simplify proof of lemma bounded_component
authorhuffman
Wed, 10 Aug 2011 14:25:56 -0700
changeset 44138 0c9feac80852
parent 44137 ac5cb4c86448
child 44139 abccf1b7ea4b
simplify proof of lemma bounded_component
src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy
--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Wed Aug 10 14:10:52 2011 -0700
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Wed Aug 10 14:25:56 2011 -0700
@@ -2228,15 +2228,10 @@
     by auto
 qed
 
-lemma bounded_component: "bounded s \<Longrightarrow>
-  bounded ((\<lambda>x. x $$ i) ` (s::'a::euclidean_space set))"
-unfolding bounded_def
-apply clarify
-apply (rule_tac x="x $$ i" in exI)
-apply (rule_tac x="e" in exI)
-apply clarify
-apply (rule order_trans[OF dist_nth_le],simp)
-done
+lemma bounded_component: "bounded s \<Longrightarrow> bounded ((\<lambda>x. x $$ i) ` s)"
+  apply (erule bounded_linear_image)
+  apply (rule bounded_linear_euclidean_component)
+  done
 
 lemma compact_lemma:
   fixes f :: "nat \<Rightarrow> 'a::euclidean_space"