- Explicitely passed pred_subset_eq and pred_equals_eq as an argument to the
to_set and to_pred attributes, because it is no longer applied automatically
- Manually applied predicate1I in proof of accp_subset, because it is no longer
part of the claset
- Replaced psubset_def by less_le
--- a/src/HOL/Wellfounded.thy Wed May 07 10:56:50 2008 +0200
+++ b/src/HOL/Wellfounded.thy Wed May 07 10:56:52 2008 +0200
@@ -271,7 +271,7 @@
done
lemmas wfP_SUP = wf_UN [where I=UNIV and r="\<lambda>i. {(x, y). r i x y}",
- to_pred SUP_UN_eq2 bot_empty_eq, simplified, standard]
+ to_pred SUP_UN_eq2 bot_empty_eq pred_equals_eq, simplified, standard]
lemma wf_Union:
"[| ALL r:R. wf r;
@@ -691,7 +691,7 @@
lemma accp_subset:
assumes sub: "R1 \<le> R2"
shows "accp R2 \<le> accp R1"
-proof
+proof (rule predicate1I)
fix x assume "accp R2 x"
then show "accp R1 x"
proof (induct x)
@@ -745,9 +745,9 @@
lemmas wf_acc_iff = wfP_accp_iff [to_set]
-lemmas acc_subset = accp_subset [to_set]
+lemmas acc_subset = accp_subset [to_set pred_subset_eq]
-lemmas acc_subset_induct = accp_subset_induct [to_set]
+lemmas acc_subset_induct = accp_subset_induct [to_set pred_subset_eq]
subsection {* Tools for building wellfounded relations *}
@@ -837,7 +837,7 @@
done
lemma trans_finite_psubset: "trans finite_psubset"
-by (simp add: finite_psubset_def psubset_def trans_def, blast)
+by (simp add: finite_psubset_def less_le trans_def, blast)