | Add (_, _) => NEq aa | Sub (_, _) => NEq aa | Mul (_, _) => NEq aa) + end + | simpfm (Dvd (i, a)) = + (if equal_inta i zero_inta then simpfm (Eq a) + else (if equal_inta (abs_int i) (Int_of_integer (1 : IntInf.int)) then T + else let + val aa = simpnum a; + in + (case aa + of C v => + (if dvd (semiring_div_int, equal_int) i v then T else F) + | Bound _ => Dvd (i, aa) | Cn (_, _, _) => Dvd (i, aa) + | Neg _ => Dvd (i, aa) | Add (_, _) => Dvd (i, aa) + | Sub (_, _) => Dvd (i, aa) | Mul (_, _) => Dvd (i, aa)) + end)) + | simpfm (NDvd (i, a)) = + (if equal_inta i zero_inta then simpfm (NEq a) + else (if equal_inta (abs_int i) (Int_of_integer (1 : IntInf.int)) then F + else let + val aa = simpnum a; + in + (case aa + of C v => + (if not (dvd (semiring_div_int, equal_int) i v) then T + else F) + | Bound _ => NDvd (i, aa) | Cn (_, _, _) => NDvd (i, aa) + | Neg _ => NDvd (i, aa) | Add (_, _) => NDvd (i, aa) + | Sub (_, _) => NDvd (i, aa) | Mul (_, _) => NDvd (i, aa)) + end)) + | simpfm T = T + | simpfm F = F + | simpfm (E v) = E v + | simpfm (A v) = A v + | simpfm (Closed v) = Closed v + | simpfm (NClosed v) = NClosed v; + +val equal_num = {equal = equal_numa} : numa equal; + +fun gen_length n (x :: xs) = gen_length (suc n) xs + | gen_length n [] = n; + +fun size_list x = gen_length zero_nat x; + +fun mirror (And (p, q)) = And (mirror p, mirror q) + | mirror (Or (p, q)) = Or (mirror p, mirror q) + | mirror T = T + | mirror F = F + | mirror (Lt (C bo)) = Lt (C bo) + | mirror (Lt (Bound bp)) = Lt (Bound bp) + | mirror (Lt (Neg bt)) = Lt (Neg bt) + | mirror (Lt (Add (bu, bv))) = Lt (Add (bu, bv)) + | mirror (Lt (Sub (bw, bx))) = Lt (Sub (bw, bx)) + | mirror (Lt (Mul (by, bz))) = Lt (Mul (by, bz)) + | mirror (Le (C co)) = Le (C co) + | mirror (Le (Bound cp)) = Le (Bound cp) + | mirror (Le (Neg ct)) = Le (Neg ct) + | mirror (Le (Add (cu, cv))) = Le (Add (cu, cv)) + | mirror (Le (Sub (cw, cx))) = Le (Sub (cw, cx)) + | mirror (Le (Mul (cy, cz))) = Le (Mul (cy, cz)) + | mirror (Gt (C doa)) = Gt (C doa) + | mirror (Gt (Bound dp)) = Gt (Bound dp) + | mirror (Gt (Neg dt)) = Gt (Neg dt) + | mirror (Gt (Add (du, dv))) = Gt (Add (du, dv)) + | mirror (Gt (Sub (dw, dx))) = Gt (Sub (dw, dx)) + | mirror (Gt (Mul (dy, dz))) = Gt (Mul (dy, dz)) + | mirror (Ge (C eo)) = Ge (C eo) + | mirror (Ge (Bound ep)) = Ge (Bound ep) + | mirror (Ge (Neg et)) = Ge (Neg et) + | mirror (Ge (Add (eu, ev))) = Ge (Add (eu, ev)) + | mirror (Ge (Sub (ew, ex))) = Ge (Sub (ew, ex)) + | mirror (Ge (Mul (ey, ez))) = Ge (Mul (ey, ez)) + | mirror (Eq (C fo)) = Eq (C fo) + | mirror (Eq (Bound fp)) = Eq (Bound fp) + | mirror (Eq (Neg ft)) = Eq (Neg ft) + | mirror (Eq (Add (fu, fv))) = Eq (Add (fu, fv)) + | mirror (Eq (Sub (fw, fx))) = Eq (Sub (fw, fx)) + | mirror (Eq (Mul (fy, fz))) = Eq (Mul (fy, fz)) + | mirror (NEq (C go)) = NEq (C go) + | mirror (NEq (Bound gp)) = NEq (Bound gp) + | mirror (NEq (Neg gt)) = NEq (Neg gt) + | mirror (NEq (Add (gu, gv))) = NEq (Add (gu, gv)) + | mirror (NEq (Sub (gw, gx))) = NEq (Sub (gw, gx)) + | mirror (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz)) + | mirror (Dvd (aa, C ho)) = Dvd (aa, C ho) + | mirror (Dvd (aa, Bound hp)) = Dvd (aa, Bound hp) + | mirror (Dvd (aa, Neg ht)) = Dvd (aa, Neg ht) + | mirror (Dvd (aa, Add (hu, hv))) = Dvd (aa, Add (hu, hv)) + | mirror (Dvd (aa, Sub (hw, hx))) = Dvd (aa, Sub (hw, hx)) + | mirror (Dvd (aa, Mul (hy, hz))) = Dvd (aa, Mul (hy, hz)) + | mirror (NDvd (ac, C io)) = NDvd (ac, C io) + | mirror (NDvd (ac, Bound ip)) = NDvd (ac, Bound ip) + | mirror (NDvd (ac, Neg it)) = NDvd (ac, Neg it) + | mirror (NDvd (ac, Add (iu, iv))) = NDvd (ac, Add (iu, iv)) + | mirror (NDvd (ac, Sub (iw, ix))) = NDvd (ac, Sub (iw, ix)) + | mirror (NDvd (ac, Mul (iy, iz))) = NDvd (ac, Mul (iy, iz)) + | mirror (Not ae) = Not ae + | mirror (Imp (aj, ak)) = Imp (aj, ak) + | mirror (Iff (al, am)) = Iff (al, am) + | mirror (E an) = E an + | mirror (A ao) = A ao + | mirror (Closed ap) = Closed ap + | mirror (NClosed aq) = NClosed aq + | mirror (Lt (Cn (cm, c, e))) = + (if equal_nat cm zero_nat then Gt (Cn (zero_nat, c, Neg e)) + else Lt (Cn (suc (minus_nat cm (nat_of_integer (1 : IntInf.int))), c, e))) + | mirror (Le (Cn (dm, c, e))) = + (if equal_nat dm zero_nat then Ge (Cn (zero_nat, c, Neg e)) + else Le (Cn (suc (minus_nat dm (nat_of_integer (1 : IntInf.int))), c, e))) + | mirror (Gt (Cn (em, c, e))) = + (if equal_nat em zero_nat then Lt (Cn (zero_nat, c, Neg e)) + else Gt (Cn (suc (minus_nat em (nat_of_integer (1 : IntInf.int))), c, e))) + | mirror (Ge (Cn (fm, c, e))) = + (if equal_nat fm zero_nat then Le (Cn (zero_nat, c, Neg e)) + else Ge (Cn (suc (minus_nat fm (nat_of_integer (1 : IntInf.int))), c, e))) + | mirror (Eq (Cn (gm, c, e))) = + (if equal_nat gm zero_nat then Eq (Cn (zero_nat, c, Neg e)) + else Eq (Cn (suc (minus_nat gm (nat_of_integer (1 : IntInf.int))), c, e))) + | mirror (NEq (Cn (hm, c, e))) = + (if equal_nat hm zero_nat then NEq (Cn (zero_nat, c, Neg e)) + else NEq (Cn (suc (minus_nat hm (nat_of_integer (1 : IntInf.int))), c, + e))) + | mirror (Dvd (i, Cn (im, c, e))) = + (if equal_nat im zero_nat then Dvd (i, Cn (zero_nat, c, Neg e)) + else Dvd (i, Cn (suc (minus_nat im (nat_of_integer (1 : IntInf.int))), c, + e))) + | mirror (NDvd (i, Cn (jm, c, e))) = + (if equal_nat jm zero_nat then NDvd (i, Cn (zero_nat, c, Neg e)) + else NDvd (i, Cn (suc (minus_nat jm (nat_of_integer (1 : IntInf.int))), c, + e))); + +fun a_beta (And (p, q)) = (fn k => And (a_beta p k, a_beta q k)) + | a_beta (Or (p, q)) = (fn k => Or (a_beta p k, a_beta q k)) + | a_beta T = (fn _ => T) + | a_beta F = (fn _ => F) + | a_beta (Lt (C bo)) = (fn _ => Lt (C bo)) + | a_beta (Lt (Bound bp)) = (fn _ => Lt (Bound bp)) + | a_beta (Lt (Neg bt)) = (fn _ => Lt (Neg bt)) + | a_beta (Lt (Add (bu, bv))) = (fn _ => Lt (Add (bu, bv))) + | a_beta (Lt (Sub (bw, bx))) = (fn _ => Lt (Sub (bw, bx))) + | a_beta (Lt (Mul (by, bz))) = (fn _ => Lt (Mul (by, bz))) + | a_beta (Le (C co)) = (fn _ => Le (C co)) + | a_beta (Le (Bound cp)) = (fn _ => Le (Bound cp)) + | a_beta (Le (Neg ct)) = (fn _ => Le (Neg ct)) + | a_beta (Le (Add (cu, cv))) = (fn _ => Le (Add (cu, cv))) + | a_beta (Le (Sub (cw, cx))) = (fn _ => Le (Sub (cw, cx))) + | a_beta (Le (Mul (cy, cz))) = (fn _ => Le (Mul (cy, cz))) + | a_beta (Gt (C doa)) = (fn _ => Gt (C doa)) + | a_beta (Gt (Bound dp)) = (fn _ => Gt (Bound dp)) + | a_beta (Gt (Neg dt)) = (fn _ => Gt (Neg dt)) + | a_beta (Gt (Add (du, dv))) = (fn _ => Gt (Add (du, dv))) + | a_beta (Gt (Sub (dw, dx))) = (fn _ => Gt (Sub (dw, dx))) + | a_beta (Gt (Mul (dy, dz))) = (fn _ => Gt (Mul (dy, dz))) + | a_beta (Ge (C eo)) = (fn _ => Ge (C eo)) + | a_beta (Ge (Bound ep)) = (fn _ => Ge (Bound ep)) + | a_beta (Ge (Neg et)) = (fn _ => Ge (Neg et)) + | a_beta (Ge (Add (eu, ev))) = (fn _ => Ge (Add (eu, ev))) + | a_beta (Ge (Sub (ew, ex))) = (fn _ => Ge (Sub (ew, ex))) + | a_beta (Ge (Mul (ey, ez))) = (fn _ => Ge (Mul (ey, ez))) + | a_beta (Eq (C fo)) = (fn _ => Eq (C fo)) + | a_beta (Eq (Bound fp)) = (fn _ => Eq (Bound fp)) + | a_beta (Eq (Neg ft)) = (fn _ => Eq (Neg ft)) + | a_beta (Eq (Add (fu, fv))) = (fn _ => Eq (Add (fu, fv))) + | a_beta (Eq (Sub (fw, fx))) = (fn _ => Eq (Sub (fw, fx))) + | a_beta (Eq (Mul (fy, fz))) = (fn _ => Eq (Mul (fy, fz))) + | a_beta (NEq (C go)) = (fn _ => NEq (C go)) + | a_beta (NEq (Bound gp)) = (fn _ => NEq (Bound gp)) + | a_beta (NEq (Neg gt)) = (fn _ => NEq (Neg gt)) + | a_beta (NEq (Add (gu, gv))) = (fn _ => NEq (Add (gu, gv))) + | a_beta (NEq (Sub (gw, gx))) = (fn _ => NEq (Sub (gw, gx))) + | a_beta (NEq (Mul (gy, gz))) = (fn _ => NEq (Mul (gy, gz))) + | a_beta (Dvd (aa, C ho)) = (fn _ => Dvd (aa, C ho)) + | a_beta (Dvd (aa, Bound hp)) = (fn _ => Dvd (aa, Bound hp)) + | a_beta (Dvd (aa, Neg ht)) = (fn _ => Dvd (aa, Neg ht)) + | a_beta (Dvd (aa, Add (hu, hv))) = (fn _ => Dvd (aa, Add (hu, hv))) + | a_beta (Dvd (aa, Sub (hw, hx))) = (fn _ => Dvd (aa, Sub (hw, hx))) + | a_beta (Dvd (aa, Mul (hy, hz))) = (fn _ => Dvd (aa, Mul (hy, hz))) + | a_beta (NDvd (ac, C io)) = (fn _ => NDvd (ac, C io)) + | a_beta (NDvd (ac, Bound ip)) = (fn _ => NDvd (ac, Bound ip)) + | a_beta (NDvd (ac, Neg it)) = (fn _ => NDvd (ac, Neg it)) + | a_beta (NDvd (ac, Add (iu, iv))) = (fn _ => NDvd (ac, Add (iu, iv))) + | a_beta (NDvd (ac, Sub (iw, ix))) = (fn _ => NDvd (ac, Sub (iw, ix))) + | a_beta (NDvd (ac, Mul (iy, iz))) = (fn _ => NDvd (ac, Mul (iy, iz))) + | a_beta (Not ae) = (fn _ => Not ae) + | a_beta (Imp (aj, ak)) = (fn _ => Imp (aj, ak)) + | a_beta (Iff (al, am)) = (fn _ => Iff (al, am)) + | a_beta (E an) = (fn _ => E an) + | a_beta (A ao) = (fn _ => A ao) + | a_beta (Closed ap) = (fn _ => Closed ap) + | a_beta (NClosed aq) = (fn _ => NClosed aq) + | a_beta (Lt (Cn (cm, c, e))) = + (if equal_nat cm zero_nat + then (fn k => + Lt (Cn (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (div_inta k c, e)))) + else (fn _ => + Lt (Cn (suc (minus_nat cm (nat_of_integer (1 : IntInf.int))), c, + e)))) + | a_beta (Le (Cn (dm, c, e))) = + (if equal_nat dm zero_nat + then (fn k => + Le (Cn (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (div_inta k c, e)))) + else (fn _ => + Le (Cn (suc (minus_nat dm (nat_of_integer (1 : IntInf.int))), c, + e)))) + | a_beta (Gt (Cn (em, c, e))) = + (if equal_nat em zero_nat + then (fn k => + Gt (Cn (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (div_inta k c, e)))) + else (fn _ => + Gt (Cn (suc (minus_nat em (nat_of_integer (1 : IntInf.int))), c, + e)))) + | a_beta (Ge (Cn (fm, c, e))) = + (if equal_nat fm zero_nat + then (fn k => + Ge (Cn (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (div_inta k c, e)))) + else (fn _ => + Ge (Cn (suc (minus_nat fm (nat_of_integer (1 : IntInf.int))), c, + e)))) + | a_beta (Eq (Cn (gm, c, e))) = + (if equal_nat gm zero_nat + then (fn k => + Eq (Cn (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (div_inta k c, e)))) + else (fn _ => + Eq (Cn (suc (minus_nat gm (nat_of_integer (1 : IntInf.int))), c, + e)))) + | a_beta (NEq (Cn (hm, c, e))) = + (if equal_nat hm zero_nat + then (fn k => + NEq (Cn (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (div_inta k c, e)))) + else (fn _ => + NEq (Cn (suc (minus_nat hm (nat_of_integer (1 : IntInf.int))), c, + e)))) + | a_beta (Dvd (i, Cn (im, c, e))) = + (if equal_nat im zero_nat + then (fn k => + Dvd (times_inta (div_inta k c) i, + Cn (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (div_inta k c, e)))) + else (fn _ => + Dvd (i, Cn (suc (minus_nat im (nat_of_integer (1 : IntInf.int))), + c, e)))) + | a_beta (NDvd (i, Cn (jm, c, e))) = + (if equal_nat jm zero_nat + then (fn k => + NDvd (times_inta (div_inta k c) i, + Cn (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (div_inta k c, e)))) + else (fn _ => + NDvd (i, Cn (suc (minus_nat jm (nat_of_integer (1 : IntInf.int))), + c, e)))); + +fun member A_ [] y = false + | member A_ (x :: xs) y = eq A_ x y orelse member A_ xs y; + +fun remdups A_ [] = [] + | remdups A_ (x :: xs) = + (if member A_ xs x then remdups A_ xs else x :: remdups A_ xs); + +fun gcd_int k l = + abs_int + (if equal_inta l zero_inta then k + else gcd_int l (mod_int (abs_int k) (abs_int l))); + +fun lcm_int a b = div_inta (times_inta (abs_int a) (abs_int b)) (gcd_int a b); + +fun delta (And (p, q)) = lcm_int (delta p) (delta q) + | delta (Or (p, q)) = lcm_int (delta p) (delta q) + | delta T = Int_of_integer (1 : IntInf.int) + | delta F = Int_of_integer (1 : IntInf.int) + | delta (Lt u) = Int_of_integer (1 : IntInf.int) + | delta (Le v) = Int_of_integer (1 : IntInf.int) + | delta (Gt w) = Int_of_integer (1 : IntInf.int) + | delta (Ge x) = Int_of_integer (1 : IntInf.int) + | delta (Eq y) = Int_of_integer (1 : IntInf.int) + | delta (NEq z) = Int_of_integer (1 : IntInf.int) + | delta (Dvd (aa, C bo)) = Int_of_integer (1 : IntInf.int) + | delta (Dvd (aa, Bound bp)) = Int_of_integer (1 : IntInf.int) + | delta (Dvd (aa, Neg bt)) = Int_of_integer (1 : IntInf.int) + | delta (Dvd (aa, Add (bu, bv))) = Int_of_integer (1 : IntInf.int) + | delta (Dvd (aa, Sub (bw, bx))) = Int_of_integer (1 : IntInf.int) + | delta (Dvd (aa, Mul (by, bz))) = Int_of_integer (1 : IntInf.int) + | delta (NDvd (ac, C co)) = Int_of_integer (1 : IntInf.int) + | delta (NDvd (ac, Bound cp)) = Int_of_integer (1 : IntInf.int) + | delta (NDvd (ac, Neg ct)) = Int_of_integer (1 : IntInf.int) + | delta (NDvd (ac, Add (cu, cv))) = Int_of_integer (1 : IntInf.int) + | delta (NDvd (ac, Sub (cw, cx))) = Int_of_integer (1 : IntInf.int) + | delta (NDvd (ac, Mul (cy, cz))) = Int_of_integer (1 : IntInf.int) + | delta (Not ae) = Int_of_integer (1 : IntInf.int) + | delta (Imp (aj, ak)) = Int_of_integer (1 : IntInf.int) + | delta (Iff (al, am)) = Int_of_integer (1 : IntInf.int) + | delta (E an) = Int_of_integer (1 : IntInf.int) + | delta (A ao) = Int_of_integer (1 : IntInf.int) + | delta (Closed ap) = Int_of_integer (1 : IntInf.int) + | delta (NClosed aq) = Int_of_integer (1 : IntInf.int) + | delta (Dvd (i, Cn (cm, c, e))) = + (if equal_nat cm zero_nat then i else Int_of_integer (1 : IntInf.int)) + | delta (NDvd (i, Cn (dm, c, e))) = + (if equal_nat dm zero_nat then i else Int_of_integer (1 : IntInf.int)); + +fun alpha (And (p, q)) = alpha p @ alpha q + | alpha (Or (p, q)) = alpha p @ alpha q + | alpha T = [] + | alpha F = [] + | alpha (Lt (C bo)) = [] + | alpha (Lt (Bound bp)) = [] + | alpha (Lt (Neg bt)) = [] + | alpha (Lt (Add (bu, bv))) = [] + | alpha (Lt (Sub (bw, bx))) = [] + | alpha (Lt (Mul (by, bz))) = [] + | alpha (Le (C co)) = [] + | alpha (Le (Bound cp)) = [] + | alpha (Le (Neg ct)) = [] + | alpha (Le (Add (cu, cv))) = [] + | alpha (Le (Sub (cw, cx))) = [] + | alpha (Le (Mul (cy, cz))) = [] + | alpha (Gt (C doa)) = [] + | alpha (Gt (Bound dp)) = [] + | alpha (Gt (Neg dt)) = [] + | alpha (Gt (Add (du, dv))) = [] + | alpha (Gt (Sub (dw, dx))) = [] + | alpha (Gt (Mul (dy, dz))) = [] + | alpha (Ge (C eo)) = [] + | alpha (Ge (Bound ep)) = [] + | alpha (Ge (Neg et)) = [] + | alpha (Ge (Add (eu, ev))) = [] + | alpha (Ge (Sub (ew, ex))) = [] + | alpha (Ge (Mul (ey, ez))) = [] + | alpha (Eq (C fo)) = [] + | alpha (Eq (Bound fp)) = [] + | alpha (Eq (Neg ft)) = [] + | alpha (Eq (Add (fu, fv))) = [] + | alpha (Eq (Sub (fw, fx))) = [] + | alpha (Eq (Mul (fy, fz))) = [] + | alpha (NEq (C go)) = [] + | alpha (NEq (Bound gp)) = [] + | alpha (NEq (Neg gt)) = [] + | alpha (NEq (Add (gu, gv))) = [] + | alpha (NEq (Sub (gw, gx))) = [] + | alpha (NEq (Mul (gy, gz))) = [] + | alpha (Dvd (aa, ab)) = [] + | alpha (NDvd (ac, ad)) = [] + | alpha (Not ae) = [] + | alpha (Imp (aj, ak)) = [] + | alpha (Iff (al, am)) = [] + | alpha (E an) = [] + | alpha (A ao) = [] + | alpha (Closed ap) = [] + | alpha (NClosed aq) = [] + | alpha (Lt (Cn (cm, c, e))) = (if equal_nat cm zero_nat then [e] else []) + | alpha (Le (Cn (dm, c, e))) = + (if equal_nat dm zero_nat + then [Add (C (Int_of_integer (~1 : IntInf.int)), e)] else []) + | alpha (Gt (Cn (em, c, e))) = (if equal_nat em zero_nat then [] else []) + | alpha (Ge (Cn (fm, c, e))) = (if equal_nat fm zero_nat then [] else []) + | alpha (Eq (Cn (gm, c, e))) = + (if equal_nat gm zero_nat + then [Add (C (Int_of_integer (~1 : IntInf.int)), e)] else []) + | alpha (NEq (Cn (hm, c, e))) = (if equal_nat hm zero_nat then [e] else []); + +fun minus_int k l = Int_of_integer (integer_of_int k - integer_of_int l); + +fun zsplit0 (C c) = (zero_inta, C c) + | zsplit0 (Bound n) = + (if equal_nat n zero_nat then (Int_of_integer (1 : IntInf.int), C zero_inta) + else (zero_inta, Bound n)) + | zsplit0 (Cn (n, i, a)) = + let + val (ia, aa) = zsplit0 a; + in + (if equal_nat n zero_nat then (plus_inta i ia, aa) + else (ia, Cn (n, i, aa))) + end + | zsplit0 (Neg a) = let + val (i, aa) = zsplit0 a; + in + (uminus_int i, Neg aa) + end + | zsplit0 (Add (a, b)) = + let + val (ia, aa) = zsplit0 a; + val (ib, ba) = zsplit0 b; + in + (plus_inta ia ib, Add (aa, ba)) + end + | zsplit0 (Sub (a, b)) = + let + val (ia, aa) = zsplit0 a; + val (ib, ba) = zsplit0 b; + in + (minus_int ia ib, Sub (aa, ba)) + end + | zsplit0 (Mul (i, a)) = + let + val (ia, aa) = zsplit0 a; + in + (times_inta i ia, Mul (i, aa)) + end; + +fun zlfm (And (p, q)) = And (zlfm p, zlfm q) + | zlfm (Or (p, q)) = Or (zlfm p, zlfm q) + | zlfm (Imp (p, q)) = Or (zlfm (Not p), zlfm q) + | zlfm (Iff (p, q)) = + Or (And (zlfm p, zlfm q), And (zlfm (Not p), zlfm (Not q))) + | zlfm (Lt a) = + let + val (c, r) = zsplit0 a; + in + (if equal_inta c zero_inta then Lt r + else (if less_int zero_inta c then Lt (Cn (zero_nat, c, r)) + else Gt (Cn (zero_nat, uminus_int c, Neg r)))) + end + | zlfm (Le a) = + let + val (c, r) = zsplit0 a; + in + (if equal_inta c zero_inta then Le r + else (if less_int zero_inta c then Le (Cn (zero_nat, c, r)) + else Ge (Cn (zero_nat, uminus_int c, Neg r)))) + end + | zlfm (Gt a) = + let + val (c, r) = zsplit0 a; + in + (if equal_inta c zero_inta then Gt r + else (if less_int zero_inta c then Gt (Cn (zero_nat, c, r)) + else Lt (Cn (zero_nat, uminus_int c, Neg r)))) + end + | zlfm (Ge a) = + let + val (c, r) = zsplit0 a; + in + (if equal_inta c zero_inta then Ge r + else (if less_int zero_inta c then Ge (Cn (zero_nat, c, r)) + else Le (Cn (zero_nat, uminus_int c, Neg r)))) + end + | zlfm (Eq a) = + let + val (c, r) = zsplit0 a; + in + (if equal_inta c zero_inta then Eq r + else (if less_int zero_inta c then Eq (Cn (zero_nat, c, r)) + else Eq (Cn (zero_nat, uminus_int c, Neg r)))) + end + | zlfm (NEq a) = + let + val (c, r) = zsplit0 a; + in + (if equal_inta c zero_inta then NEq r + else (if less_int zero_inta c then NEq (Cn (zero_nat, c, r)) + else NEq (Cn (zero_nat, uminus_int c, Neg r)))) + end + | zlfm (Dvd (i, a)) = + (if equal_inta i zero_inta then zlfm (Eq a) + else let + val (c, r) = zsplit0 a; + in + (if equal_inta c zero_inta then Dvd (abs_int i, r) + else (if less_int zero_inta c + then Dvd (abs_int i, Cn (zero_nat, c, r)) + else Dvd (abs_int i, Cn (zero_nat, uminus_int c, Neg r)))) + end) + | zlfm (NDvd (i, a)) = + (if equal_inta i zero_inta then zlfm (NEq a) + else let + val (c, r) = zsplit0 a; + in + (if equal_inta c zero_inta then NDvd (abs_int i, r) + else (if less_int zero_inta c + then NDvd (abs_int i, Cn (zero_nat, c, r)) + else NDvd (abs_int i, + Cn (zero_nat, uminus_int c, Neg r)))) + end) + | zlfm (Not (And (p, q))) = Or (zlfm (Not p), zlfm (Not q)) + | zlfm (Not (Or (p, q))) = And (zlfm (Not p), zlfm (Not q)) + | zlfm (Not (Imp (p, q))) = And (zlfm p, zlfm (Not q)) + | zlfm (Not (Iff (p, q))) = + Or (And (zlfm p, zlfm (Not q)), And (zlfm (Not p), zlfm q)) + | zlfm (Not (Not p)) = zlfm p + | zlfm (Not T) = F + | zlfm (Not F) = T + | zlfm (Not (Lt a)) = zlfm (Ge a) + | zlfm (Not (Le a)) = zlfm (Gt a) + | zlfm (Not (Gt a)) = zlfm (Le a) + | zlfm (Not (Ge a)) = zlfm (Lt a) + | zlfm (Not (Eq a)) = zlfm (NEq a) + | zlfm (Not (NEq a)) = zlfm (Eq a) + | zlfm (Not (Dvd (i, a))) = zlfm (NDvd (i, a)) + | zlfm (Not (NDvd (i, a))) = zlfm (Dvd (i, a)) + | zlfm (Not (Closed p)) = NClosed p + | zlfm (Not (NClosed p)) = Closed p + | zlfm T = T + | zlfm F = F + | zlfm (Not (E ci)) = Not (E ci) + | zlfm (Not (A cj)) = Not (A cj) + | zlfm (E ao) = E ao + | zlfm (A ap) = A ap + | zlfm (Closed aq) = Closed aq + | zlfm (NClosed ar) = NClosed ar; + +fun zeta (And (p, q)) = lcm_int (zeta p) (zeta q) + | zeta (Or (p, q)) = lcm_int (zeta p) (zeta q) + | zeta T = Int_of_integer (1 : IntInf.int) + | zeta F = Int_of_integer (1 : IntInf.int) + | zeta (Lt (C bo)) = Int_of_integer (1 : IntInf.int) + | zeta (Lt (Bound bp)) = Int_of_integer (1 : IntInf.int) + | zeta (Lt (Neg bt)) = Int_of_integer (1 : IntInf.int) + | zeta (Lt (Add (bu, bv))) = Int_of_integer (1 : IntInf.int) + | zeta (Lt (Sub (bw, bx))) = Int_of_integer (1 : IntInf.int) + | zeta (Lt (Mul (by, bz))) = Int_of_integer (1 : IntInf.int) + | zeta (Le (C co)) = Int_of_integer (1 : IntInf.int) + | zeta (Le (Bound cp)) = Int_of_integer (1 : IntInf.int) + | zeta (Le (Neg ct)) = Int_of_integer (1 : IntInf.int) + | zeta (Le (Add (cu, cv))) = Int_of_integer (1 : IntInf.int) + | zeta (Le (Sub (cw, cx))) = Int_of_integer (1 : IntInf.int) + | zeta (Le (Mul (cy, cz))) = Int_of_integer (1 : IntInf.int) + | zeta (Gt (C doa)) = Int_of_integer (1 : IntInf.int) + | zeta (Gt (Bound dp)) = Int_of_integer (1 : IntInf.int) + | zeta (Gt (Neg dt)) = Int_of_integer (1 : IntInf.int) + | zeta (Gt (Add (du, dv))) = Int_of_integer (1 : IntInf.int) + | zeta (Gt (Sub (dw, dx))) = Int_of_integer (1 : IntInf.int) + | zeta (Gt (Mul (dy, dz))) = Int_of_integer (1 : IntInf.int) + | zeta (Ge (C eo)) = Int_of_integer (1 : IntInf.int) + | zeta (Ge (Bound ep)) = Int_of_integer (1 : IntInf.int) + | zeta (Ge (Neg et)) = Int_of_integer (1 : IntInf.int) + | zeta (Ge (Add (eu, ev))) = Int_of_integer (1 : IntInf.int) + | zeta (Ge (Sub (ew, ex))) = Int_of_integer (1 : IntInf.int) + | zeta (Ge (Mul (ey, ez))) = Int_of_integer (1 : IntInf.int) + | zeta (Eq (C fo)) = Int_of_integer (1 : IntInf.int) + | zeta (Eq (Bound fp)) = Int_of_integer (1 : IntInf.int) + | zeta (Eq (Neg ft)) = Int_of_integer (1 : IntInf.int) + | zeta (Eq (Add (fu, fv))) = Int_of_integer (1 : IntInf.int) + | zeta (Eq (Sub (fw, fx))) = Int_of_integer (1 : IntInf.int) + | zeta (Eq (Mul (fy, fz))) = Int_of_integer (1 : IntInf.int) + | zeta (NEq (C go)) = Int_of_integer (1 : IntInf.int) + | zeta (NEq (Bound gp)) = Int_of_integer (1 : IntInf.int) + | zeta (NEq (Neg gt)) = Int_of_integer (1 : IntInf.int) + | zeta (NEq (Add (gu, gv))) = Int_of_integer (1 : IntInf.int) + | zeta (NEq (Sub (gw, gx))) = Int_of_integer (1 : IntInf.int) + | zeta (NEq (Mul (gy, gz))) = Int_of_integer (1 : IntInf.int) + | zeta (Dvd (aa, C ho)) = Int_of_integer (1 : IntInf.int) + | zeta (Dvd (aa, Bound hp)) = Int_of_integer (1 : IntInf.int) + | zeta (Dvd (aa, Neg ht)) = Int_of_integer (1 : IntInf.int) + | zeta (Dvd (aa, Add (hu, hv))) = Int_of_integer (1 : IntInf.int) + | zeta (Dvd (aa, Sub (hw, hx))) = Int_of_integer (1 : IntInf.int) + | zeta (Dvd (aa, Mul (hy, hz))) = Int_of_integer (1 : IntInf.int) + | zeta (NDvd (ac, C io)) = Int_of_integer (1 : IntInf.int) + | zeta (NDvd (ac, Bound ip)) = Int_of_integer (1 : IntInf.int) + | zeta (NDvd (ac, Neg it)) = Int_of_integer (1 : IntInf.int) + | zeta (NDvd (ac, Add (iu, iv))) = Int_of_integer (1 : IntInf.int) + | zeta (NDvd (ac, Sub (iw, ix))) = Int_of_integer (1 : IntInf.int) + | zeta (NDvd (ac, Mul (iy, iz))) = Int_of_integer (1 : IntInf.int) + | zeta (Not ae) = Int_of_integer (1 : IntInf.int) + | zeta (Imp (aj, ak)) = Int_of_integer (1 : IntInf.int) + | zeta (Iff (al, am)) = Int_of_integer (1 : IntInf.int) + | zeta (E an) = Int_of_integer (1 : IntInf.int) + | zeta (A ao) = Int_of_integer (1 : IntInf.int) + | zeta (Closed ap) = Int_of_integer (1 : IntInf.int) + | zeta (NClosed aq) = Int_of_integer (1 : IntInf.int) + | zeta (Lt (Cn (cm, c, e))) = + (if equal_nat cm zero_nat then c else Int_of_integer (1 : IntInf.int)) + | zeta (Le (Cn (dm, c, e))) = + (if equal_nat dm zero_nat then c else Int_of_integer (1 : IntInf.int)) + | zeta (Gt (Cn (em, c, e))) = + (if equal_nat em zero_nat then c else Int_of_integer (1 : IntInf.int)) + | zeta (Ge (Cn (fm, c, e))) = + (if equal_nat fm zero_nat then c else Int_of_integer (1 : IntInf.int)) + | zeta (Eq (Cn (gm, c, e))) = + (if equal_nat gm zero_nat then c else Int_of_integer (1 : IntInf.int)) + | zeta (NEq (Cn (hm, c, e))) = + (if equal_nat hm zero_nat then c else Int_of_integer (1 : IntInf.int)) + | zeta (Dvd (i, Cn (im, c, e))) = + (if equal_nat im zero_nat then c else Int_of_integer (1 : IntInf.int)) + | zeta (NDvd (i, Cn (jm, c, e))) = + (if equal_nat jm zero_nat then c else Int_of_integer (1 : IntInf.int)); + +fun beta (And (p, q)) = beta p @ beta q + | beta (Or (p, q)) = beta p @ beta q + | beta T = [] + | beta F = [] + | beta (Lt (C bo)) = [] + | beta (Lt (Bound bp)) = [] + | beta (Lt (Neg bt)) = [] + | beta (Lt (Add (bu, bv))) = [] + | beta (Lt (Sub (bw, bx))) = [] + | beta (Lt (Mul (by, bz))) = [] + | beta (Le (C co)) = [] + | beta (Le (Bound cp)) = [] + | beta (Le (Neg ct)) = [] + | beta (Le (Add (cu, cv))) = [] + | beta (Le (Sub (cw, cx))) = [] + | beta (Le (Mul (cy, cz))) = [] + | beta (Gt (C doa)) = [] + | beta (Gt (Bound dp)) = [] + | beta (Gt (Neg dt)) = [] + | beta (Gt (Add (du, dv))) = [] + | beta (Gt (Sub (dw, dx))) = [] + | beta (Gt (Mul (dy, dz))) = [] + | beta (Ge (C eo)) = [] + | beta (Ge (Bound ep)) = [] + | beta (Ge (Neg et)) = [] + | beta (Ge (Add (eu, ev))) = [] + | beta (Ge (Sub (ew, ex))) = [] + | beta (Ge (Mul (ey, ez))) = [] + | beta (Eq (C fo)) = [] + | beta (Eq (Bound fp)) = [] + | beta (Eq (Neg ft)) = [] + | beta (Eq (Add (fu, fv))) = [] + | beta (Eq (Sub (fw, fx))) = [] + | beta (Eq (Mul (fy, fz))) = [] + | beta (NEq (C go)) = [] + | beta (NEq (Bound gp)) = [] + | beta (NEq (Neg gt)) = [] + | beta (NEq (Add (gu, gv))) = [] + | beta (NEq (Sub (gw, gx))) = [] + | beta (NEq (Mul (gy, gz))) = [] + | beta (Dvd (aa, ab)) = [] + | beta (NDvd (ac, ad)) = [] + | beta (Not ae) = [] + | beta (Imp (aj, ak)) = [] + | beta (Iff (al, am)) = [] + | beta (E an) = [] + | beta (A ao) = [] + | beta (Closed ap) = [] + | beta (NClosed aq) = [] + | beta (Lt (Cn (cm, c, e))) = (if equal_nat cm zero_nat then [] else []) + | beta (Le (Cn (dm, c, e))) = (if equal_nat dm zero_nat then [] else []) + | beta (Gt (Cn (em, c, e))) = (if equal_nat em zero_nat then [Neg e] else []) + | beta (Ge (Cn (fm, c, e))) = + (if equal_nat fm zero_nat + then [Sub (C (Int_of_integer (~1 : IntInf.int)), e)] else []) + | beta (Eq (Cn (gm, c, e))) = + (if equal_nat gm zero_nat + then [Sub (C (Int_of_integer (~1 : IntInf.int)), e)] else []) + | beta (NEq (Cn (hm, c, e))) = + (if equal_nat hm zero_nat then [Neg e] else []); + +fun unita p = + let + val pa = zlfm p; + val l = zeta pa; + val q = + And (Dvd (l, Cn (zero_nat, Int_of_integer (1 : IntInf.int), C zero_inta)), + a_beta pa l); + val d = delta q; + val b = remdups equal_num (map simpnum (beta q)); + val a = remdups equal_num (map simpnum (alpha q)); + in + (if less_eq_nat (size_list b) (size_list a) then (q, (b, d)) + else (mirror q, (a, d))) + end; + +fun decrnum (Bound n) = Bound (minus_nat n (nat_of_integer (1 : IntInf.int))) + | decrnum (Neg a) = Neg (decrnum a) + | decrnum (Add (a, b)) = Add (decrnum a, decrnum b) + | decrnum (Sub (a, b)) = Sub (decrnum a, decrnum b) + | decrnum (Mul (c, a)) = Mul (c, decrnum a) + | decrnum (Cn (n, i, a)) = + Cn (minus_nat n (nat_of_integer (1 : IntInf.int)), i, decrnum a) + | decrnum (C v) = C v; + +fun decr (Lt a) = Lt (decrnum a) + | decr (Le a) = Le (decrnum a) + | decr (Gt a) = Gt (decrnum a) + | decr (Ge a) = Ge (decrnum a) + | decr (Eq a) = Eq (decrnum a) + | decr (NEq a) = NEq (decrnum a) + | decr (Dvd (i, a)) = Dvd (i, decrnum a) + | decr (NDvd (i, a)) = NDvd (i, decrnum a) + | decr (Not p) = Not (decr p) + | decr (And (p, q)) = And (decr p, decr q) + | decr (Or (p, q)) = Or (decr p, decr q) + | decr (Imp (p, q)) = Imp (decr p, decr q) + | decr (Iff (p, q)) = Iff (decr p, decr q) + | decr T = T + | decr F = F + | decr (E v) = E v + | decr (A v) = A v + | decr (Closed v) = Closed v + | decr (NClosed v) = NClosed v; + +fun uptoa i j = + (if less_eq_int i j + then i :: uptoa (plus_inta i (Int_of_integer (1 : IntInf.int))) j else []); + +fun maps f [] = [] + | maps f (x :: xs) = f x @ maps f xs; + +fun cooper p = + let + val (q, (b, d)) = unita p; + val js = uptoa (Int_of_integer (1 : IntInf.int)) d; + val mq = simpfm (minusinf q); + val md = evaldjf (fn j => simpfm (subst0 (C j) mq)) js; + in + (if equal_fm md T then T + else let + val qd = + evaldjf (fn (ba, j) => simpfm (subst0 (Add (ba, C j)) q)) + (maps (fn ba => map (fn a => (ba, a)) js) b); + in + decr (disj md qd) + end) + end; + +fun qelim (E p) = (fn qe => dj qe (qelim p qe)) + | qelim (A p) = (fn qe => nota (qe (qelim (Not p) qe))) + | qelim (Not p) = (fn qe => nota (qelim p qe)) + | qelim (And (p, q)) = (fn qe => conj (qelim p qe) (qelim q qe)) + | qelim (Or (p, q)) = (fn qe => disj (qelim p qe) (qelim q qe)) + | qelim (Imp (p, q)) = (fn qe => impa (qelim p qe) (qelim q qe)) + | qelim (Iff (p, q)) = (fn qe => iffa (qelim p qe) (qelim q qe)) + | qelim T = (fn _ => simpfm T) + | qelim F = (fn _ => simpfm F) + | qelim (Lt v) = (fn _ => simpfm (Lt v)) + | qelim (Le v) = (fn _ => simpfm (Le v)) + | qelim (Gt v) = (fn _ => simpfm (Gt v)) + | qelim (Ge v) = (fn _ => simpfm (Ge v)) + | qelim (Eq v) = (fn _ => simpfm (Eq v)) + | qelim (NEq v) = (fn _ => simpfm (NEq v)) + | qelim (Dvd (v, va)) = (fn _ => simpfm (Dvd (v, va))) + | qelim (NDvd (v, va)) = (fn _ => simpfm (NDvd (v, va))) + | qelim (Closed v) = (fn _ => simpfm (Closed v)) + | qelim (NClosed v) = (fn _ => simpfm (NClosed v)); fun prep (E T) = T | prep (E F) = F @@ -787,1369 +2302,6 @@ | prep (Closed ap) = Closed ap | prep (NClosed aq) = NClosed aq; -fun conj p q = - (if equal_fm p F orelse equal_fm q F then F - else (if equal_fm p T then q - else (if equal_fm q T then p else And (p, q)))); - -fun disj p q = - (if equal_fm p T orelse equal_fm q T then T - else (if equal_fm p F then q else (if equal_fm q F then p else Or (p, q)))); - -fun nota (Not p) = p - | nota T = F - | nota F = T - | nota (Lt v) = Not (Lt v) - | nota (Le v) = Not (Le v) - | nota (Gt v) = Not (Gt v) - | nota (Ge v) = Not (Ge v) - | nota (Eq v) = Not (Eq v) - | nota (NEq v) = Not (NEq v) - | nota (Dvd (v, va)) = Not (Dvd (v, va)) - | nota (NDvd (v, va)) = Not (NDvd (v, va)) - | nota (And (v, va)) = Not (And (v, va)) - | nota (Or (v, va)) = Not (Or (v, va)) - | nota (Imp (v, va)) = Not (Imp (v, va)) - | nota (Iff (v, va)) = Not (Iff (v, va)) - | nota (E v) = Not (E v) - | nota (A v) = Not (A v) - | nota (Closed v) = Not (Closed v) - | nota (NClosed v) = Not (NClosed v); - -fun iffa p q = - (if equal_fm p q then T - else (if equal_fm p (nota q) orelse equal_fm (nota p) q then F - else (if equal_fm p F then nota q - else (if equal_fm q F then nota p - else (if equal_fm p T then q - else (if equal_fm q T then p - else Iff (p, q))))))); - -fun impa p q = - (if equal_fm p F orelse equal_fm q T then T - else (if equal_fm p T then q - else (if equal_fm q F then nota p else Imp (p, q)))); - -type 'a times = {times : 'a -> 'a -> 'a}; -val times = #times : 'a times -> 'a -> 'a -> 'a; - -type 'a dvd = {times_dvd : 'a times}; -val times_dvd = #times_dvd : 'a dvd -> 'a times; - -type 'a diva = {dvd_div : 'a dvd, diva : 'a -> 'a -> 'a, moda : 'a -> 'a -> 'a}; -val dvd_div = #dvd_div : 'a diva -> 'a dvd; -val diva = #diva : 'a diva -> 'a -> 'a -> 'a; -val moda = #moda : 'a diva -> 'a -> 'a -> 'a; - -type 'a zero = {zero : 'a}; -val zero = #zero : 'a zero -> 'a; - -type 'a no_zero_divisors = - {times_no_zero_divisors : 'a times, zero_no_zero_divisors : 'a zero}; -val times_no_zero_divisors = #times_no_zero_divisors : - 'a no_zero_divisors -> 'a times; -val zero_no_zero_divisors = #zero_no_zero_divisors : - 'a no_zero_divisors -> 'a zero; - -type 'a semigroup_mult = {times_semigroup_mult : 'a times}; -val times_semigroup_mult = #times_semigroup_mult : - 'a semigroup_mult -> 'a times; - -type 'a plus = {plus : 'a -> 'a -> 'a}; -val plus = #plus : 'a plus -> 'a -> 'a -> 'a; - -type 'a semigroup_add = {plus_semigroup_add : 'a plus}; -val plus_semigroup_add = #plus_semigroup_add : 'a semigroup_add -> 'a plus; - -type 'a ab_semigroup_add = {semigroup_add_ab_semigroup_add : 'a semigroup_add}; -val semigroup_add_ab_semigroup_add = #semigroup_add_ab_semigroup_add : - 'a ab_semigroup_add -> 'a semigroup_add; - -type 'a semiring = - {ab_semigroup_add_semiring : 'a ab_semigroup_add, - semigroup_mult_semiring : 'a semigroup_mult}; -val ab_semigroup_add_semiring = #ab_semigroup_add_semiring : - 'a semiring -> 'a ab_semigroup_add; -val semigroup_mult_semiring = #semigroup_mult_semiring : - 'a semiring -> 'a semigroup_mult; - -type 'a mult_zero = {times_mult_zero : 'a times, zero_mult_zero : 'a zero}; -val times_mult_zero = #times_mult_zero : 'a mult_zero -> 'a times; -val zero_mult_zero = #zero_mult_zero : 'a mult_zero -> 'a zero; - -type 'a monoid_add = - {semigroup_add_monoid_add : 'a semigroup_add, zero_monoid_add : 'a zero}; -val semigroup_add_monoid_add = #semigroup_add_monoid_add : - 'a monoid_add -> 'a semigroup_add; -val zero_monoid_add = #zero_monoid_add : 'a monoid_add -> 'a zero; - -type 'a comm_monoid_add = - {ab_semigroup_add_comm_monoid_add : 'a ab_semigroup_add, - monoid_add_comm_monoid_add : 'a monoid_add}; -val ab_semigroup_add_comm_monoid_add = #ab_semigroup_add_comm_monoid_add : - 'a comm_monoid_add -> 'a ab_semigroup_add; -val monoid_add_comm_monoid_add = #monoid_add_comm_monoid_add : - 'a comm_monoid_add -> 'a monoid_add; - -type 'a semiring_0 = - {comm_monoid_add_semiring_0 : 'a comm_monoid_add, - mult_zero_semiring_0 : 'a mult_zero, semiring_semiring_0 : 'a semiring}; -val comm_monoid_add_semiring_0 = #comm_monoid_add_semiring_0 : - 'a semiring_0 -> 'a comm_monoid_add; -val mult_zero_semiring_0 = #mult_zero_semiring_0 : - 'a semiring_0 -> 'a mult_zero; -val semiring_semiring_0 = #semiring_semiring_0 : 'a semiring_0 -> 'a semiring; - -type 'a one = {one : 'a}; -val one = #one : 'a one -> 'a; - -type 'a power = {one_power : 'a one, times_power : 'a times}; -val one_power = #one_power : 'a power -> 'a one; -val times_power = #times_power : 'a power -> 'a times; - -type 'a monoid_mult = - {semigroup_mult_monoid_mult : 'a semigroup_mult, - power_monoid_mult : 'a power}; -val semigroup_mult_monoid_mult = #semigroup_mult_monoid_mult : - 'a monoid_mult -> 'a semigroup_mult; -val power_monoid_mult = #power_monoid_mult : 'a monoid_mult -> 'a power; - -type 'a zero_neq_one = {one_zero_neq_one : 'a one, zero_zero_neq_one : 'a zero}; -val one_zero_neq_one = #one_zero_neq_one : 'a zero_neq_one -> 'a one; -val zero_zero_neq_one = #zero_zero_neq_one : 'a zero_neq_one -> 'a zero; - -type 'a semiring_1 = - {monoid_mult_semiring_1 : 'a monoid_mult, - semiring_0_semiring_1 : 'a semiring_0, - zero_neq_one_semiring_1 : 'a zero_neq_one}; -val monoid_mult_semiring_1 = #monoid_mult_semiring_1 : - 'a semiring_1 -> 'a monoid_mult; -val semiring_0_semiring_1 = #semiring_0_semiring_1 : - 'a semiring_1 -> 'a semiring_0; -val zero_neq_one_semiring_1 = #zero_neq_one_semiring_1 : - 'a semiring_1 -> 'a zero_neq_one; - -type 'a ab_semigroup_mult = - {semigroup_mult_ab_semigroup_mult : 'a semigroup_mult}; -val semigroup_mult_ab_semigroup_mult = #semigroup_mult_ab_semigroup_mult : - 'a ab_semigroup_mult -> 'a semigroup_mult; - -type 'a comm_semiring = - {ab_semigroup_mult_comm_semiring : 'a ab_semigroup_mult, - semiring_comm_semiring : 'a semiring}; -val ab_semigroup_mult_comm_semiring = #ab_semigroup_mult_comm_semiring : - 'a comm_semiring -> 'a ab_semigroup_mult; -val semiring_comm_semiring = #semiring_comm_semiring : - 'a comm_semiring -> 'a semiring; - -type 'a comm_semiring_0 = - {comm_semiring_comm_semiring_0 : 'a comm_semiring, - semiring_0_comm_semiring_0 : 'a semiring_0}; -val comm_semiring_comm_semiring_0 = #comm_semiring_comm_semiring_0 : - 'a comm_semiring_0 -> 'a comm_semiring; -val semiring_0_comm_semiring_0 = #semiring_0_comm_semiring_0 : - 'a comm_semiring_0 -> 'a semiring_0; - -type 'a comm_monoid_mult = - {ab_semigroup_mult_comm_monoid_mult : 'a ab_semigroup_mult, - monoid_mult_comm_monoid_mult : 'a monoid_mult}; -val ab_semigroup_mult_comm_monoid_mult = #ab_semigroup_mult_comm_monoid_mult : - 'a comm_monoid_mult -> 'a ab_semigroup_mult; -val monoid_mult_comm_monoid_mult = #monoid_mult_comm_monoid_mult : - 'a comm_monoid_mult -> 'a monoid_mult; - -type 'a comm_semiring_1 = - {comm_monoid_mult_comm_semiring_1 : 'a comm_monoid_mult, - comm_semiring_0_comm_semiring_1 : 'a comm_semiring_0, - dvd_comm_semiring_1 : 'a dvd, semiring_1_comm_semiring_1 : 'a semiring_1}; -val comm_monoid_mult_comm_semiring_1 = #comm_monoid_mult_comm_semiring_1 : - 'a comm_semiring_1 -> 'a comm_monoid_mult; -val comm_semiring_0_comm_semiring_1 = #comm_semiring_0_comm_semiring_1 : - 'a comm_semiring_1 -> 'a comm_semiring_0; -val dvd_comm_semiring_1 = #dvd_comm_semiring_1 : 'a comm_semiring_1 -> 'a dvd; -val semiring_1_comm_semiring_1 = #semiring_1_comm_semiring_1 : - 'a comm_semiring_1 -> 'a semiring_1; - -type 'a cancel_semigroup_add = - {semigroup_add_cancel_semigroup_add : 'a semigroup_add}; -val semigroup_add_cancel_semigroup_add = #semigroup_add_cancel_semigroup_add : - 'a cancel_semigroup_add -> 'a semigroup_add; - -type 'a cancel_ab_semigroup_add = - {ab_semigroup_add_cancel_ab_semigroup_add : 'a ab_semigroup_add, - cancel_semigroup_add_cancel_ab_semigroup_add : 'a cancel_semigroup_add}; -val ab_semigroup_add_cancel_ab_semigroup_add = - #ab_semigroup_add_cancel_ab_semigroup_add : - 'a cancel_ab_semigroup_add -> 'a ab_semigroup_add; -val cancel_semigroup_add_cancel_ab_semigroup_add = - #cancel_semigroup_add_cancel_ab_semigroup_add : - 'a cancel_ab_semigroup_add -> 'a cancel_semigroup_add; - -type 'a cancel_comm_monoid_add = - {cancel_ab_semigroup_add_cancel_comm_monoid_add : 'a cancel_ab_semigroup_add, - comm_monoid_add_cancel_comm_monoid_add : 'a comm_monoid_add}; -val cancel_ab_semigroup_add_cancel_comm_monoid_add = - #cancel_ab_semigroup_add_cancel_comm_monoid_add : - 'a cancel_comm_monoid_add -> 'a cancel_ab_semigroup_add; -val comm_monoid_add_cancel_comm_monoid_add = - #comm_monoid_add_cancel_comm_monoid_add : - 'a cancel_comm_monoid_add -> 'a comm_monoid_add; - -type 'a semiring_0_cancel = - {cancel_comm_monoid_add_semiring_0_cancel : 'a cancel_comm_monoid_add, - semiring_0_semiring_0_cancel : 'a semiring_0}; -val cancel_comm_monoid_add_semiring_0_cancel = - #cancel_comm_monoid_add_semiring_0_cancel : - 'a semiring_0_cancel -> 'a cancel_comm_monoid_add; -val semiring_0_semiring_0_cancel = #semiring_0_semiring_0_cancel : - 'a semiring_0_cancel -> 'a semiring_0; - -type 'a semiring_1_cancel = - {semiring_0_cancel_semiring_1_cancel : 'a semiring_0_cancel, - semiring_1_semiring_1_cancel : 'a semiring_1}; -val semiring_0_cancel_semiring_1_cancel = #semiring_0_cancel_semiring_1_cancel : - 'a semiring_1_cancel -> 'a semiring_0_cancel; -val semiring_1_semiring_1_cancel = #semiring_1_semiring_1_cancel : - 'a semiring_1_cancel -> 'a semiring_1; - -type 'a comm_semiring_0_cancel = - {comm_semiring_0_comm_semiring_0_cancel : 'a comm_semiring_0, - semiring_0_cancel_comm_semiring_0_cancel : 'a semiring_0_cancel}; -val comm_semiring_0_comm_semiring_0_cancel = - #comm_semiring_0_comm_semiring_0_cancel : - 'a comm_semiring_0_cancel -> 'a comm_semiring_0; -val semiring_0_cancel_comm_semiring_0_cancel = - #semiring_0_cancel_comm_semiring_0_cancel : - 'a comm_semiring_0_cancel -> 'a semiring_0_cancel; - -type 'a comm_semiring_1_cancel = - {comm_semiring_0_cancel_comm_semiring_1_cancel : 'a comm_semiring_0_cancel, - comm_semiring_1_comm_semiring_1_cancel : 'a comm_semiring_1, - semiring_1_cancel_comm_semiring_1_cancel : 'a semiring_1_cancel}; -val comm_semiring_0_cancel_comm_semiring_1_cancel = - #comm_semiring_0_cancel_comm_semiring_1_cancel : - 'a comm_semiring_1_cancel -> 'a comm_semiring_0_cancel; -val comm_semiring_1_comm_semiring_1_cancel = - #comm_semiring_1_comm_semiring_1_cancel : - 'a comm_semiring_1_cancel -> 'a comm_semiring_1; -val semiring_1_cancel_comm_semiring_1_cancel = - #semiring_1_cancel_comm_semiring_1_cancel : - 'a comm_semiring_1_cancel -> 'a semiring_1_cancel; - -type 'a semiring_div = - {div_semiring_div : 'a diva, - comm_semiring_1_cancel_semiring_div : 'a comm_semiring_1_cancel, - no_zero_divisors_semiring_div : 'a no_zero_divisors}; -val div_semiring_div = #div_semiring_div : 'a semiring_div -> 'a diva; -val comm_semiring_1_cancel_semiring_div = #comm_semiring_1_cancel_semiring_div : - 'a semiring_div -> 'a comm_semiring_1_cancel; -val no_zero_divisors_semiring_div = #no_zero_divisors_semiring_div : - 'a semiring_div -> 'a no_zero_divisors; - -fun dvd (A1_, A2_) a b = - eq A2_ (moda (div_semiring_div A1_) b a) - (zero ((zero_mult_zero o mult_zero_semiring_0 o semiring_0_semiring_1 o - semiring_1_comm_semiring_1 o - comm_semiring_1_comm_semiring_1_cancel o - comm_semiring_1_cancel_semiring_div) - A1_)); - -fun abs_int i = (if i < (0 : IntInf.int) then ~ i else i); - -val equal_int = {equal = (fn a => fn b => a = b)} : int equal; - -fun numadd (Cn (n1, c1, r1), Cn (n2, c2, r2)) = - (if n1 = n2 - then let - val c = c1 + c2; - in - (if c = (0 : IntInf.int) then numadd (r1, r2) - else Cn (n1, c, numadd (r1, r2))) - end - else (if n1 <= n2 - then Cn (n1, c1, numadd (r1, Add (Mul (c2, Bound n2), r2))) - else Cn (n2, c2, numadd (Add (Mul (c1, Bound n1), r1), r2)))) - | numadd (Cn (n1, c1, r1), C dd) = Cn (n1, c1, numadd (r1, C dd)) - | numadd (Cn (n1, c1, r1), Bound de) = Cn (n1, c1, numadd (r1, Bound de)) - | numadd (Cn (n1, c1, r1), Neg di) = Cn (n1, c1, numadd (r1, Neg di)) - | numadd (Cn (n1, c1, r1), Add (dj, dk)) = - Cn (n1, c1, numadd (r1, Add (dj, dk))) - | numadd (Cn (n1, c1, r1), Sub (dl, dm)) = - Cn (n1, c1, numadd (r1, Sub (dl, dm))) - | numadd (Cn (n1, c1, r1), Mul (dn, doa)) = - Cn (n1, c1, numadd (r1, Mul (dn, doa))) - | numadd (C w, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (C w, r2)) - | numadd (Bound x, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Bound x, r2)) - | numadd (Neg ac, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Neg ac, r2)) - | numadd (Add (ad, ae), Cn (n2, c2, r2)) = - Cn (n2, c2, numadd (Add (ad, ae), r2)) - | numadd (Sub (af, ag), Cn (n2, c2, r2)) = - Cn (n2, c2, numadd (Sub (af, ag), r2)) - | numadd (Mul (ah, ai), Cn (n2, c2, r2)) = - Cn (n2, c2, numadd (Mul (ah, ai), r2)) - | numadd (C b1, C b2) = C (b1 + b2) - | numadd (C aj, Bound bi) = Add (C aj, Bound bi) - | numadd (C aj, Neg bm) = Add (C aj, Neg bm) - | numadd (C aj, Add (bn, bo)) = Add (C aj, Add (bn, bo)) - | numadd (C aj, Sub (bp, bq)) = Add (C aj, Sub (bp, bq)) - | numadd (C aj, Mul (br, bs)) = Add (C aj, Mul (br, bs)) - | numadd (Bound ak, C cf) = Add (Bound ak, C cf) - | numadd (Bound ak, Bound cg) = Add (Bound ak, Bound cg) - | numadd (Bound ak, Neg ck) = Add (Bound ak, Neg ck) - | numadd (Bound ak, Add (cl, cm)) = Add (Bound ak, Add (cl, cm)) - | numadd (Bound ak, Sub (cn, co)) = Add (Bound ak, Sub (cn, co)) - | numadd (Bound ak, Mul (cp, cq)) = Add (Bound ak, Mul (cp, cq)) - | numadd (Neg ao, C en) = Add (Neg ao, C en) - | numadd (Neg ao, Bound eo) = Add (Neg ao, Bound eo) - | numadd (Neg ao, Neg et) = Add (Neg ao, Neg et) - | numadd (Neg ao, Add (eu, ev)) = Add (Neg ao, Add (eu, ev)) - | numadd (Neg ao, Sub (ew, ex)) = Add (Neg ao, Sub (ew, ex)) - | numadd (Neg ao, Mul (ey, ez)) = Add (Neg ao, Mul (ey, ez)) - | numadd (Add (ap, aq), C fm) = Add (Add (ap, aq), C fm) - | numadd (Add (ap, aq), Bound fna) = Add (Add (ap, aq), Bound fna) - | numadd (Add (ap, aq), Neg fr) = Add (Add (ap, aq), Neg fr) - | numadd (Add (ap, aq), Add (fs, ft)) = Add (Add (ap, aq), Add (fs, ft)) - | numadd (Add (ap, aq), Sub (fu, fv)) = Add (Add (ap, aq), Sub (fu, fv)) - | numadd (Add (ap, aq), Mul (fw, fx)) = Add (Add (ap, aq), Mul (fw, fx)) - | numadd (Sub (ar, asa), C gk) = Add (Sub (ar, asa), C gk) - | numadd (Sub (ar, asa), Bound gl) = Add (Sub (ar, asa), Bound gl) - | numadd (Sub (ar, asa), Neg gp) = Add (Sub (ar, asa), Neg gp) - | numadd (Sub (ar, asa), Add (gq, gr)) = Add (Sub (ar, asa), Add (gq, gr)) - | numadd (Sub (ar, asa), Sub (gs, gt)) = Add (Sub (ar, asa), Sub (gs, gt)) - | numadd (Sub (ar, asa), Mul (gu, gv)) = Add (Sub (ar, asa), Mul (gu, gv)) - | numadd (Mul (at, au), C hi) = Add (Mul (at, au), C hi) - | numadd (Mul (at, au), Bound hj) = Add (Mul (at, au), Bound hj) - | numadd (Mul (at, au), Neg hn) = Add (Mul (at, au), Neg hn) - | numadd (Mul (at, au), Add (ho, hp)) = Add (Mul (at, au), Add (ho, hp)) - | numadd (Mul (at, au), Sub (hq, hr)) = Add (Mul (at, au), Sub (hq, hr)) - | numadd (Mul (at, au), Mul (hs, ht)) = Add (Mul (at, au), Mul (hs, ht)); - -fun nummul i (C j) = C (i * j) - | nummul i (Cn (n, c, t)) = Cn (n, c * i, nummul i t) - | nummul i (Bound v) = Mul (i, Bound v) - | nummul i (Neg v) = Mul (i, Neg v) - | nummul i (Add (v, va)) = Mul (i, Add (v, va)) - | nummul i (Sub (v, va)) = Mul (i, Sub (v, va)) - | nummul i (Mul (v, va)) = Mul (i, Mul (v, va)); - -fun numneg t = nummul (~ (1 : IntInf.int)) t; - -fun numsub s t = - (if equal_numa s t then C (0 : IntInf.int) else numadd (s, numneg t)); - -fun simpnum (C j) = C j - | simpnum (Bound n) = Cn (n, (1 : IntInf.int), C (0 : IntInf.int)) - | simpnum (Neg t) = numneg (simpnum t) - | simpnum (Add (t, s)) = numadd (simpnum t, simpnum s) - | simpnum (Sub (t, s)) = numsub (simpnum t) (simpnum s) - | simpnum (Mul (i, t)) = - (if i = (0 : IntInf.int) then C (0 : IntInf.int) else nummul i (simpnum t)) - | simpnum (Cn (v, va, vb)) = Cn (v, va, vb); - -val one_inta : int = (1 : IntInf.int); - -val zero_inta : int = (0 : IntInf.int); - -val times_int = {times = (fn a => fn b => a * b)} : int times; - -val dvd_int = {times_dvd = times_int} : int dvd; - -fun fst (a, b) = a; - -fun sgn_int i = - (if i = (0 : IntInf.int) then (0 : IntInf.int) - else (if (0 : IntInf.int) < i then (1 : IntInf.int) - else ~ (1 : IntInf.int))); - -fun apsnd f (x, y) = (x, f y); - -fun divmod_int k l = - (if k = (0 : IntInf.int) then ((0 : IntInf.int), (0 : IntInf.int)) - else (if l = (0 : IntInf.int) then ((0 : IntInf.int), k) - else apsnd (fn a => sgn_int l * a) - (if sgn_int k = sgn_int l then Integer.div_mod (abs k) (abs l) - else let - val (r, s) = Integer.div_mod (abs k) (abs l); - in - (if s = (0 : IntInf.int) then (~ r, (0 : IntInf.int)) - else (~ r - (1 : IntInf.int), abs_int l - s)) - end))); - -fun div_inta a b = fst (divmod_int a b); - -fun snd (a, b) = b; - -fun mod_int a b = snd (divmod_int a b); - -val div_int = {dvd_div = dvd_int, diva = div_inta, moda = mod_int} : int diva; - -val zero_int = {zero = zero_inta} : int zero; - -val no_zero_divisors_int = - {times_no_zero_divisors = times_int, zero_no_zero_divisors = zero_int} : - int no_zero_divisors; - -val semigroup_mult_int = {times_semigroup_mult = times_int} : - int semigroup_mult; - -val plus_int = {plus = (fn a => fn b => a + b)} : int plus; - -val semigroup_add_int = {plus_semigroup_add = plus_int} : int semigroup_add; - -val ab_semigroup_add_int = {semigroup_add_ab_semigroup_add = semigroup_add_int} - : int ab_semigroup_add; - -val semiring_int = - {ab_semigroup_add_semiring = ab_semigroup_add_int, - semigroup_mult_semiring = semigroup_mult_int} - : int semiring; - -val mult_zero_int = {times_mult_zero = times_int, zero_mult_zero = zero_int} : - int mult_zero; - -val monoid_add_int = - {semigroup_add_monoid_add = semigroup_add_int, zero_monoid_add = zero_int} : - int monoid_add; - -val comm_monoid_add_int = - {ab_semigroup_add_comm_monoid_add = ab_semigroup_add_int, - monoid_add_comm_monoid_add = monoid_add_int} - : int comm_monoid_add; - -val semiring_0_int = - {comm_monoid_add_semiring_0 = comm_monoid_add_int, - mult_zero_semiring_0 = mult_zero_int, semiring_semiring_0 = semiring_int} - : int semiring_0; - -val one_int = {one = one_inta} : int one; - -val power_int = {one_power = one_int, times_power = times_int} : int power; - -val monoid_mult_int = - {semigroup_mult_monoid_mult = semigroup_mult_int, - power_monoid_mult = power_int} - : int monoid_mult; - -val zero_neq_one_int = - {one_zero_neq_one = one_int, zero_zero_neq_one = zero_int} : int zero_neq_one; - -val semiring_1_int = - {monoid_mult_semiring_1 = monoid_mult_int, - semiring_0_semiring_1 = semiring_0_int, - zero_neq_one_semiring_1 = zero_neq_one_int} - : int semiring_1; - -val ab_semigroup_mult_int = - {semigroup_mult_ab_semigroup_mult = semigroup_mult_int} : - int ab_semigroup_mult; - -val comm_semiring_int = - {ab_semigroup_mult_comm_semiring = ab_semigroup_mult_int, - semiring_comm_semiring = semiring_int} - : int comm_semiring; - -val comm_semiring_0_int = - {comm_semiring_comm_semiring_0 = comm_semiring_int, - semiring_0_comm_semiring_0 = semiring_0_int} - : int comm_semiring_0; - -val comm_monoid_mult_int = - {ab_semigroup_mult_comm_monoid_mult = ab_semigroup_mult_int, - monoid_mult_comm_monoid_mult = monoid_mult_int} - : int comm_monoid_mult; - -val comm_semiring_1_int = - {comm_monoid_mult_comm_semiring_1 = comm_monoid_mult_int, - comm_semiring_0_comm_semiring_1 = comm_semiring_0_int, - dvd_comm_semiring_1 = dvd_int, semiring_1_comm_semiring_1 = semiring_1_int} - : int comm_semiring_1; - -val cancel_semigroup_add_int = - {semigroup_add_cancel_semigroup_add = semigroup_add_int} : - int cancel_semigroup_add; - -val cancel_ab_semigroup_add_int = - {ab_semigroup_add_cancel_ab_semigroup_add = ab_semigroup_add_int, - cancel_semigroup_add_cancel_ab_semigroup_add = cancel_semigroup_add_int} - : int cancel_ab_semigroup_add; - -val cancel_comm_monoid_add_int = - {cancel_ab_semigroup_add_cancel_comm_monoid_add = cancel_ab_semigroup_add_int, - comm_monoid_add_cancel_comm_monoid_add = comm_monoid_add_int} - : int cancel_comm_monoid_add; - -val semiring_0_cancel_int = - {cancel_comm_monoid_add_semiring_0_cancel = cancel_comm_monoid_add_int, - semiring_0_semiring_0_cancel = semiring_0_int} - : int semiring_0_cancel; - -val semiring_1_cancel_int = - {semiring_0_cancel_semiring_1_cancel = semiring_0_cancel_int, - semiring_1_semiring_1_cancel = semiring_1_int} - : int semiring_1_cancel; - -val comm_semiring_0_cancel_int = - {comm_semiring_0_comm_semiring_0_cancel = comm_semiring_0_int, - semiring_0_cancel_comm_semiring_0_cancel = semiring_0_cancel_int} - : int comm_semiring_0_cancel; - -val comm_semiring_1_cancel_int = - {comm_semiring_0_cancel_comm_semiring_1_cancel = comm_semiring_0_cancel_int, - comm_semiring_1_comm_semiring_1_cancel = comm_semiring_1_int, - semiring_1_cancel_comm_semiring_1_cancel = semiring_1_cancel_int} - : int comm_semiring_1_cancel; - -val semiring_div_int = - {div_semiring_div = div_int, - comm_semiring_1_cancel_semiring_div = comm_semiring_1_cancel_int, - no_zero_divisors_semiring_div = no_zero_divisors_int} - : int semiring_div; - -fun simpfm (And (p, q)) = conj (simpfm p) (simpfm q) - | simpfm (Or (p, q)) = disj (simpfm p) (simpfm q) - | simpfm (Imp (p, q)) = impa (simpfm p) (simpfm q) - | simpfm (Iff (p, q)) = iffa (simpfm p) (simpfm q) - | simpfm (Not p) = nota (simpfm p) - | simpfm (Lt a) = - let - val aa = simpnum a; - in - (case aa of C v => (if v < (0 : IntInf.int) then T else F) - | Bound _ => Lt aa | Cn (_, _, _) => Lt aa | Neg _ => Lt aa - | Add (_, _) => Lt aa | Sub (_, _) => Lt aa | Mul (_, _) => Lt aa) - end - | simpfm (Le a) = - let - val aa = simpnum a; - in - (case aa of C v => (if v <= (0 : IntInf.int) then T else F) - | Bound _ => Le aa | Cn (_, _, _) => Le aa | Neg _ => Le aa - | Add (_, _) => Le aa | Sub (_, _) => Le aa | Mul (_, _) => Le aa) - end - | simpfm (Gt a) = - let - val aa = simpnum a; - in - (case aa of C v => (if (0 : IntInf.int) < v then T else F) - | Bound _ => Gt aa | Cn (_, _, _) => Gt aa | Neg _ => Gt aa - | Add (_, _) => Gt aa | Sub (_, _) => Gt aa | Mul (_, _) => Gt aa) - end - | simpfm (Ge a) = - let - val aa = simpnum a; - in - (case aa of C v => (if (0 : IntInf.int) <= v then T else F) - | Bound _ => Ge aa | Cn (_, _, _) => Ge aa | Neg _ => Ge aa - | Add (_, _) => Ge aa | Sub (_, _) => Ge aa | Mul (_, _) => Ge aa) - end - | simpfm (Eq a) = - let - val aa = simpnum a; - in - (case aa of C v => (if v = (0 : IntInf.int) then T else F) - | Bound _ => Eq aa | Cn (_, _, _) => Eq aa | Neg _ => Eq aa - | Add (_, _) => Eq aa | Sub (_, _) => Eq aa | Mul (_, _) => Eq aa) - end - | simpfm (NEq a) = - let - val aa = simpnum a; - in - (case aa of C v => (if not (v = (0 : IntInf.int)) then T else F) - | Bound _ => NEq aa | Cn (_, _, _) => NEq aa | Neg _ => NEq aa - | Add (_, _) => NEq aa | Sub (_, _) => NEq aa | Mul (_, _) => NEq aa) - end - | simpfm (Dvd (i, a)) = - (if i = (0 : IntInf.int) then simpfm (Eq a) - else (if abs_int i = (1 : IntInf.int) then T - else let - val aa = simpnum a; - in - (case aa - of C v => - (if dvd (semiring_div_int, equal_int) i v then T else F) - | Bound _ => Dvd (i, aa) | Cn (_, _, _) => Dvd (i, aa) - | Neg _ => Dvd (i, aa) | Add (_, _) => Dvd (i, aa) - | Sub (_, _) => Dvd (i, aa) | Mul (_, _) => Dvd (i, aa)) - end)) - | simpfm (NDvd (i, a)) = - (if i = (0 : IntInf.int) then simpfm (NEq a) - else (if abs_int i = (1 : IntInf.int) then F - else let - val aa = simpnum a; - in - (case aa - of C v => - (if not (dvd (semiring_div_int, equal_int) i v) then T - else F) - | Bound _ => NDvd (i, aa) | Cn (_, _, _) => NDvd (i, aa) - | Neg _ => NDvd (i, aa) | Add (_, _) => NDvd (i, aa) - | Sub (_, _) => NDvd (i, aa) | Mul (_, _) => NDvd (i, aa)) - end)) - | simpfm T = T - | simpfm F = F - | simpfm (E v) = E v - | simpfm (A v) = A v - | simpfm (Closed v) = Closed v - | simpfm (NClosed v) = NClosed v; - -fun qelim (E p) = (fn qe => dj qe (qelim p qe)) - | qelim (A p) = (fn qe => nota (qe (qelim (Not p) qe))) - | qelim (Not p) = (fn qe => nota (qelim p qe)) - | qelim (And (p, q)) = (fn qe => conj (qelim p qe) (qelim q qe)) - | qelim (Or (p, q)) = (fn qe => disj (qelim p qe) (qelim q qe)) - | qelim (Imp (p, q)) = (fn qe => impa (qelim p qe) (qelim q qe)) - | qelim (Iff (p, q)) = (fn qe => iffa (qelim p qe) (qelim q qe)) - | qelim T = (fn _ => simpfm T) - | qelim F = (fn _ => simpfm F) - | qelim (Lt v) = (fn _ => simpfm (Lt v)) - | qelim (Le v) = (fn _ => simpfm (Le v)) - | qelim (Gt v) = (fn _ => simpfm (Gt v)) - | qelim (Ge v) = (fn _ => simpfm (Ge v)) - | qelim (Eq v) = (fn _ => simpfm (Eq v)) - | qelim (NEq v) = (fn _ => simpfm (NEq v)) - | qelim (Dvd (v, va)) = (fn _ => simpfm (Dvd (v, va))) - | qelim (NDvd (v, va)) = (fn _ => simpfm (NDvd (v, va))) - | qelim (Closed v) = (fn _ => simpfm (Closed v)) - | qelim (NClosed v) = (fn _ => simpfm (NClosed v)); - -fun maps f [] = [] - | maps f (x :: xs) = f x @ maps f xs; - -fun uptoa i j = (if i <= j then i :: uptoa (i + (1 : IntInf.int)) j else []); - -fun minus_nat n m = Integer.max (n - m) 0; - -fun decrnum (Bound n) = Bound (minus_nat n (1 : IntInf.int)) - | decrnum (Neg a) = Neg (decrnum a) - | decrnum (Add (a, b)) = Add (decrnum a, decrnum b) - | decrnum (Sub (a, b)) = Sub (decrnum a, decrnum b) - | decrnum (Mul (c, a)) = Mul (c, decrnum a) - | decrnum (Cn (n, i, a)) = Cn (minus_nat n (1 : IntInf.int), i, decrnum