prefer strict qualification (default for 'interpretation', see 461ee3e49ad3) as proposed by Pedro Sánchez Terraf;
--- a/src/ZF/Constructible/AC_in_L.thy Wed Mar 18 17:29:20 2020 +0100
+++ b/src/ZF/Constructible/AC_in_L.thy Wed Mar 18 17:44:27 2020 +0100
@@ -460,7 +460,7 @@
apply (blast dest!: well_ord_L_r intro: well_ord_subset)
done
-interpretation L?: M_basic L by (rule M_basic_L)
+interpretation L: M_basic L by (rule M_basic_L)
theorem "\<forall>x[L]. \<exists>r. wellordered(L,x,r)"
proof
@@ -469,7 +469,7 @@
then obtain r where "well_ord(x,r)"
by (blast dest: L_implies_AC)
thus "\<exists>r. wellordered(L,x,r)"
- by (blast intro: well_ord_imp_relativized)
+ by (blast intro: L.well_ord_imp_relativized)
qed
text\<open>In order to prove \<^term>\<open> \<exists>r[L]. wellordered(L,x,r)\<close>, it's necessary to know
--- a/src/ZF/Constructible/DPow_absolute.thy Wed Mar 18 17:29:20 2020 +0100
+++ b/src/ZF/Constructible/DPow_absolute.thy Wed Mar 18 17:44:27 2020 +0100
@@ -581,7 +581,7 @@
==> transrec_replacement(L, \<lambda>x f u.
\<exists>r[L]. is_Replace(L, x, transrec_body(L,f,x), r) &
big_union(L, r, u), j)"
-apply (rule transrec_replacementI, assumption)
+apply (rule L.transrec_replacementI, assumption)
apply (unfold transrec_body_def)
apply (rule strong_replacementI)
apply (rule_tac u="{j,B,Memrel(eclose({j}))}"
--- a/src/ZF/Constructible/L_axioms.thy Wed Mar 18 17:29:20 2020 +0100
+++ b/src/ZF/Constructible/L_axioms.thy Wed Mar 18 17:44:27 2020 +0100
@@ -110,7 +110,7 @@
apply (rule Union_ax)
done
-interpretation L?: M_trivial L by (rule M_trivial_L)
+interpretation L: M_trivial L by (rule M_trivial_L)
(* Replaces the following declarations...
lemmas rall_abs = M_trivial.rall_abs [OF M_trivial_L]
--- a/src/ZF/Constructible/Rec_Separation.thy Wed Mar 18 17:29:20 2020 +0100
+++ b/src/ZF/Constructible/Rec_Separation.thy Wed Mar 18 17:44:27 2020 +0100
@@ -184,7 +184,7 @@
theorem M_trancl_L: "M_trancl(L)"
by (rule M_trancl.intro [OF M_basic_L M_trancl_axioms_L])
-interpretation L?: M_trancl L by (rule M_trancl_L)
+interpretation L: M_trancl L by (rule M_trancl_L)
subsection\<open>\<^term>\<open>L\<close> is Closed Under the Operator \<^term>\<open>list\<close>\<close>
@@ -371,7 +371,7 @@
apply (rule M_datatypes_axioms_L)
done
-interpretation L?: M_datatypes L by (rule M_datatypes_L)
+interpretation L: M_datatypes L by (rule M_datatypes_L)
subsection\<open>\<^term>\<open>L\<close> is Closed Under the Operator \<^term>\<open>eclose\<close>\<close>
@@ -434,7 +434,7 @@
apply (rule M_eclose_axioms_L)
done
-interpretation L?: M_eclose L by (rule M_eclose_L)
+interpretation L: M_eclose L by (rule M_eclose_L)
end
--- a/src/ZF/Constructible/Satisfies_absolute.thy Wed Mar 18 17:29:20 2020 +0100
+++ b/src/ZF/Constructible/Satisfies_absolute.thy Wed Mar 18 17:44:27 2020 +0100
@@ -961,11 +961,11 @@
lemma formula_rec_replacement:
\<comment> \<open>For the \<^term>\<open>transrec\<close>\<close>
"[|n \<in> nat; L(A)|] ==> transrec_replacement(L, satisfies_MH(L,A), n)"
-apply (rule transrec_replacementI, simp add: nat_into_M)
+apply (rule L.transrec_replacementI, simp add: L.nat_into_M)
apply (rule strong_replacementI)
apply (rule_tac u="{B,A,n,Memrel(eclose({n}))}"
in gen_separation_multi [OF formula_rec_replacement_Reflects],
- auto simp add: nat_into_M)
+ auto simp add: L.nat_into_M)
apply (rule_tac env="[B,A,n,Memrel(eclose({n}))]" in DPow_LsetI)
apply (rule sep_rules satisfies_MH_iff_sats is_wfrec_iff_sats | simp)+
done
--- a/src/ZF/Constructible/Separation.thy Wed Mar 18 17:29:20 2020 +0100
+++ b/src/ZF/Constructible/Separation.thy Wed Mar 18 17:44:27 2020 +0100
@@ -304,7 +304,7 @@
theorem M_basic_L: " M_basic(L)"
by (rule M_basic.intro [OF M_trivial_L M_basic_axioms_L])
-interpretation L?: M_basic L by (rule M_basic_L)
+interpretation L: M_basic L by (rule M_basic_L)
end