--- a/src/HOL/Library/Univ_Poly.thy Sun Aug 25 17:04:22 2013 +0200
+++ b/src/HOL/Library/Univ_Poly.thy Sun Aug 25 17:17:48 2013 +0200
@@ -97,7 +97,7 @@
lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)"
by auto
-lemma pminus_Nil[simp]: "-- [] = []"
+lemma pminus_Nil: "-- [] = []"
by (simp add: poly_minus_def)
lemma pmult_singleton: "[h1] *** p1 = h1 %* p1" by simp
@@ -114,7 +114,7 @@
proof(induct b arbitrary: a)
case Nil thus ?case by auto
next
- case (Cons b bs a) thus ?case by (cases a, simp_all add: add_commute)
+ case (Cons b bs a) thus ?case by (cases a) (simp_all add: add_commute)
qed
lemma (in comm_semiring_0) padd_assoc: "\<forall>b c. (a +++ b) +++ c = a +++ (b +++ c)"
@@ -130,7 +130,7 @@
lemma (in ring_1) pmult_by_x[simp]: "[0, 1] *** t = ((0)#t)"
apply (induct "t", simp)
-apply (auto simp add: mult_zero_left poly_ident_mult padd_commut)
+apply (auto simp add: padd_commut)
apply (case_tac t, auto)
done
@@ -141,7 +141,7 @@
case Nil thus ?case by simp
next
case (Cons a as p2) thus ?case
- by (cases p2, simp_all add: add_ac distrib_left)
+ by (cases p2) (simp_all add: add_ac distrib_left)
qed
lemma (in comm_semiring_0) poly_cmult: "poly (c %* p) x = c * poly p x"
@@ -155,7 +155,7 @@
lemma (in comm_ring_1) poly_minus: "poly (-- p) x = - (poly p x)"
apply (simp add: poly_minus_def)
-apply (auto simp add: poly_cmult minus_mult_left[symmetric])
+apply (auto simp add: poly_cmult)
done
lemma (in comm_semiring_0) poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x"
@@ -171,7 +171,7 @@
lemma (in comm_ring_1) poly_exp: "poly (p %^ n) x = (poly p x) ^ n"
apply (induct "n")
-apply (auto simp add: poly_cmult poly_mult power_Suc)
+apply (auto simp add: poly_cmult poly_mult)
done
text{*More Polynomial Evaluation Lemmas*}
@@ -204,8 +204,7 @@
from Cons.hyps[rule_format, of x]
obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast
have "h#x#xs = [a*r + h] +++ [-a, 1] *** (r#q)"
- using qr by(cases q, simp_all add: algebra_simps diff_minus[symmetric]
- minus_mult_left[symmetric] right_minus)
+ using qr by (cases q) (simp_all add: algebra_simps)
hence "\<exists>q r. h#x#xs = [r] +++ [-a, 1] *** q" by blast}
thus ?case by blast
qed
@@ -218,9 +217,12 @@
proof-
{assume p: "p = []" hence ?thesis by simp}
moreover
- {fix x xs assume p: "p = x#xs"
- {fix q assume "p = [-a, 1] *** q" hence "poly p a = 0"
- by (simp add: poly_add poly_cmult minus_mult_left[symmetric])}
+ {
+ fix x xs assume p: "p = x#xs"
+ {
+ fix q assume "p = [-a, 1] *** q"
+ hence "poly p a = 0" by (simp add: poly_add poly_cmult)
+ }
moreover
{assume p0: "poly p a = 0"
from poly_linear_rem[of x xs a] obtain q r
@@ -388,20 +390,20 @@
by (simp add: poly_entire)
lemma fun_eq: " (f = g) = (\<forall>x. f x = g x)"
-by (auto intro!: ext)
+by auto
lemma (in comm_ring_1) poly_add_minus_zero_iff: "(poly (p +++ -- q) = poly []) = (poly p = poly q)"
-by (auto simp add: algebra_simps poly_add poly_minus_def fun_eq poly_cmult minus_mult_left[symmetric])
+by (auto simp add: algebra_simps poly_add poly_minus_def fun_eq poly_cmult)
lemma (in comm_ring_1) poly_add_minus_mult_eq: "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))"
-by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult distrib_left minus_mult_left[symmetric] minus_mult_right[symmetric])
+by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult distrib_left)
subclass (in idom_char_0) comm_ring_1 ..
