partial restructuring to reduce dependence on Axiom of Choice
authorpaulson
Wed, 25 Jul 2001 13:44:32 +0200
changeset 11453 1b15f655da2c
parent 11452 f3fbbaeb4fb8
child 11454 7514e5e21cb8
partial restructuring to reduce dependence on Axiom of Choice
src/HOL/Hilbert_Choice_lemmas.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Hilbert_Choice_lemmas.ML	Wed Jul 25 13:44:32 2001 +0200
@@ -0,0 +1,265 @@
+(*  Title:      HOL/Hilbert_Choice_lemmas
+    ID:         $Id$
+    Author:     Lawrence C Paulson
+    Copyright   2001  University of Cambridge
+
+Lemmas for Hilbert's epsilon-operator and the Axiom of Choice
+*)
+
+
+(* ML bindings *)
+val someI = thm "someI";
+
+section "SOME: Hilbert's Epsilon-operator";
+
+(*Easier to apply than someI if witness ?a comes from an EX-formula*)
+Goal "EX x. P x ==> P (SOME x. P x)";
+by (etac exE 1);
+by (etac someI 1);
+qed "someI_ex";
+
+(*Easier to apply than someI: conclusion has only one occurrence of P*)
+val prems = Goal "[| P a;  !!x. P x ==> Q x |] ==> Q (SOME x. P x)";
+by (resolve_tac prems 1);
+by (rtac someI 1);
+by (resolve_tac prems 1) ;
+qed "someI2";
+
+(*Easier to apply than someI2 if witness ?a comes from an EX-formula*)
+val [major,minor] = Goal "[| EX a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)";
+by (rtac (major RS exE) 1);
+by (etac someI2 1 THEN etac minor 1);
+qed "someI2_ex";
+
+val prems = Goal "[| P a;  !!x. P x ==> x=a |] ==> (SOME x. P x) = a";
+by (rtac someI2 1);
+by (REPEAT (ares_tac prems 1)) ;
+qed "some_equality";
+AddIs [some_equality];
+
+Goal "[| EX!x. P x; P a |] ==> (SOME x. P x) = a";
+by (rtac some_equality 1);
+by  (atac 1);
+by (etac ex1E 1);
+by (etac all_dupE 1);
+by (dtac mp 1);
+by  (atac 1);
+by (etac ssubst 1);
+by (etac allE 1);
+by (etac mp 1);
+by (atac 1);
+qed "some1_equality";
+
+Goal "P (SOME x. P x) =  (EX x. P x)";
+by (rtac iffI 1);
+by (etac exI 1);
+by (etac exE 1);
+by (etac someI 1);
+qed "some_eq_ex";
+
+Goal "(SOME y. y=x) = x";
+by (rtac some_equality 1);
+by (rtac refl 1);
+by (atac 1);
+qed "some_eq_trivial";
+
+Goal "(SOME y. x=y) = x";
+by (rtac some_equality 1);
+by (rtac refl 1);
+by (etac sym 1);
+qed "some_sym_eq_trivial";
+
+
+AddXEs [someI_ex];
+AddIs [some_equality];
+
+Addsimps [some_eq_trivial, some_sym_eq_trivial];
+
+
+(** "Axiom" of Choice, proved using the description operator **)
+
+(*"choice" is now proved in Tools/meson.ML*)
+
+Goal "ALL x:S. EX y. Q x y ==> EX f. ALL x:S. Q x (f x)";
+by (fast_tac (claset() addEs [someI]) 1);
+qed "bchoice";
+
+
+(**** Function Inverse ****)
+
+val inv_def = thm "inv_def";
+val Inv_def = thm "Inv_def";
+
+
+Goal "inv id = id";
+by (simp_tac (simpset() addsimps [inv_def,id_def]) 1);
+qed "inv_id";
+Addsimps [inv_id];
+
+(*A one-to-one function has an inverse.*)
