--- a/src/HOL/Lim.thy Mon Jun 01 07:45:49 2009 -0700
+++ b/src/HOL/Lim.thy Mon Jun 01 07:57:37 2009 -0700
@@ -14,7 +14,7 @@
definition
at :: "'a::metric_space \<Rightarrow> 'a filter" where
- "at a = Abs_filter (\<lambda>P. \<exists>r>0. \<forall>x. x \<noteq> a \<and> dist x a < r \<longrightarrow> P x)"
+ [code del]: "at a = Abs_filter (\<lambda>P. \<exists>r>0. \<forall>x. x \<noteq> a \<and> dist x a < r \<longrightarrow> P x)"
definition
LIM :: "['a::metric_space \<Rightarrow> 'b::metric_space, 'a, 'b] \<Rightarrow> bool"
--- a/src/HOL/Limits.thy Mon Jun 01 07:45:49 2009 -0700
+++ b/src/HOL/Limits.thy Mon Jun 01 07:57:37 2009 -0700
@@ -20,7 +20,7 @@
definition
eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool" where
- "eventually P F \<longleftrightarrow> Rep_filter F P"
+ [simp del]: "eventually P F \<longleftrightarrow> Rep_filter F P"
lemma eventually_True [simp]: "eventually (\<lambda>x. True) F"
unfolding eventually_def using Rep_filter [of F] by blast
@@ -85,7 +85,7 @@
definition
Zfun :: "('a \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool" where
- "Zfun S F = (\<forall>r>0. eventually (\<lambda>i. norm (S i) < r) F)"
+ [code del]: "Zfun S F = (\<forall>r>0. eventually (\<lambda>i. norm (S i) < r) F)"
lemma ZfunI:
"(\<And>r. 0 < r \<Longrightarrow> eventually (\<lambda>i. norm (S i) < r) F) \<Longrightarrow> Zfun S F"
@@ -228,7 +228,7 @@
definition
tendsto :: "('a \<Rightarrow> 'b::metric_space) \<Rightarrow> 'b \<Rightarrow> 'a filter \<Rightarrow> bool" where
- "tendsto f l net \<longleftrightarrow> (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) net)"
+ [code del]: "tendsto f l net \<longleftrightarrow> (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) net)"
lemma tendstoI:
"(\<And>e. 0 < e \<Longrightarrow> eventually (\<lambda>x. dist (f x) l < e) net)
--- a/src/HOL/SEQ.thy Mon Jun 01 07:45:49 2009 -0700
+++ b/src/HOL/SEQ.thy Mon Jun 01 07:57:37 2009 -0700
@@ -14,7 +14,7 @@
definition
sequentially :: "nat filter" where
- "sequentially = Abs_filter (\<lambda>P. \<exists>N. \<forall>n\<ge>N. P n)"
+ [code del]: "sequentially = Abs_filter (\<lambda>P. \<exists>N. \<forall>n\<ge>N. P n)"
definition
Zseq :: "[nat \<Rightarrow> 'a::real_normed_vector] \<Rightarrow> bool" where