lemma (in idom_char_0) poly_mult_left_cancel: "(poly (p *** q) = poly (p *** r)) = (poly p = poly [] | poly q = poly r)"
proof-
have "poly (p *** q) = poly (p *** r) \<longleftrightarrow> poly (p *** q +++ -- (p *** r)) = poly []" by (simp only: poly_add_minus_zero_iff)
also have "\<dots> \<longleftrightarrow> poly p = poly [] | poly q = poly r"
- by (auto intro: ext simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff)
+ by (auto intro: simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff)
finally show ?thesis .
qed
@@ -474,7 +476,7 @@
apply (simp add: distrib_right [symmetric])
apply clarsimp
-apply (auto simp add: right_minus poly_linear_divides poly_add poly_cmult distrib_right [symmetric])
+apply (auto simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric])
apply (rule_tac x = "pmult qa q" in exI)
apply (rule_tac [2] x = "pmult p qa" in exI)
apply (auto simp add: poly_add poly_mult poly_cmult mult_ac)
@@ -556,7 +558,7 @@
apply simp
apply (simp only: fun_eq)
apply (rule ccontr)
- apply (simp add: fun_eq poly_add poly_cmult minus_mult_left[symmetric])
+ apply (simp add: fun_eq poly_add poly_cmult)
done
from Suc.hyps[OF qh] obtain m r where
mr: "q = mulexp m [-a,1] r" "poly r a \<noteq> 0" by blast
@@ -570,7 +572,7 @@
lemma (in comm_semiring_1) poly_mulexp: "poly (mulexp n p q) x = (poly p x) ^ n * poly q x"
-by(induct n, auto simp add: poly_mult power_Suc mult_ac)
+ by (induct n) (auto simp add: poly_mult mult_ac)
lemma (in comm_semiring_1) divides_left_mult:
assumes d:"(p***q) divides r" shows "p divides r \<and> q divides r"
@@ -588,7 +590,7 @@
lemma (in semiring_1)
zero_power_iff: "0 ^ n = (if n = 0 then 1 else 0)"
- by (induct n, simp_all add: power_Suc)
+ by (induct n) simp_all
lemma (in idom_char_0) poly_order_exists:
assumes lp: "length p = d" and p0: "poly p \<noteq> poly []"
@@ -612,7 +614,7 @@
apply (induct_tac "n")
apply (simp del: pmult_Cons pexp_Suc)
apply (erule_tac Q = "?poly q a = zero" in contrapos_np)
-apply (simp add: poly_add poly_cmult minus_mult_left[symmetric])
+apply (simp add: poly_add poly_cmult)
apply (rule pexp_Suc [THEN ssubst])
apply (rule ccontr)
apply (simp add: poly_mult_left_cancel poly_mult_assoc del: pmult_Cons pexp_Suc)
@@ -664,12 +666,10 @@
by (blast intro: order_unique)
lemma (in ring_1) order_poly: "poly p = poly q ==> order a p = order a q"
-by (auto simp add: fun_eq divides_def poly_mult order_def)
+ by (auto simp add: fun_eq divides_def poly_mult order_def)
lemma (in semiring_1) pexp_one[simp]: "p %^ (Suc 0) = p"
-apply (induct "p")
-apply (auto simp add: numeral_1_eq_1)
-done
+ by (induct "p") auto
lemma (in comm_ring_1) lemma_order_root:
" 0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p
@@ -914,7 +914,8 @@
lemma (in semiring_0) poly_Nil_ext: "poly [] = (\<lambda>x. 0)" by (rule ext) simp
-lemma (in idom_char_0) linear_mul_degree: assumes p: "poly p \<noteq> poly []"
+lemma (in idom_char_0) linear_mul_degree:
+ assumes p: "poly p \<noteq> poly []"
shows "degree ([a,1] *** p) = degree p + 1"
proof-
from p have pnz: "pnormalize p \<noteq> []"
@@ -927,7 +928,7 @@
have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1"
- by (auto simp add: poly_length_mult)
+ by simp
have eqs: "poly ([a,1] *** pnormalize p) = poly ([a,1] *** p)"
by (rule ext) (simp add: poly_mult poly_add poly_cmult)