+Goalw [inv_def] "inj(f) ==> inv f (f x) = x";
+by (asm_simp_tac (simpset() addsimps [inj_eq]) 1); 
+qed "inv_f_f";
+Addsimps [inv_f_f];
+
+Goal "[| inj(f);  f x = y |] ==> inv f y = x";
+by (etac subst 1);
+by (etac inv_f_f 1);
+qed "inv_f_eq";
+
+Goal "[| inj f; ALL x. f(g x) = x |] ==> inv f = g";
+by (blast_tac (claset() addIs [ext, inv_f_eq]) 1); 
+qed "inj_imp_inv_eq";
+
+(* Useful??? *)
+val [oneone,minor] = Goal
+    "[| inj(f); !!y. y: range(f) ==> P(inv f y) |] ==> P(x)";
+by (res_inst_tac [("t", "x")] (oneone RS (inv_f_f RS subst)) 1);
+by (rtac (rangeI RS minor) 1);
+qed "inj_transfer";
+
+Goal "(inj f) = (inv f o f = id)";
+by (asm_simp_tac (simpset() addsimps [o_def, expand_fun_eq]) 1);
+by (blast_tac (claset() addIs [inj_inverseI, inv_f_f]) 1);
+qed "inj_iff";
+
+Goal "inj f ==> surj (inv f)";
+by (blast_tac (claset() addIs [surjI, inv_f_f]) 1);
+qed "inj_imp_surj_inv";
+
+Goalw [inv_def] "y : range(f) ==> f(inv f y) = y";
+by (fast_tac (claset() addIs [someI]) 1);
+qed "f_inv_f";
+
+Goal "surj f ==> f(inv f y) = y";
+by (asm_simp_tac (simpset() addsimps [f_inv_f, surj_range]) 1);
+qed "surj_f_inv_f";
+
+Goal "[| inv f x = inv f y;  x: range(f);  y: range(f) |] ==> x=y";
+by (rtac (arg_cong RS box_equals) 1);
+by (REPEAT (ares_tac [f_inv_f] 1));
+qed "inv_injective";
+
+Goal "A <= range(f) ==> inj_on (inv f) A";
+by (fast_tac (claset() addIs [inj_onI] 
+                       addEs [inv_injective, injD]) 1);
+qed "inj_on_inv";
+
+Goal "surj f ==> inj (inv f)";
+by (asm_simp_tac (simpset() addsimps [inj_on_inv, surj_range]) 1);
+qed "surj_imp_inj_inv";
+
+Goal "(surj f) = (f o inv f = id)";
+by (asm_simp_tac (simpset() addsimps [o_def, expand_fun_eq]) 1);
+by (blast_tac (claset() addIs [surjI, surj_f_inv_f]) 1);
+qed "surj_iff";
+
+Goal "[| surj f; ALL x. g(f x) = x |] ==> inv f = g";
+by (rtac ext 1);
+by (dres_inst_tac [("x","inv f x")] spec 1); 
+by (asm_full_simp_tac (simpset() addsimps [surj_f_inv_f]) 1); 
+qed "surj_imp_inv_eq";
+
+Goalw [bij_def] "bij f ==> bij (inv f)";
+by (asm_simp_tac (simpset() addsimps [inj_imp_surj_inv, surj_imp_inj_inv]) 1);
+qed "bij_imp_bij_inv";
+
+val prems = 
+Goalw [inv_def] "[| !! x. g (f x) = x;  !! y. f (g y) = y |] ==> inv f = g";
+by (rtac ext 1);
+by (auto_tac (claset(), simpset() addsimps prems));
+qed "inv_equality";
+
+Goalw [bij_def] "bij f ==> inv (inv f) = f";
+by (rtac inv_equality 1);
+by (auto_tac (claset(), simpset() addsimps [surj_f_inv_f]));
+qed "inv_inv_eq";
+
+(** bij(inv f) implies little about f.  Consider f::bool=>bool such that
+    f(True)=f(False)=True.  Then it's consistent with axiom someI that
+    inv(f) could be any function at all, including the identity function.
+    If inv(f)=id then inv(f) is a bijection, but inj(f), surj(f) and
+    inv(inv(f))=f all fail.