a) - | decrnum (C v) = C v; - -fun decr (Lt a) = Lt (decrnum a) - | decr (Le a) = Le (decrnum a) - | decr (Gt a) = Gt (decrnum a) - | decr (Ge a) = Ge (decrnum a) - | decr (Eq a) = Eq (decrnum a) - | decr (NEq a) = NEq (decrnum a) - | decr (Dvd (i, a)) = Dvd (i, decrnum a) - | decr (NDvd (i, a)) = NDvd (i, decrnum a) - | decr (Not p) = Not (decr p) - | decr (And (p, q)) = And (decr p, decr q) - | decr (Or (p, q)) = Or (decr p, decr q) - | decr (Imp (p, q)) = Imp (decr p, decr q) - | decr (Iff (p, q)) = Iff (decr p, decr q) - | decr T = T - | decr F = F - | decr (E v) = E v - | decr (A v) = A v - | decr (Closed v) = Closed v - | decr (NClosed v) = NClosed v; - -fun beta (And (p, q)) = beta p @ beta q - | beta (Or (p, q)) = beta p @ beta q - | beta T = [] - | beta F = [] - | beta (Lt (C bo)) = [] - | beta (Lt (Bound bp)) = [] - | beta (Lt (Neg bt)) = [] - | beta (Lt (Add (bu, bv))) = [] - | beta (Lt (Sub (bw, bx))) = [] - | beta (Lt (Mul (by, bz))) = [] - | beta (Le (C co)) = [] - | beta (Le (Bound cp)) = [] - | beta (Le (Neg ct)) = [] - | beta (Le (Add (cu, cv))) = [] - | beta (Le (Sub (cw, cx))) = [] - | beta (Le (Mul (cy, cz))) = [] - | beta (Gt (C doa)) = [] - | beta (Gt (Bound dp)) = [] - | beta (Gt (Neg dt)) = [] - | beta (Gt (Add (du, dv))) = [] - | beta (Gt (Sub (dw, dx))) = [] - | beta (Gt (Mul (dy, dz))) = [] - | beta (Ge (C eo)) = [] - | beta (Ge (Bound ep)) = [] - | beta (Ge (Neg et)) = [] - | beta (Ge (Add (eu, ev))) = [] - | beta (Ge (Sub (ew, ex))) = [] - | beta (Ge (Mul (ey, ez))) = [] - | beta (Eq (C fo)) = [] - | beta (Eq (Bound fp)) = [] - | beta (Eq (Neg ft)) = [] - | beta (Eq (Add (fu, fv))) = [] - | beta (Eq (Sub (fw, fx))) = [] - | beta (Eq (Mul (fy, fz))) = [] - | beta (NEq (C go)) = [] - | beta (NEq (Bound gp)) = [] - | beta (NEq (Neg gt)) = [] - | beta (NEq (Add (gu, gv))) = [] - | beta (NEq (Sub (gw, gx))) = [] - | beta (NEq (Mul (gy, gz))) = [] - | beta (Dvd (aa, ab)) = [] - | beta (NDvd (ac, ad)) = [] - | beta (Not ae) = [] - | beta (Imp (aj, ak)) = [] - | beta (Iff (al, am)) = [] - | beta (E an) = [] - | beta (A ao) = [] - | beta (Closed ap) = [] - | beta (NClosed aq) = [] - | beta (Lt (Cn (cm, c, e))) = (if cm = (0 : IntInf.int) then [] else []) - | beta (Le (Cn (dm, c, e))) = (if dm = (0 : IntInf.int) then [] else []) - | beta (Gt (Cn (em, c, e))) = (if em = (0 : IntInf.int) then [Neg e] else []) - | beta (Ge (Cn (fm, c, e))) = - (if fm = (0 : IntInf.int) then [Sub (C (~1 : IntInf.int), e)] else []) - | beta (Eq (Cn (gm, c, e))) = - (if gm = (0 : IntInf.int) then [Sub (C (~1 : IntInf.int), e)] else []) - | beta (NEq (Cn (hm, c, e))) = - (if hm = (0 : IntInf.int) then [Neg e] else []); - -fun gcd_int k l = - abs_int - (if l = (0 : IntInf.int) then k - else gcd_int l (mod_int (abs_int k) (abs_int l))); - -fun lcm_int a b = div_inta (abs_int a * abs_int b) (gcd_int a b); - -fun zeta (And (p, q)) = lcm_int (zeta p) (zeta q) - | zeta (Or (p, q)) = lcm_int (zeta p) (zeta q) - | zeta T = (1 : IntInf.int) - | zeta F = (1 : IntInf.int) - | zeta (Lt (C bo)) = (1 : IntInf.int) - | zeta (Lt (Bound bp)) = (1 : IntInf.int) - | zeta (Lt (Neg bt)) = (1 : IntInf.int) - | zeta (Lt (Add (bu, bv))) = (1 : IntInf.int) - | zeta (Lt (Sub (bw, bx))) = (1 : IntInf.int) - | zeta (Lt (Mul (by, bz))) = (1 : IntInf.int) - | zeta (Le (C co)) = (1 : IntInf.int) - | zeta (Le (Bound cp)) = (1 : IntInf.int) - | zeta (Le (Neg ct)) = (1 : IntInf.int) - | zeta (Le (Add (cu, cv))) = (1 : IntInf.int) - | zeta (Le (Sub (cw, cx))) = (1 : IntInf.int) - | zeta (Le (Mul (cy, cz))) = (1 : IntInf.int) - | zeta (Gt (C doa)) = (1 : IntInf.int) - | zeta (Gt (Bound dp)) = (1 : IntInf.int) - | zeta (Gt (Neg dt)) = (1 : IntInf.int) - | zeta (Gt (Add (du, dv))) = (1 : IntInf.int) - | zeta (Gt (Sub (dw, dx))) = (1 : IntInf.int) - | zeta (Gt (Mul (dy, dz))) = (1 : IntInf.int) - | zeta (Ge (C eo)) = (1 : IntInf.int) - | zeta (Ge (Bound ep)) = (1 : IntInf.int) - | zeta (Ge (Neg et)) = (1 : IntInf.int) - | zeta (Ge (Add (eu, ev))) = (1 : IntInf.int) - | zeta (Ge (Sub (ew, ex))) = (1 : IntInf.int) - | zeta (Ge (Mul (ey, ez))) = (1 : IntInf.int) - | zeta (Eq (C fo)) = (1 : IntInf.int) - | zeta (Eq (Bound fp)) = (1 : IntInf.int) - | zeta (Eq (Neg ft)) = (1 : IntInf.int) - | zeta (Eq (Add (fu, fv))) = (1 : IntInf.int) - | zeta (Eq (Sub (fw, fx))) = (1 : IntInf.int) - | zeta (Eq (Mul (fy, fz))) = (1 : IntInf.int) - | zeta (NEq (C go)) = (1 : IntInf.int) - | zeta (NEq (Bound gp)) = (1 : IntInf.int) - | zeta (NEq (Neg gt)) = (1 : IntInf.int) - | zeta (NEq (Add (gu, gv))) = (1 : IntInf.int) - | zeta (NEq (Sub (gw, gx))) = (1 : IntInf.int) - | zeta (NEq (Mul (gy, gz))) = (1 : IntInf.int) - | zeta (Dvd (aa, C ho)) = (1 : IntInf.int) - | zeta (Dvd (aa, Bound hp)) = (1 : IntInf.int) - | zeta (Dvd (aa, Neg ht)) = (1 : IntInf.int) - | zeta (Dvd (aa, Add (hu, hv))) = (1 : IntInf.int) - | zeta (Dvd (aa, Sub (hw, hx))) = (1 : IntInf.int) - | zeta (Dvd (aa, Mul (hy, hz))) = (1 : IntInf.int) - | zeta (NDvd (ac, C io)) = (1 : IntInf.int) - | zeta (NDvd (ac, Bound ip)) = (1 : IntInf.int) - | zeta (NDvd (ac, Neg it)) = (1 : IntInf.int) - | zeta (NDvd (ac, Add (iu, iv))) = (1 : IntInf.int) - | zeta (NDvd (ac, Sub (iw, ix))) = (1 : IntInf.int) - | zeta (NDvd (ac, Mul (iy, iz))) = (1 : IntInf.int) - | zeta (Not ae) = (1 : IntInf.int) - | zeta (Imp (aj, ak)) = (1 : IntInf.int) - | zeta (Iff (al, am)) = (1 : IntInf.int) - | zeta (E an) = (1 : IntInf.int) - | zeta (A ao) = (1 : IntInf.int) - | zeta (Closed ap) = (1 : IntInf.int) - | zeta (NClosed aq) = (1 : IntInf.int) - | zeta (Lt (Cn (cm, c, e))) = - (if cm = (0 : IntInf.int) then c else (1 : IntInf.int)) - | zeta (Le (Cn (dm, c, e))) = - (if dm = (0 : IntInf.int) then c else (1 : IntInf.int)) - | zeta (Gt (Cn (em, c, e))) = - (if em = (0 : IntInf.int) then c else (1 : IntInf.int)) - | zeta (Ge (Cn (fm, c, e))) = - (if fm = (0 : IntInf.int) then c else (1 : IntInf.int)) - | zeta (Eq (Cn (gm, c, e))) = - (if gm = (0 : IntInf.int) then c else (1 : IntInf.int)) - | zeta (NEq (Cn (hm, c, e))) = - (if hm = (0 : IntInf.int) then c else (1 : IntInf.int)) - | zeta (Dvd (i, Cn (im, c, e))) = - (if im = (0 : IntInf.int) then c else (1 : IntInf.int)) - | zeta (NDvd (i, Cn (jm, c, e))) = - (if jm = (0 : IntInf.int) then c else (1 : IntInf.int)); - -fun zsplit0 (C c) = ((0 : IntInf.int), C c) - | zsplit0 (Bound n) = - (if n = (0 : IntInf.int) then ((1 : IntInf.int), C (0 : IntInf.int)) - else ((0 : IntInf.int), Bound n)) - | zsplit0 (Cn (n, i, a)) = - let - val (ia, aa) = zsplit0 a; - in - (if n = (0 : IntInf.int) then (i + ia, aa) else (ia, Cn (n, i, aa))) - end - | zsplit0 (Neg a) = let - val (i, aa) = zsplit0 a; - in - (~ i, Neg aa) - end - | zsplit0 (Add (a, b)) = - let - val (ia, aa) = zsplit0 a; - val (ib, ba) = zsplit0 b; - in - (ia + ib, Add (aa, ba)) - end - | zsplit0 (Sub (a, b)) = - let - val (ia, aa) = zsplit0 a; - val (ib, ba) = zsplit0 b; - in - (ia - ib, Sub (aa, ba)) - end - | zsplit0 (Mul (i, a)) = - let - val (ia, aa) = zsplit0 a; - in - (i * ia, Mul (i, aa)) - end; - -fun zlfm (And (p, q)) = And (zlfm p, zlfm q) - | zlfm (Or (p, q)) = Or (zlfm p, zlfm q) - | zlfm (Imp (p, q)) = Or (zlfm (Not p), zlfm q) - | zlfm (Iff (p, q)) = - Or (And (zlfm p, zlfm q), And (zlfm (Not p), zlfm (Not q))) - | zlfm (Lt a) = - let - val (c, r) = zsplit0 a; - in - (if c = (0 : IntInf.int) then Lt r - else (if (0 : IntInf.int) < c then Lt (Cn ((0 : IntInf.int), c, r)) - else Gt (Cn ((0 : IntInf.int), ~ c, Neg r)))) - end - | zlfm (Le a) = - let - val (c, r) = zsplit0 a; - in - (if c = (0 : IntInf.int) then Le r - else (if (0 : IntInf.int) < c then Le (Cn ((0 : IntInf.int), c, r)) - else Ge (Cn ((0 : IntInf.int), ~ c, Neg r)))) - end - | zlfm (Gt a) = - let - val (c, r) = zsplit0 a; - in - (if c = (0 : IntInf.int) then Gt r - else (if (0 : IntInf.int) < c then Gt (Cn ((0 : IntInf.int), c, r)) - else Lt (Cn ((0 : IntInf.int), ~ c, Neg r)))) - end - | zlfm (Ge a) = - let - val (c, r) = zsplit0 a; - in - (if c = (0 : IntInf.int) then Ge r - else (if (0 : IntInf.int) < c then Ge (Cn ((0 : IntInf.int), c, r)) - else Le (Cn ((0 : IntInf.int), ~ c, Neg r)))) - end - | zlfm (Eq a) = - let - val (c, r) = zsplit0 a; - in - (if c = (0 : IntInf.int) then Eq r - else (if (0 : IntInf.int) < c then Eq (Cn ((0 : IntInf.int), c, r)) - else Eq (Cn ((0 : IntInf.int), ~ c, Neg r)))) - end - | zlfm (NEq a) = - let - val (c, r) = zsplit0 a; - in - (if c = (0 : IntInf.int) then NEq r - else (if (0 : IntInf.int) < c then NEq (Cn ((0 : IntInf.int), c, r)) - else NEq (Cn ((0 : IntInf.int), ~ c, Neg r)))) - end - | zlfm (Dvd (i, a)) = - (if i = (0 : IntInf.int) then zlfm (Eq a) - else let - val (c, r) = zsplit0 a; - in - (if c = (0 : IntInf.int) then Dvd (abs_int i, r) - else (if (0 : IntInf.int) < c - then Dvd (abs_int i, Cn ((0 : IntInf.int), c, r)) - else Dvd (abs_int i, Cn ((0 : IntInf.int), ~ c, Neg r)))) - end) - | zlfm (NDvd (i, a)) = - (if i = (0 : IntInf.int) then zlfm (NEq a) - else let - val (c, r) = zsplit0 a; - in - (if c = (0 : IntInf.int) then NDvd (abs_int i, r) - else (if (0 : IntInf.int) < c - then NDvd (abs_int i, Cn ((0 : IntInf.int), c, r)) - else NDvd (abs_int i, Cn ((0 : IntInf.int), ~ c, Neg r)))) - end) - | zlfm (Not (And (p, q))) = Or (zlfm (Not p), zlfm (Not q)) - | zlfm (Not (Or (p, q))) = And (zlfm (Not p), zlfm (Not q)) - | zlfm (Not (Imp (p, q))) = And (zlfm p, zlfm (Not q)) - | zlfm (Not (Iff (p, q))) = - Or (And (zlfm p, zlfm (Not q)), And (zlfm (Not p), zlfm q)) - | zlfm (Not (Not p)) = zlfm p - | zlfm (Not T) = F - | zlfm (Not F) = T - | zlfm (Not (Lt a)) = zlfm (Ge a) - | zlfm (Not (Le a)) = zlfm (Gt a) - | zlfm (Not (Gt a)) = zlfm (Le a) - | zlfm (Not (Ge a)) = zlfm (Lt a) - | zlfm (Not (Eq a)) = zlfm (NEq a) - | zlfm (Not (NEq a)) = zlfm (Eq a) - | zlfm (Not (Dvd (i, a))) = zlfm (NDvd (i, a)) - | zlfm (Not (NDvd (i, a))) = zlfm (Dvd (i, a)) - | zlfm (Not (Closed p)) = NClosed p - | zlfm (Not (NClosed p)) = Closed p - | zlfm T = T - | zlfm F = F - | zlfm (Not (E ci)) = Not (E ci) - | zlfm (Not (A cj)) = Not (A cj) - | zlfm (E ao) = E ao - | zlfm (A ap) = A ap - | zlfm (Closed aq) = Closed aq - | zlfm (NClosed ar) = NClosed ar; - -fun alpha (And (p, q)) = alpha p @ alpha q - | alpha (Or (p, q)) = alpha p @ alpha q - | alpha T = [] - | alpha F = [] - | alpha (Lt (C bo)) = [] - | alpha (Lt (Bound bp)) = [] - | alpha (Lt (Neg bt)) = [] - | alpha (Lt (Add (bu, bv))) = [] - | alpha (Lt (Sub (bw, bx))) = [] - | alpha (Lt (Mul (by, bz))) = [] - | alpha (Le (C co)) = [] - | alpha (Le (Bound cp)) = [] - | alpha (Le (Neg ct)) = [] - | alpha (Le (Add (cu, cv))) = [] - | alpha (Le (Sub (cw, cx))) = [] - | alpha (Le (Mul (cy, cz))) = [] - | alpha (Gt (C doa)) = [] - | alpha (Gt (Bound dp)) = [] - | alpha (Gt (Neg dt)) = [] - | alpha (Gt (Add (du, dv))) = [] - | alpha (Gt (Sub (dw, dx))) = [] - | alpha (Gt (Mul (dy, dz))) = [] - | alpha (Ge (C eo)) = [] - | alpha (Ge (Bound ep)) = [] - | alpha (Ge (Neg et)) = [] - | alpha (Ge (Add (eu, ev))) = [] - | alpha (Ge (Sub (ew, ex))) = [] - | alpha (Ge (Mul (ey, ez))) = [] - | alpha (Eq (C fo)) = [] - | alpha (Eq (Bound fp)) = [] - | alpha (Eq (Neg ft)) = [] - | alpha (Eq (Add (fu, fv))) = [] - | alpha (Eq (Sub (fw, fx))) = [] - | alpha (Eq (Mul (fy, fz))) = [] - | alpha (NEq (C go)) = [] - | alpha (NEq (Bound gp)) = [] - | alpha (NEq (Neg gt)) = [] - | alpha (NEq (Add (gu, gv))) = [] - | alpha (NEq (Sub (gw, gx))) = [] - | alpha (NEq (Mul (gy, gz))) = [] - | alpha (Dvd (aa, ab)) = [] - | alpha (NDvd (ac, ad)) = [] - | alpha (Not ae) = [] - | alpha (Imp (aj, ak)) = [] - | alpha (Iff (al, am)) = [] - | alpha (E an) = [] - | alpha (A ao) = [] - | alpha (Closed ap) = [] - | alpha (NClosed aq) = [] - | alpha (Lt (Cn (cm, c, e))) = (if cm = (0 : IntInf.int) then [e] else []) - | alpha (Le (Cn (dm, c, e))) = - (if dm = (0 : IntInf.int) then [Add (C (~1 : IntInf.int), e)] else []) - | alpha (Gt (Cn (em, c, e))) = (if em = (0 : IntInf.int) then [] else []) - | alpha (Ge (Cn (fm, c, e))) = (if fm = (0 : IntInf.int) then [] else []) - | alpha (Eq (Cn (gm, c, e))) = - (if gm = (0 : IntInf.int) then [Add (C (~1 : IntInf.int), e)] else []) - | alpha (NEq (Cn (hm, c, e))) = (if hm = (0 : IntInf.int) then [e] else []); - -fun delta (And (p, q)) = lcm_int (delta p) (delta q) - | delta (Or (p, q)) = lcm_int (delta p) (delta q) - | delta T = (1 : IntInf.int) - | delta F = (1 : IntInf.int) - | delta (Lt u) = (1 : IntInf.int) - | delta (Le v) = (1 : IntInf.int) - | delta (Gt w) = (1 : IntInf.int) - | delta (Ge x) = (1 : IntInf.int) - | delta (Eq y) = (1 : IntInf.int) - | delta (NEq z) = (1 : IntInf.int) - | delta (Dvd (aa, C bo)) = (1 : IntInf.int) - | delta (Dvd (aa, Bound bp)) = (1 : IntInf.int) - | delta (Dvd (aa, Neg bt)) = (1 : IntInf.int) - | delta (Dvd (aa, Add (bu, bv))) = (1 : IntInf.int) - | delta (Dvd (aa, Sub (bw, bx))) = (1 : IntInf.int) - | delta (Dvd (aa, Mul (by, bz))) = (1 : IntInf.int) - | delta (NDvd (ac, C co)) = (1 : IntInf.int) - | delta (NDvd (ac, Bound cp)) = (1 : IntInf.int) - | delta (NDvd (ac, Neg ct)) = (1 : IntInf.int) - | delta (NDvd (ac, Add (cu, cv))) = (1 : IntInf.int) - | delta (NDvd (ac, Sub (cw, cx))) = (1 : IntInf.int) - | delta (NDvd (ac, Mul (cy, cz))) = (1 : IntInf.int) - | delta (Not ae) = (1 : IntInf.int) - | delta (Imp (aj, ak)) = (1 : IntInf.int) - | delta (Iff (al, am)) = (1 : IntInf.int) - | delta (E an) = (1 : IntInf.int) - | delta (A ao) = (1 : IntInf.int) - | delta (Closed ap) = (1 : IntInf.int) - | delta (NClosed aq) = (1 : IntInf.int) - | delta (Dvd (i, Cn (cm, c, e))) = - (if cm = (0 : IntInf.int) then i else (1 : IntInf.int)) - | delta (NDvd (i, Cn (dm, c, e))) = - (if dm = (0 : IntInf.int) then i else (1 : IntInf.int)); - -fun member A_ [] y = false - | member A_ (x :: xs) y = eq A_ x y orelse member A_ xs y; - -fun remdups A_ [] = [] - | remdups A_ (x :: xs) = - (if member A_ xs x then remdups A_ xs else x :: remdups A_ xs); - -fun a_beta (And (p, q)) = (fn k => And (a_beta p k, a_beta q k)) - | a_beta (Or (p, q)) = (fn k => Or (a_beta p k, a_beta q k)) - | a_beta T = (fn _ => T) - | a_beta F = (fn _ => F) - | a_beta (Lt (C bo)) = (fn _ => Lt (C bo)) - | a_beta (Lt (Bound bp)) = (fn _ => Lt (Bound bp)) - | a_beta (Lt (Neg bt)) = (fn _ => Lt (Neg bt)) - | a_beta (Lt (Add (bu, bv))) = (fn _ => Lt (Add (bu, bv))) - | a_beta (Lt (Sub (bw, bx))) = (fn _ => Lt (Sub (bw, bx))) - | a_beta (Lt (Mul (by, bz))) = (fn _ => Lt (Mul (by, bz))) - | a_beta (Le (C co)) = (fn _ => Le (C co)) - | a_beta (Le (Bound cp)) = (fn _ => Le (Bound cp)) - | a_beta (Le (Neg ct)) = (fn _ => Le (Neg ct)) - | a_beta (Le (Add (cu, cv))) = (fn _ => Le (Add (cu, cv))) - | a_beta (Le (Sub (cw, cx))) = (fn _ => Le (Sub (cw, cx))) - | a_beta (Le (Mul (cy, cz))) = (fn _ => Le (Mul (cy, cz))) - | a_beta (Gt (C doa)) = (fn _ => Gt (C doa)) - | a_beta (Gt (Bound dp)) = (fn _ => Gt (Bound dp)) - | a_beta (Gt (Neg dt)) = (fn _ => Gt (Neg dt)) - | a_beta (Gt (Add (du, dv))) = (fn _ => Gt (Add (du, dv))) - | a_beta (Gt (Sub (dw, dx))) = (fn _ => Gt (Sub (dw, dx))) - | a_beta (Gt (Mul (dy, dz))) = (fn _ => Gt (Mul (dy, dz))) - | a_beta (Ge (C eo)) = (fn _ => Ge (C eo)) - | a_beta (Ge (Bound ep)) = (fn _ => Ge (Bound ep)) - | a_beta (Ge (Neg et)) = (fn _ => Ge (Neg et)) - | a_beta (Ge (Add (eu, ev))) = (fn _ => Ge (Add (eu, ev))) - | a_beta (Ge (Sub (ew, ex))) = (fn _ => Ge (Sub (ew, ex))) - | a_beta (Ge (Mul (ey, ez))) = (fn _ => Ge (Mul (ey, ez))) - | a_beta (Eq (C fo)) = (fn _ => Eq (C fo)) - | a_beta (Eq (Bound fp)) = (fn _ => Eq (Bound fp)) - | a_beta (Eq (Neg ft)) = (fn _ => Eq (Neg ft)) - | a_beta (Eq (Add (fu, fv))) = (fn _ => Eq (Add (fu, fv))) - | a_beta (Eq (Sub (fw, fx))) = (fn _ => Eq (Sub (fw, fx))) - | a_beta (Eq (Mul (fy, fz))) = (fn _ => Eq (Mul (fy, fz))) - | a_beta (NEq (C go)) = (fn _ => NEq (C go)) - | a_beta (NEq (Bound gp)) = (fn _ => NEq (Bound gp)) - | a_beta (NEq (Neg gt)) = (fn _ => NEq (Neg gt)) - | a_beta (NEq (Add (gu, gv))) = (fn _ => NEq (Add (gu, gv))) - | a_beta (NEq (Sub (gw, gx))) = (fn _ => NEq (Sub (gw, gx))) - | a_beta (NEq (Mul (gy, gz))) = (fn _ => NEq (Mul (gy, gz))) - | a_beta (Dvd (aa, C ho)) = (fn _ => Dvd (aa, C ho)) - | a_beta (Dvd (aa, Bound hp)) = (fn _ => Dvd (aa, Bound hp)) - | a_beta (Dvd (aa, Neg ht)) = (fn _ => Dvd (aa, Neg ht)) - | a_beta (Dvd (aa, Add (hu, hv))) = (fn _ => Dvd (aa, Add (hu, hv))) - | a_beta (Dvd (aa, Sub (hw, hx))) = (fn _ => Dvd (aa, Sub (hw, hx))) - | a_beta (Dvd (aa, Mul (hy, hz))) = (fn _ => Dvd (aa, Mul (hy, hz))) - | a_beta (NDvd (ac, C io)) = (fn _ => NDvd (ac, C io)) - | a_beta (NDvd (ac, Bound ip)) = (fn _ => NDvd (ac, Bound ip)) - | a_beta (NDvd (ac, Neg it)) = (fn _ => NDvd (ac, Neg it)) - | a_beta (NDvd (ac, Add (iu, iv))) = (fn _ => NDvd (ac, Add (iu, iv))) - | a_beta (NDvd (ac, Sub (iw, ix))) = (fn _ => NDvd (ac, Sub (iw, ix))) - | a_beta (NDvd (ac, Mul (iy, iz))) = (fn _ => NDvd (ac, Mul (iy, iz))) - | a_beta (Not ae) = (fn _ => Not ae) - | a_beta (Imp (aj, ak)) = (fn _ => Imp (aj, ak)) - | a_beta (Iff (al, am)) = (fn _ => Iff (al, am)) - | a_beta (E an) = (fn _ => E an) - | a_beta (A ao) = (fn _ => A ao) - | a_beta (Closed ap) = (fn _ => Closed ap) - | a_beta (NClosed aq) = (fn _ => NClosed aq) - | a_beta (Lt (Cn (cm, c, e))) = - (if cm = (0 : IntInf.int) - then (fn k => - Lt (Cn ((0 : IntInf.int), (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => Lt (Cn (suc (minus_nat cm (1 : IntInf.int)), c, e)))) - | a_beta (Le (Cn (dm, c, e))) = - (if dm = (0 : IntInf.int) - then (fn k => - Le (Cn ((0 : IntInf.int), (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => Le (Cn (suc (minus_nat dm (1 : IntInf.int)), c, e)))) - | a_beta (Gt (Cn (em, c, e))) = - (if em = (0 : IntInf.int) - then (fn k => - Gt (Cn ((0 : IntInf.int), (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => Gt (Cn (suc (minus_nat em (1 : IntInf.int)), c, e)))) - | a_beta (Ge (Cn (fm, c, e))) = - (if fm = (0 : IntInf.int) - then (fn k => - Ge (Cn ((0 : IntInf.int), (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => Ge (Cn (suc (minus_nat fm (1 : IntInf.int)), c, e)))) - | a_beta (Eq (Cn (gm, c, e))) = - (if gm = (0 : IntInf.int) - then (fn k => - Eq (Cn ((0 : IntInf.int), (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => Eq (Cn (suc (minus_nat gm (1 : IntInf.int)), c, e)))) - | a_beta (NEq (Cn (hm, c, e))) = - (if hm = (0 : IntInf.int) - then (fn k => - NEq (Cn ((0 : IntInf.int), (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => NEq (Cn (suc (minus_nat hm (1 : IntInf.int)), c, e)))) - | a_beta (Dvd (i, Cn (im, c, e))) = - (if im = (0 : IntInf.int) - then (fn k => - Dvd (div_inta k c * i, - Cn ((0 : IntInf.int), (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => Dvd (i, Cn (suc (minus_nat im (1 : IntInf.int)), c, e)))) - | a_beta (NDvd (i, Cn (jm, c, e))) = - (if jm = (0 : IntInf.int) - then (fn k => - NDvd (div_inta k c * i, - Cn ((0 : IntInf.int), (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => NDvd (i, Cn (suc (minus_nat jm (1 : IntInf.int)), c, e)))); - -fun mirror (And (p, q)) = And (mirror p, mirror q) - | mirror (Or (p, q)) = Or (mirror p, mirror q) - | mirror T = T - | mirror F = F - | mirror (Lt (C bo)) = Lt (C bo) - | mirror (Lt (Bound bp)) = Lt (Bound bp) - | mirror (Lt (Neg bt)) = Lt (Neg bt) - | mirror (Lt (Add (bu, bv))) = Lt (Add (bu, bv)) - | mirror (Lt (Sub (bw, bx))) = Lt (Sub (bw, bx)) - | mirror (Lt (Mul (by, bz))) = Lt (Mul (by, bz)) - | mirror (Le (C co)) = Le (C co) - | mirror (Le (Bound cp)) = Le (Bound cp) - | mirror (Le (Neg ct)) = Le (Neg ct) - | mirror (Le (Add (cu, cv))) = Le (Add (cu, cv)) - | mirror (Le (Sub (cw, cx))) = Le (Sub (cw, cx)) - | mirror (Le (Mul (cy, cz))) = Le (Mul (cy, cz)) - | mirror (Gt (C doa)) = Gt (C doa) - | mirror (Gt (Bound dp)) = Gt (Bound dp) - | mirror (Gt (Neg dt)) = Gt (Neg dt) - | mirror (Gt (Add (du, dv))) = Gt (Add (du, dv)) - | mirror (Gt (Sub (dw, dx))) = Gt (Sub (dw, dx)) - | mirror (Gt (Mul (dy, dz))) = Gt (Mul (dy, dz)) - | mirror (Ge (C eo)) = Ge (C eo) - | mirror (Ge (Bound ep)) = Ge (Bound ep) - | mirror (Ge (Neg et)) = Ge (Neg et) - | mirror (Ge (Add (eu, ev))) = Ge (Add (eu, ev)) - | mirror (Ge (Sub (ew, ex))) = Ge (Sub (ew, ex)) - | mirror (Ge (Mul (ey, ez))) = Ge (Mul (ey, ez)) - | mirror (Eq (C fo)) = Eq (C fo) - | mirror (Eq (Bound fp)) = Eq (Bound fp) - | mirror (Eq (Neg ft)) = Eq (Neg ft) - | mirror (Eq (Add (fu, fv))) = Eq (Add (fu, fv)) - | mirror (Eq (Sub (fw, fx))) = Eq (Sub (fw, fx)) - | mirror (Eq (Mul (fy, fz))) = Eq (Mul (fy, fz)) - | mirror (NEq (C go)) = NEq (C go) - | mirror (NEq (Bound gp)) = NEq (Bound gp) - | mirror (NEq (Neg gt)) = NEq (Neg gt) - | mirror (NEq (Add (gu, gv))) = NEq (Add (gu, gv)) - | mirror (NEq (Sub (gw, gx))) = NEq (Sub (gw, gx)) - | mirror (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz)) - | mirror (Dvd (aa, C ho)) = Dvd (aa, C ho) - | mirror (Dvd (aa, Bound hp)) = Dvd (aa, Bound hp) - | mirror (Dvd (aa, Neg ht)) = Dvd (aa, Neg ht) - | mirror (Dvd (aa, Add (hu, hv))) = Dvd (aa, Add (hu, hv)) - | mirror (Dvd (aa, Sub (hw, hx))) = Dvd (aa, Sub (hw, hx)) - | mirror (Dvd (aa, Mul (hy, hz))) = Dvd (aa, Mul (hy, hz)) - | mirror (NDvd (ac, C io)) = NDvd (ac, C io) - | mirror (NDvd (ac, Bound ip)) = NDvd (ac, Bound ip) - | mirror (NDvd (ac, Neg it)) = NDvd (ac, Neg it) - | mirror (NDvd (ac, Add (iu, iv))) = NDvd (ac, Add (iu, iv)) - | mirror (NDvd (ac, Sub (iw, ix))) = NDvd (ac, Sub (iw, ix)) - | mirror (NDvd (ac, Mul (iy, iz))) = NDvd (ac, Mul (iy, iz)) - | mirror (Not ae) = Not ae - | mirror (Imp (aj, ak)) = Imp (aj, ak) - | mirror (Iff (al, am)) = Iff (al, am) - | mirror (E an) = E an - | mirror (A ao) = A ao - | mirror (Closed ap) = Closed ap - | mirror (NClosed aq) = NClosed aq - | mirror (Lt (Cn (cm, c, e))) = - (if cm = (0 : IntInf.int) then Gt (Cn ((0 : IntInf.int), c, Neg e)) - else Lt (Cn (suc (minus_nat cm (1 : IntInf.int)), c, e))) - | mirror (Le (Cn (dm, c, e))) = - (if dm = (0 : IntInf.int) then Ge (Cn ((0 : IntInf.int), c, Neg e)) - else Le (Cn (suc (minus_nat dm (1 : IntInf.int)), c, e))) - | mirror (Gt (Cn (em, c, e))) = - (if em = (0 : IntInf.int) then Lt (Cn ((0 : IntInf.int), c, Neg e)) - else Gt (Cn (suc (minus_nat em (1 : IntInf.int)), c, e))) - | mirror (Ge (Cn (fm, c, e))) = - (if fm = (0 : IntInf.int) then Le (Cn ((0 : IntInf.int), c, Neg e)) - else Ge (Cn (suc (minus_nat fm (1 : IntInf.int)), c, e))) - | mirror (Eq (Cn (gm, c, e))) = - (if gm = (0 : IntInf.int) then Eq (Cn ((0 : IntInf.int), c, Neg e)) - else Eq (Cn (suc (minus_nat gm (1 : IntInf.int)), c, e))) - | mirror (NEq (Cn (hm, c, e))) = - (if hm = (0 : IntInf.int) then NEq (Cn ((0 : IntInf.int), c, Neg e)) - else NEq (Cn (suc (minus_nat hm (1 : IntInf.int)), c, e))) - | mirror (Dvd (i, Cn (im, c, e))) = - (if im = (0 : IntInf.int) then Dvd (i, Cn ((0 : IntInf.int), c, Neg e)) - else Dvd (i, Cn (suc (minus_nat im (1 : IntInf.int)), c, e))) - | mirror (NDvd (i, Cn (jm, c, e))) = - (if jm = (0 : IntInf.int) then NDvd (i, Cn ((0 : IntInf.int), c, Neg e)) - else NDvd (i, Cn (suc (minus_nat jm (1 : IntInf.int)), c, e))); - -fun size_list [] = (0 : IntInf.int) - | size_list (a :: lista) = size_list lista + suc (0 : IntInf.int); - -val equal_num = {equal = equal_numa} : num equal; - -fun unita p = - let - val pa = zlfm p; - val l = zeta pa; - val q = - And (Dvd (l, Cn ((0 : IntInf.int), (1 : IntInf.int), C (0 : IntInf.int))), - a_beta pa l); - val d = delta q; - val b = remdups equal_num (map simpnum (beta q)); - val a = remdups equal_num (map simpnum (alpha q)); - in - (if size_list b <= size_list a then (q, (b, d)) else (mirror q, (a, d))) - end; - -fun numsubst0 t (C c) = C c - | numsubst0 t (Bound n) = (if n = (0 : IntInf.int) then t else Bound n) - | numsubst0 t (Neg a) = Neg (numsubst0 t a) - | numsubst0 t (Add (a, b)) = Add (numsubst0 t a, numsubst0 t b) - | numsubst0 t (Sub (a, b)) = Sub (numsubst0 t a, numsubst0 t b) - | numsubst0 t (Mul (i, a)) = Mul (i, numsubst0 t a) - | numsubst0 t (Cn (v, i, a)) = - (if v = (0 : IntInf.int) then Add (Mul (i, t), numsubst0 t a) - else Cn (suc (minus_nat v (1 : IntInf.int)), i, numsubst0 t a)); - -fun subst0 t T = T - | subst0 t F = F - | subst0 t (Lt a) = Lt (numsubst0 t a) - | subst0 t (Le a) = Le (numsubst0 t a) - | subst0 t (Gt a) = Gt (numsubst0 t a) - | subst0 t (Ge a) = Ge (numsubst0 t a) - | subst0 t (Eq a) = Eq (numsubst0 t a) - | subst0 t (NEq a) = NEq (numsubst0 t a) - | subst0 t (Dvd (i, a)) = Dvd (i, numsubst0 t a) - | subst0 t (NDvd (i, a)) = NDvd (i, numsubst0 t a) - | subst0 t (Not p) = Not (subst0 t p) - | subst0 t (And (p, q)) = And (subst0 t p, subst0 t q) - | subst0 t (Or (p, q)) = Or (subst0 t p, subst0 t q) - | subst0 t (Imp (p, q)) = Imp (subst0 t p, subst0 t q) - | subst0 t (Iff (p, q)) = Iff (subst0 t p, subst0 t q) - | subst0 t (Closed p) = Closed p - | subst0 t (NClosed p) = NClosed p; - -fun minusinf (And (p, q)) = And (minusinf p, minusinf q) - | minusinf (Or (p, q)) = Or (minusinf p, minusinf q) - | minusinf T = T - | minusinf F = F - | minusinf (Lt (C bo)) = Lt (C bo) - | minusinf (Lt (Bound bp)) = Lt (Bound bp) - | minusinf (Lt (Neg bt)) = Lt (Neg bt) - | minusinf (Lt (Add (bu, bv))) = Lt (Add (bu, bv)) - | minusinf (Lt (Sub (bw, bx))) = Lt (Sub (bw, bx)) - | minusinf (Lt (Mul (by, bz))) = Lt (Mul (by, bz)) - | minusinf (Le (C co)) = Le (C co) - | minusinf (Le (Bound cp)) = Le (Bound cp) - | minusinf (Le (Neg ct)) = Le (Neg ct) - | minusinf (Le (Add (cu, cv))) = Le (Add (cu, cv)) - | minusinf (Le (Sub (cw, cx))) = Le (Sub (cw, cx)) - | minusinf (Le (Mul (cy, cz))) = Le (Mul (cy, cz)) - | minusinf (Gt (C doa)) = Gt (C doa) - | minusinf (Gt (Bound dp)) = Gt (Bound dp) - | minusinf (Gt (Neg dt)) = Gt (Neg dt) - | minusinf (Gt (Add (du, dv))) = Gt (Add (du, dv)) - | minusinf (Gt (Sub (dw, dx))) = Gt (Sub (dw, dx)) - | minusinf (Gt (Mul (dy, dz))) = Gt (Mul (dy, dz)) - | minusinf (Ge (C eo)) = Ge (C eo) - | minusinf (Ge (Bound ep)) = Ge (Bound ep) - | minusinf (Ge (Neg et)) = Ge (Neg et) - | minusinf (Ge (Add (eu, ev))) = Ge (Add (eu, ev)) - | minusinf (Ge (Sub (ew, ex))) = Ge (Sub (ew, ex)) - | minusinf (Ge (Mul (ey, ez))) = Ge (Mul (ey, ez)) - | minusinf (Eq (C fo)) = Eq (C fo) - | minusinf (Eq (Bound fp)) = Eq (Bound fp) - | minusinf (Eq (Neg ft)) = Eq (Neg ft) - | minusinf (Eq (Add (fu, fv))) = Eq (Add (fu, fv)) - | minusinf (Eq (Sub (fw, fx))) = Eq (Sub (fw, fx)) - | minusinf (Eq (Mul (fy, fz))) = Eq (Mul (fy, fz)) - | minusinf (NEq (C go)) = NEq (C go) - | minusinf (NEq (Bound gp)) = NEq (Bound gp) - | minusinf (NEq (Neg gt)) = NEq (Neg gt) - | minusinf (NEq (Add (gu, gv))) = NEq (Add (gu, gv)) - | minusinf (NEq (Sub (gw, gx))) = NEq (Sub (gw, gx)) - | minusinf (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz)) - | minusinf (Dvd (aa, ab)) = Dvd (aa, ab) - | minusinf (NDvd (ac, ad)) = NDvd (ac, ad) - | minusinf (Not ae) = Not ae - | minusinf (Imp (aj, ak)) = Imp (aj, ak) - | minusinf (Iff (al, am)) = Iff (al, am) - | minusinf (E an) = E an - | minusinf (A ao) = A ao - | minusinf (Closed ap) = Closed ap - | minusinf (NClosed aq) = NClosed aq - | minusinf (Lt (Cn (cm, c, e))) = - (if cm = (0 : IntInf.int) then T - else Lt (Cn (suc (minus_nat cm (1 : IntInf.int)), c, e))) - | minusinf (Le (Cn (dm, c, e))) = - (if dm = (0 : IntInf.int) then T - else Le (Cn (suc (minus_nat dm (1 : IntInf.int)), c, e))) - | minusinf (Gt (Cn (em, c, e))) = - (if em = (0 : IntInf.int) then F - else Gt (Cn (suc (minus_nat em (1 : IntInf.int)), c, e))) - | minusinf (Ge (Cn (fm, c, e))) = - (if fm = (0 : IntInf.int) then F - else Ge (Cn (suc (minus_nat fm (1 : IntInf.int)), c, e))) - | minusinf (Eq (Cn (gm, c, e))) = - (if gm = (0 : IntInf.int) then F - else Eq (Cn (suc (minus_nat gm (1 : IntInf.int)), c, e))) - | minusinf (NEq (Cn (hm, c, e))) = - (if hm = (0 : IntInf.int) then T - else NEq (Cn (suc (minus_nat hm (1 : IntInf.int)), c, e))); - -fun cooper p = - let - val (q, (b, d)) = unita p; - val js = uptoa (1 : IntInf.int) d; - val mq = simpfm (minusinf q); - val md = evaldjf (fn j => simpfm (subst0 (C j) mq)) js; - in - (if equal_fm md T then T - else let - val qd = - evaldjf (fn (ba, j) => simpfm (subst0 (Add (ba, C j)) q)) - (maps (fn ba => map (fn a => (ba, a)) js) b); - in - decr (disj md qd) - end) - end; - fun pa p = qelim (prep p) cooper; end; (*struct Cooper_Procedure*)
--- a/src/HOL/Tools/Quickcheck/exhaustive_generators.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Tools/Quickcheck/exhaustive_generators.ML Fri Feb 15 08:31:31 2013 +0100 @@ -10,11 +10,11 @@ Proof.context -> (term * term list) list -> bool -> int list -> (bool * term list) option * Quickcheck.report option val compile_generator_exprs: Proof.context -> term list -> (int -> term list option) list val compile_validator_exprs: Proof.context -> term list -> (int -> bool) list - val put_counterexample: (unit -> int -> bool -> int -> (bool * term list) option) + val put_counterexample: (unit -> Code_Numeral.natural -> bool -> Code_Numeral.natural -> (bool * term list) option) -> Proof.context -> Proof.context - val put_counterexample_batch: (unit -> (int -> term list option) list) + val put_counterexample_batch: (unit -> (Code_Numeral.natural -> term list option) list) -> Proof.context -> Proof.context - val put_validator_batch: (unit -> (int -> bool) list) -> Proof.context -> Proof.context + val put_validator_batch: (unit -> (Code_Numeral.natural -> bool) list) -> Proof.context -> Proof.context exception Counterexample of term list val smart_quantifier : bool Config.T val optimise_equality : bool Config.T @@ -50,9 +50,9 @@ fun termifyT T = HOLogic.mk_prodT (T, @{typ "unit => Code_Evaluation.term"}); -val size = @{term "i :: code_numeral"} -val size_pred = @{term "(i :: code_numeral) - 1"} -val size_ge_zero = @{term "(i :: code_numeral) > 0"} +val size = @{term "i :: natural"} +val size_pred = @{term "(i :: natural) - 1"} +val size_ge_zero = @{term "(i :: natural) > 0"} fun mk_none_continuation (x, y) = let @@ -81,13 +81,13 @@ val bounded_forallN = "bounded_forall"; fun fast_exhaustiveT T = (T --> @{typ unit}) - --> @{typ code_numeral} --> @{typ unit} + --> @{typ natural} --> @{typ unit} -fun exhaustiveT T = (T --> resultT) --> @{typ code_numeral} --> resultT +fun exhaustiveT T = (T --> resultT) --> @{typ natural} --> resultT -fun bounded_forallT T = (T --> @{typ bool}) --> @{typ code_numeral} --> @{typ bool} +fun bounded_forallT T = (T --> @{typ bool}) --> @{typ natural} --> @{typ bool} -fun full_exhaustiveT T = (termifyT T --> resultT) --> @{typ code_numeral} --> resultT +fun full_exhaustiveT T = (termifyT T --> resultT) --> @{typ natural} --> resultT fun check_allT T = (termifyT T --> resultT) --> resultT @@ -323,7 +323,7 @@ val frees = map Free (Term.add_frees t []) fun lookup v = the (AList.lookup (op =) (names ~~ frees) v) val ([depth_name], _) = Variable.variant_fixes ["depth"] ctxt' - val depth = Free (depth_name, @{typ code_numeral}) + val depth = Free (depth_name, @{typ natural}) fun return _ = @{term "throw_Counterexample :: term list => unit"} $ (HOLogic.mk_list @{typ "term"} (map (fn t => HOLogic.mk_term_of (fastype_of t) t) (frees @ eval_terms))) @@ -353,7 +353,7 @@ fun lookup v = the (AList.lookup (op =) (names ~~ frees) v) val ([depth_name, genuine_only_name], _) = Variable.variant_fixes ["depth", "genuine_only"] ctxt' - val depth = Free (depth_name, @{typ code_numeral}) + val depth = Free (depth_name, @{typ natural}) val genuine_only = Free (genuine_only_name, @{typ bool}) val return = mk_return (HOLogic.mk_list @{typ "term"} (map (fn t => HOLogic.mk_term_of (fastype_of t) t) frees @ map mk_safe_term eval_terms)) @@ -375,7 +375,7 @@ val ([depth_name, genuine_only_name], ctxt'') = Variable.variant_fixes ["depth", "genuine_only"] ctxt' val (term_names, _) = Variable.variant_fixes (map (prefix "t_") names) ctxt'' - val depth = Free (depth_name, @{typ code_numeral}) + val depth = Free (depth_name, @{typ natural}) val genuine_only = Free (genuine_only_name, @{typ bool}) val term_vars = map (fn n => Free (n, @{typ "unit => term"})) term_names fun lookup v = the (AList.lookup (op =) (names ~~ (frees ~~ term_vars)) v) @@ -402,18 +402,18 @@ fun mk_parametric_generator_expr mk_generator_expr = Quickcheck_Common.gen_mk_parametric_generator_expr ((mk_generator_expr, - absdummy @{typ bool} (absdummy @{typ "code_numeral"} (Const (@{const_name "None"}, resultT)))), - @{typ bool} --> @{typ "code_numeral"} --> resultT) + absdummy @{typ bool} (absdummy @{typ natural} (Const (@{const_name "None"}, resultT)))), + @{typ bool} --> @{typ natural} --> resultT) fun mk_validator_expr ctxt t = let - fun bounded_forallT T = (T --> @{typ bool}) --> @{typ code_numeral} --> @{typ bool} + fun bounded_forallT T = (T --> @{typ bool}) --> @{typ natural} --> @{typ bool} val ctxt' = Variable.auto_fixes t ctxt val names = Term.add_free_names t [] val frees = map Free (Term.add_frees t []) fun lookup v = the (AList.lookup (op =) (names ~~ frees) v) val ([depth_name], _) = Variable.variant_fixes ["depth"] ctxt' - val depth = Free (depth_name, @{typ code_numeral}) + val depth = Free (depth_name, @{typ natural}) fun mk_bounded_forall (Free (s, T)) t = Const (@{const_name "Quickcheck_Exhaustive.bounded_forall_class.bounded_forall"}, bounded_forallT T) $ lambda (Free (s, T)) t $ depth @@ -443,7 +443,7 @@ structure Counterexample = Proof_Data ( - type T = unit -> int -> bool -> int -> (bool * term list) option + type T = unit -> Code_Numeral.natural -> bool -> Code_Numeral.natural -> (bool * term list) option (* FIXME avoid user error with non-user text *) fun init _ () = error "Counterexample" ); @@ -451,7 +451,7 @@ structure Counterexample_Batch = Proof_Data ( - type T = unit -> (int -> term list option) list + type T = unit -> (Code_Numeral.natural -> term list option) list (* FIXME avoid user error with non-user text *) fun init _ () = error "Counterexample" ); @@ -459,7 +459,7 @@ structure Validator_Batch = Proof_Data ( - type T = unit -> (int -> bool) list + type T = unit -> (Code_Numeral.natural -> bool) list (* FIXME avoid user error with non-user text *) fun init _ () = error "Counterexample" ); @@ -468,7 +468,7 @@ val target = "Quickcheck"; -fun compile_generator_expr ctxt ts = +fun compile_generator_expr_raw ctxt ts = let val thy = Proof_Context.theory_of ctxt val mk_generator_expr = @@ -487,7 +487,14 @@ Option.map (apsnd (map Quickcheck_Common.post_process_term)) else I)) end; -fun compile_generator_exprs ctxt ts = +fun compile_generator_expr ctxt ts = + let + val compiled = compile_generator_expr_raw ctxt ts; + in fn genuine_only => fn [card, size] => + compiled genuine_only [Code_Numeral.natural_of_integer card, Code_Numeral.natural_of_integer size] + end; + +fun compile_generator_exprs_raw ctxt ts = let val thy = Proof_Context.theory_of ctxt val ts' = map (fn t => mk_generator_expr ctxt (t, [])) ts; @@ -495,22 +502,30 @@ (Counterexample_Batch.get, put_counterexample_batch, "Exhaustive_Generators.put_counterexample_batch") thy (SOME target) (fn proc => map (fn g => g #> (Option.map o map) proc)) - (HOLogic.mk_list @{typ "code_numeral => term list option"} ts') [] + (HOLogic.mk_list @{typ "natural => term list option"} ts') [] in map (fn compile => fn size => compile size - |> Option.map (map Quickcheck_Common.post_process_term)) compiles + |> (Option.map o map) Quickcheck_Common.post_process_term) compiles end; -fun compile_validator_exprs ctxt ts = +fun compile_generator_exprs ctxt ts = + compile_generator_exprs_raw ctxt ts + |> map (fn f => fn size => f (Code_Numeral.natural_of_integer size)); + +fun compile_validator_exprs_raw ctxt ts = let val thy = Proof_Context.theory_of ctxt val ts' = map (mk_validator_expr ctxt) ts in Code_Runtime.dynamic_value_strict (Validator_Batch.get, put_validator_batch, "Exhaustive_Generators.put_validator_batch") - thy (SOME target) (K I) (HOLogic.mk_list @{typ "code_numeral => bool"} ts') [] + thy (SOME target) (K I) (HOLogic.mk_list @{typ "natural => bool"} ts') [] end; +fun compile_validator_exprs ctxt ts = + compile_validator_exprs_raw ctxt ts + |> map (fn f => fn size => f (Code_Numeral.natural_of_integer size)); + fun size_matters_for thy Ts = not (forall (fn T => Sign.of_sort thy (T, @{sort check_all})) Ts) val test_goals =
--- a/src/HOL/Tools/Quickcheck/narrowing_generators.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Tools/Quickcheck/narrowing_generators.ML Fri Feb 15 08:31:31 2013 +0100 @@ -70,8 +70,8 @@ fun mk_partial_term_of_eq thy ty (i, (c, (_, tys))) = let val frees = map Free (Name.invent_names Name.context "a" (map (K @{typ narrowing_term}) tys)) - val narrowing_term = @{term "Quickcheck_Narrowing.Narrowing_constructor"} $ HOLogic.mk_number @{typ code_int} i - $ (HOLogic.mk_list @{typ narrowing_term} (rev frees)) + val narrowing_term = @{term Quickcheck_Narrowing.Narrowing_constructor} $ HOLogic.mk_number @{typ integer} i + $ HOLogic.mk_list @{typ narrowing_term} (rev frees) val rhs = fold (fn u => fn t => @{term "Code_Evaluation.App"} $ t $ u) (map mk_partial_term_of (frees ~~ tys)) (@{term "Code_Evaluation.Const"} $ HOLogic.mk_literal c $ HOLogic.mk_typerep (tys ---> ty)) @@ -124,7 +124,7 @@ val narrowingN = "narrowing"; fun narrowingT T = - @{typ Quickcheck_Narrowing.code_int} --> Type (@{type_name Quickcheck_Narrowing.narrowing_cons}, [T]) + @{typ integer} --> Type (@{type_name Quickcheck_Narrowing.narrowing_cons}, [T]) fun mk_cons c T = Const (@{const_name Quickcheck_Narrowing.cons}, T --> narrowingT T) $ Const (c, T)
--- a/src/HOL/Tools/Quickcheck/quickcheck_common.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Tools/Quickcheck/quickcheck_common.ML Fri Feb 15 08:31:31 2013 +0100 @@ -429,10 +429,10 @@ let val if_t = Const (@{const_name "If"}, @{typ bool} --> T --> T --> T) fun mk_if (index, (t, eval_terms)) else_t = if_t $ - (HOLogic.eq_const @{typ code_numeral} $ Bound 0 $ HOLogic.mk_number @{typ code_numeral} index) $ + (HOLogic.eq_const @{typ natural} $ Bound 0 $ HOLogic.mk_number @{typ natural} index) $ (mk_generator_expr ctxt (t, eval_terms)) $ else_t in - absdummy @{typ "code_numeral"} (fold_rev mk_if (1 upto (length ts) ~~ ts) out_of_bounds) + absdummy @{typ natural} (fold_rev mk_if (1 upto (length ts) ~~ ts) out_of_bounds) end (** post-processing of function terms **)
--- a/src/HOL/Tools/Quickcheck/random_generators.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Tools/Quickcheck/random_generators.ML Fri Feb 15 08:31:31 2013 +0100 @@ -12,9 +12,9 @@ -> seed -> (('a -> 'b) * (unit -> term)) * seed val compile_generator_expr: Proof.context -> (term * term list) list -> bool -> int list -> (bool * term list) option * Quickcheck.report option - val put_counterexample: (unit -> int -> bool -> int -> seed -> (bool * term list) option * seed) + val put_counterexample: (unit -> Code_Numeral.natural -> bool -> Code_Numeral.natural -> seed -> (bool * term list) option * seed) -> Proof.context -> Proof.context - val put_counterexample_report: (unit -> int -> bool -> int -> seed -> ((bool * term list) option * (bool list * bool)) * seed) + val put_counterexample_report: (unit -> Code_Numeral.natural -> bool -> Code_Numeral.natural -> seed -> ((bool * term list) option * (bool list * bool)) * seed) -> Proof.context -> Proof.context val instantiate_random_datatype : Datatype_Aux.config -> Datatype_Aux.descr -> (string * sort) list -> string list -> string -> string list * string list -> typ list * typ list -> theory -> theory @@ -27,9 +27,9 @@ (** abstract syntax **) fun termifyT T = HOLogic.mk_prodT (T, @{typ "unit => term"}) -val size = @{term "i::code_numeral"}; -val size_pred = @{term "(i::code_numeral) - 1"}; -val size' = @{term "j::code_numeral"}; +val size = @{term "i::natural"}; +val size_pred = @{term "(i::natural) - 1"}; +val size' = @{term "j::natural"}; val seed = @{term "s::Random.seed"}; val resultT = @{typ "(bool * term list) option"}; @@ -76,8 +76,8 @@ val pt_rhs = eq |> Thm.dest_arg |> Thm.dest_fun; val aT = pt_random_aux |> Thm.ctyp_of_term |> dest_ctyp_nth 1; -val rew_thms = map mk_meta_eq [@{thm code_numeral_zero_minus_one}, - @{thm Suc_code_numeral_minus_one}, @{thm select_weight_cons_zero}, @{thm beyond_zero}]; +val rew_thms = map mk_meta_eq [@{thm natural_zero_minus_one}, + @{thm Suc_natural_minus_one}, @{thm select_weight_cons_zero}, @{thm beyond_zero}]; val rew_ts = map (Logic.dest_equals o Thm.prop_of) rew_thms; val rew_ss = HOL_ss addsimps rew_thms; @@ -94,7 +94,7 @@ val inst = Thm.instantiate_cterm ([(aT, icT)], []); fun subst_v t' = map_aterms (fn t as Free (w, _) => if v = w then t' else t | t => t); val t_rhs = lambda t_k proto_t_rhs; - val eqs0 = [subst_v @{term "0::code_numeral"} eq, + val eqs0 = [subst_v @{term "0::natural"} eq, subst_v (@{const Code_Numeral.Suc} $ t_k) eq]; val eqs1 = map (Pattern.rewrite_term thy rew_ts []) eqs0; val ((_, (_, eqs2)), lthy') = Primrec.add_primrec_simple @@ -189,7 +189,7 @@ val rTs = Ts @ Us; fun random_resultT T = @{typ Random.seed} --> HOLogic.mk_prodT (termifyT T,@{typ Random.seed}); - fun sizeT T = @{typ code_numeral} --> @{typ code_numeral} --> T; + fun sizeT T = @{typ natural} --> @{typ natural} --> T; val random_auxT = sizeT o random_resultT; val random_auxs = map2 (fn s => fn rT => Free (s, random_auxT rT)) random_auxsN rTs; @@ -222,9 +222,9 @@ tc @{typ Random.seed} (SOME T, @{typ Random.seed}); val tk = if is_rec then if k = 0 then size - else @{term "Quickcheck_Random.beyond :: code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral"} - $ HOLogic.mk_number @{typ code_numeral} k $ size - else @{term "1::code_numeral"} + else @{term "Quickcheck_Random.beyond :: natural \<Rightarrow> natural \<Rightarrow> natural"} + $ HOLogic.mk_number @{typ natural} k $ size + else @{term "1::natural"} in (is_rec, HOLogic.mk_prod (tk, t)) end; fun sort_rec xs = map_filter (fn (true, t) => SOME t | _ => NONE) xs @@ -235,7 +235,7 @@ fun mk_select (rT, xs) = mk_const @{const_name Quickcheck_Random.collapse} [@{typ Random.seed}, termifyT rT] $ (mk_const @{const_name Random.select_weight} [random_resultT rT] - $ HOLogic.mk_list (HOLogic.mk_prodT (@{typ code_numeral}, random_resultT rT)) xs) + $ HOLogic.mk_list (HOLogic.mk_prodT (@{typ natural}, random_resultT rT)) xs) $ seed; val auxs_lhss = map (fn t => t $ size $ size' $ seed) random_auxs; val auxs_rhss = map mk_select gen_exprss; @@ -247,8 +247,8 @@ val mk_prop_eq = HOLogic.mk_Trueprop o HOLogic.mk_eq; fun mk_size_arg k = case Datatype_Aux.find_shortest_path descr k of SOME (_, l) => if l = 0 then size - else @{term "max :: code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral"} - $ HOLogic.mk_number @{typ code_numeral} l $ size + else @{term "max :: natural \<Rightarrow> natural \<Rightarrow> natural"} + $ HOLogic.mk_number @{typ natural} l $ size | NONE => size; val (random_auxs, auxs_eqs) = (apsnd o map) mk_prop_eq (mk_random_aux_eqs thy descr vs (names, auxnames) (Ts, Us)); @@ -272,7 +272,7 @@ structure Counterexample = Proof_Data ( - type T = unit -> int -> bool -> int -> int * int -> (bool * term list) option * (int * int) + type T = unit -> Code_Numeral.natural -> bool -> Code_Numeral.natural -> seed -> (bool * term list) option * seed (* FIXME avoid user error with non-user text *) fun init _ () = error "Counterexample" ); @@ -280,7 +280,7 @@ structure Counterexample_Report = Proof_Data ( - type T = unit -> int -> bool -> int -> seed -> ((bool * term list) option * (bool list * bool)) * seed + type T = unit -> Code_Numeral.natural -> bool -> Code_Numeral.natural -> seed -> ((bool * term list) option * (bool list * bool)) * seed (* FIXME avoid user error with non-user text *) fun init _ () = error "Counterexample_Report" ); @@ -318,7 +318,7 @@ (Sign.mk_const thy (@{const_name Quickcheck_Random.random}, [T]) $ Bound i); in lambda genuine_only - (Abs ("n", @{typ code_numeral}, fold_rev mk_bindclause bounds (return $ check true))) + (Abs ("n", @{typ natural}, fold_rev mk_bindclause bounds (return $ check true))) end; fun mk_reporting_generator_expr ctxt (t, _) = @@ -364,21 +364,21 @@ (Sign.mk_const thy (@{const_name Quickcheck_Random.random}, [T]) $ Bound i); in lambda genuine_only - (Abs ("n", @{typ code_numeral}, fold_rev mk_bindclause bounds (return $ check true))) + (Abs ("n", @{typ natural}, fold_rev mk_bindclause bounds (return $ check true))) end val mk_parametric_generator_expr = Quickcheck_Common.gen_mk_parametric_generator_expr ((mk_generator_expr, - absdummy @{typ bool} (absdummy @{typ code_numeral} + absdummy @{typ bool} (absdummy @{typ natural} @{term "Pair None :: Random.seed => (bool * term list) option * Random.seed"})), - @{typ "bool => code_numeral => Random.seed => (bool * term list) option * Random.seed"}) + @{typ "bool => natural => Random.seed => (bool * term list) option * Random.seed"}) val mk_parametric_reporting_generator_expr = Quickcheck_Common.gen_mk_parametric_generator_expr ((mk_reporting_generator_expr, - absdummy @{typ bool} (absdummy @{typ code_numeral} + absdummy @{typ bool} (absdummy @{typ natural} @{term "Pair (None, ([], False)) :: Random.seed => ((bool * term list) option * (bool list * bool)) * Random.seed"})), - @{typ "bool => code_numeral => Random.seed => ((bool * term list) option * (bool list * bool)) * Random.seed"}) + @{typ "bool => natural => Random.seed => ((bool * term list) option * (bool list * bool)) * Random.seed"}) (* single quickcheck report *) @@ -402,7 +402,7 @@ val empty_report = Quickcheck.Report { iterations = 0, raised_match_errors = 0, satisfied_assms = [], positive_concl_tests = 0 } -fun compile_generator_expr ctxt ts = +fun compile_generator_expr_raw ctxt ts = let val thy = Proof_Context.theory_of ctxt val iterations = Config.get ctxt Quickcheck.iterations @@ -449,6 +449,13 @@ end end; +fun compile_generator_expr ctxt ts = + let + val compiled = compile_generator_expr_raw ctxt ts + in fn genuine_only => fn [card, size] => + compiled genuine_only [Code_Numeral.natural_of_integer card, Code_Numeral.natural_of_integer size] + end; + val size_types = [@{type_name Enum.finite_1}, @{type_name Enum.finite_2}, @{type_name Enum.finite_3}, @{type_name Enum.finite_4}, @{type_name Enum.finite_5}];
--- a/src/HOL/Tools/hologic.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Tools/hologic.ML Fri Feb 15 08:31:31 2013 +0100 @@ -91,7 +91,6 @@ val dest_nat: term -> int val class_size: string val size_const: typ -> term - val code_numeralT: typ val intT: typ val one_const: term val bit0_const: term @@ -105,6 +104,8 @@ val add_numerals: term -> (term * typ) list -> (term * typ) list val mk_number: typ -> int -> term val dest_number: term -> typ * int + val code_integerT: typ + val code_naturalT: typ val realT: typ val nibbleT: typ val mk_nibble: int -> term @@ -487,11 +488,6 @@ fun size_const T = Const ("Nat.size_class.size", T --> natT); -(* code numeral *) - -val code_numeralT = Type ("Code_Numeral.code_numeral", []); - - (* binary numerals and int *) val numT = Type ("Num.num", []); @@ -543,6 +539,13 @@ | dest_number t = raise TERM ("dest_number", [t]); +(* code target numerals *) + +val code_integerT = Type ("Code_Numeral.integer", []); + +val code_naturalT = Type ("Code_Numeral.natural", []); + + (* real *) val realT = Type ("RealDef.real", []); @@ -684,9 +687,9 @@ (* random seeds *) -val random_seedT = mk_prodT (code_numeralT, code_numeralT); +val random_seedT = mk_prodT (code_naturalT, code_naturalT); -fun mk_random T t = Const ("Quickcheck_Random.random_class.random", code_numeralT +fun mk_random T t = Const ("Quickcheck_Random.random_class.random", code_naturalT --> random_seedT --> mk_prodT (mk_prodT (T, unitT --> termT), random_seedT)) $ t; end;
--- a/src/HOL/Tools/record.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Tools/record.ML Fri Feb 15 08:31:31 2013 +0100 @@ -1668,7 +1668,7 @@ fun mk_random_eq tyco vs extN Ts = let (* FIXME local i etc. *) - val size = @{term "i::code_numeral"}; + val size = @{term "i::natural"}; fun termifyT T = HOLogic.mk_prodT (T, @{typ "unit => term"}); val T = Type (tyco, map TFree vs); val Tm = termifyT T; @@ -1688,14 +1688,14 @@ fun mk_full_exhaustive_eq tyco vs extN Ts = let (* FIXME local i etc. *) - val size = @{term "i::code_numeral"}; + val size = @{term "i::natural"}; fun termifyT T = HOLogic.mk_prodT (T, @{typ "unit => term"}); val T = Type (tyco, map TFree vs); val test_function = Free ("f", termifyT T --> @{typ "(bool * term list) option"}); val params = Name.invent_names Name.context "x" Ts; fun full_exhaustiveT T = (termifyT T --> @{typ "(bool * Code_Evaluation.term list) option"}) --> - @{typ code_numeral} --> @{typ "(bool * Code_Evaluation.term list) option"}; + @{typ natural} --> @{typ "(bool * Code_Evaluation.term list) option"}; fun mk_full_exhaustive T = Const (@{const_name "Quickcheck_Exhaustive.full_exhaustive_class.full_exhaustive"}, full_exhaustiveT T);
--- a/src/HOL/Word/Word.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/Word/Word.thy Fri Feb 15 08:31:31 2013 +0100 @@ -86,7 +86,7 @@ definition "random_word i = Random.range i \<circ>\<rightarrow> (\<lambda>k. Pair ( - let j = word_of_int (Code_Numeral.int_of k) :: 'a word + let j = word_of_int (int_of_integer (integer_of_natural k)) :: 'a word in (j, \<lambda>_::unit. Code_Evaluation.term_of j)))" instance .. @@ -4651,3 +4651,4 @@ hide_const (open) Word end +
--- a/src/HOL/ex/Code_Binary_Nat_examples.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/ex/Code_Binary_Nat_examples.thy Fri Feb 15 08:31:31 2013 +0100 @@ -2,10 +2,10 @@ Author: Florian Haftmann, TU Muenchen *) -header {* Simple examples for natural numbers implemented in binary representation theory. *} +header {* Simple examples for natural numbers implemented in binary representation. *} theory Code_Binary_Nat_examples -imports Complex_Main "~~/src/HOL/Library/Efficient_Nat" +imports Complex_Main "~~/src/HOL/Library/Code_Binary_Nat" begin fun to_n :: "nat \<Rightarrow> nat list"
--- a/src/HOL/ex/IArray_Examples.thy Fri Feb 15 08:31:30 2013 +0100 +++ b/src/HOL/ex/IArray_Examples.thy Fri Feb 15 08:31:31 2013 +0100 @@ -1,5 +1,5 @@ theory IArray_Examples -imports "~~/src/HOL/Library/IArray" "~~/src/HOL/Library/Efficient_Nat" +imports "~~/src/HOL/Library/IArray" "~~/src/HOL/Library/Code_Target_Numeral" begin lemma "IArray [True,False] !! 1 = False"
--- a/src/Tools/Code/code_haskell.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/Tools/Code/code_haskell.ML Fri Feb 15 08:31:31 2013 +0100 @@ -418,9 +418,6 @@ literal_char = Library.enclose "'" "'" o char_haskell, literal_string = quote o translate_string char_haskell, literal_numeral = numeral_haskell, - literal_positive_numeral = numeral_haskell, - literal_alternative_numeral = numeral_haskell, - literal_naive_numeral = numeral_haskell, literal_list = enum "," "[" "]", infix_cons = (5, ":") } end;
--- a/src/Tools/Code/code_ml.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/Tools/Code/code_ml.ML Fri Feb 15 08:31:31 2013 +0100 @@ -345,9 +345,6 @@ literal_char = prefix "#" o quote o ML_Syntax.print_char, literal_string = quote o translate_string ML_Syntax.print_char, literal_numeral = fn k => "(" ^ string_of_int k ^ " : IntInf.int)", - literal_positive_numeral = fn k => "(" ^ string_of_int k ^ " : IntInf.int)", - literal_alternative_numeral = fn k => "(" ^ string_of_int k ^ " : IntInf.int)", - literal_naive_numeral = string_of_int, literal_list = enum "," "[" "]", infix_cons = (7, "::") }; @@ -693,9 +690,6 @@ literal_char = Library.enclose "'" "'" o char_ocaml, literal_string = quote o translate_string char_ocaml, literal_numeral = numeral_ocaml, - literal_positive_numeral = numeral_ocaml, - literal_alternative_numeral = numeral_ocaml, - literal_naive_numeral = numeral_ocaml, literal_list = enum ";" "[" "]", infix_cons = (6, "::") } end;
--- a/src/Tools/Code/code_printer.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/Tools/Code/code_printer.ML Fri Feb 15 08:31:31 2013 +0100 @@ -41,17 +41,11 @@ type literals val Literals: { literal_char: string -> string, literal_string: string -> string, literal_numeral: int -> string, - literal_positive_numeral: int -> string, - literal_alternative_numeral: int -> string, - literal_naive_numeral: int -> string, literal_list: Pretty.T list -> Pretty.T, infix_cons: int * string } -> literals val literal_char: literals -> string -> string val literal_string: literals -> string -> string val literal_numeral: literals -> int -> string - val literal_positive_numeral: literals -> int -> string - val literal_alternative_numeral: literals -> int -> string - val literal_naive_numeral: literals -> int -> string val literal_list: literals -> Pretty.T list -> Pretty.T val infix_cons: literals -> int * string @@ -207,9 +201,6 @@ literal_char: string -> string, literal_string: string -> string, literal_numeral: int -> string, - literal_positive_numeral: int -> string, - literal_alternative_numeral: int -> string, - literal_naive_numeral: int -> string, literal_list: Pretty.T list -> Pretty.T, infix_cons: int * string }; @@ -219,9 +210,6 @@ val literal_char = #literal_char o dest_Literals; val literal_string = #literal_string o dest_Literals; val literal_numeral = #literal_numeral o dest_Literals; -val literal_positive_numeral = #literal_positive_numeral o dest_Literals; -val literal_alternative_numeral = #literal_alternative_numeral o dest_Literals; -val literal_naive_numeral = #literal_naive_numeral o dest_Literals; val literal_list = #literal_list o dest_Literals; val infix_cons = #infix_cons o dest_Literals;
--- a/src/Tools/Code/code_scala.ML Fri Feb 15 08:31:30 2013 +0100 +++ b/src/Tools/Code/code_scala.ML Fri Feb 15 08:31:31 2013 +0100 @@ -399,9 +399,6 @@ literal_char = Library.enclose "'" "'" o char_scala, literal_string = quote o translate_string char_scala, literal_numeral = fn k => "BigInt(" ^ numeral_scala k ^ ")", - literal_positive_numeral = fn k => "Nat(" ^ numeral_scala k ^ ")", - literal_alternative_numeral = fn k => "Natural(" ^ numeral_scala k ^ ")", - literal_naive_numeral = fn k => "BigInt(" ^ numeral_scala k ^ ")", literal_list = fn [] => str "Nil" | ps => Pretty.block [str "List", enum "," "(" ")" ps], infix_cons = (6, "::") } end;