+**)
+
+Goalw [bij_def] "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f";
+by (rtac (inv_equality) 1);
+by (auto_tac (claset(), simpset() addsimps [surj_f_inv_f]));
+qed "o_inv_distrib";
+
+
+Goal "surj f ==> f ` (inv f ` A) = A";
+by (asm_simp_tac (simpset() addsimps [image_eq_UN, surj_f_inv_f]) 1);
+qed "image_surj_f_inv_f";
+
+Goal "inj f ==> (inv f) ` (f ` A) = A";
+by (asm_simp_tac (simpset() addsimps [image_eq_UN]) 1);
+qed "image_inv_f_f";
+
+Goalw [image_def] "inj(f) ==> inv(f)`(f`X) = X";
+by Auto_tac;
+qed "inv_image_comp";
+
+Goal "bij f ==> f ` Collect P = {y. P (inv f y)}";
+by Auto_tac;
+by (force_tac (claset(), simpset() addsimps [bij_is_inj]) 1);
+by (blast_tac (claset() addIs [bij_is_surj RS surj_f_inv_f RS sym]) 1);
+qed "bij_image_Collect_eq";
+
+Goal "bij f ==> f -` A = inv f ` A";
+by Safe_tac;
+by (asm_simp_tac (simpset() addsimps [bij_is_surj RS surj_f_inv_f]) 2);
+by (blast_tac (claset() addIs [bij_is_inj RS inv_f_f RS sym]) 1);
+qed "bij_vimage_eq_inv_image";
+
+(*** Inverse ***)
+
+Goalw [Inv_def] "f ` A = B ==> (lam x: B. (Inv A f) x) : B funcset A";
+by (fast_tac (claset() addIs [restrict_in_funcset, someI2]) 1);
+qed "Inv_funcset";
+
+Goal "[| inj_on f A;  x : A |] ==> Inv A f (f x) = x";
+by (asm_full_simp_tac (simpset() addsimps [Inv_def, inj_on_def]) 1);
+by (blast_tac (claset() addIs [someI2]) 1); 
+qed "Inv_f_f";
+
+Goal "y : f`A  ==> f (Inv A f y) = y";
+by (asm_simp_tac (simpset() addsimps [Inv_def]) 1);
+by (fast_tac (claset() addIs [someI2]) 1);
+qed "f_Inv_f";
+
+Goal "[| Inv A f x = Inv A f y;  x : f`A;  y : f`A |] ==> x=y";
+by (rtac (arg_cong RS box_equals) 1);
+by (REPEAT (ares_tac [f_Inv_f] 1));
+qed "Inv_injective";
+
+Goal "B <= f`A ==> inj_on (Inv A f) B";
+by (rtac inj_onI 1);
+by (blast_tac (claset() addIs [inj_onI] addDs [Inv_injective, injD]) 1);
+qed "inj_on_Inv";
+
+Goal "[| inj_on f A;  f ` A = B |] \
+\     ==> compose A (lam y:B. (Inv A f) y) f = (lam x: A. x)";
+by (asm_simp_tac (simpset() addsimps [compose_def]) 1);
+by (rtac restrict_ext 1); 
+by Auto_tac; 
+by (etac subst 1); 
+by (asm_full_simp_tac (simpset() addsimps [Inv_f_f]) 1);
+qed "compose_Inv_id";
+
+
+(**** split ****)
+
+(*Can't be added to simpset: loops!*)
+Goal "(SOME x. P x) = (SOME (a,b). P(a,b))";
+by (simp_tac (simpset() addsimps [split_Pair_apply]) 1);
+qed "split_paired_Eps";
+
+Goalw [split_def] "Eps (split P) = (SOME xy. P (fst xy) (snd xy))";
+by (rtac refl 1);
+qed "Eps_split";
+
+Goal "(@(x',y'). x = x' & y = y') = (x,y)";
+by (Blast_tac 1);
+qed "Eps_split_eq";
+Addsimps [Eps_split_eq];