added lemmas
authornipkow
Wed, 25 Jun 2025 16:16:26 +0200
changeset 82736 1ca8d9705e34
parent 82735 5d0d35680311
child 82768 8f866fd6fae1
added lemmas
src/HOL/List.thy
--- a/src/HOL/List.thy	Wed Jun 25 14:16:30 2025 +0200
+++ b/src/HOL/List.thy	Wed Jun 25 16:16:26 2025 +0200
@@ -3254,6 +3254,14 @@
 lemma fold_append_concat_rev: "fold append xss = append (concat (rev xss))"
   by (induct xss) simp_all
 
+lemma fold_inject:
+  assumes
+    "\<And>w x y z. f w x = f y z \<longleftrightarrow> w = y \<and> x = z" and
+    "\<And>x y. f x y \<noteq> a" and
+    "\<And>x y. f x y \<noteq> b"
+  shows "fold f xs a = fold f ys b \<longleftrightarrow> xs = ys \<and> a = b"
+by (induction xs ys rule: List.rev_induct2) (use assms(2,3,1) in auto)
+
 text \<open>\<^const>\<open>Finite_Set.fold\<close> and \<^const>\<open>fold\<close>\<close>
 
 lemma (in comp_fun_commute_on) fold_set_fold_remdups:
@@ -3396,6 +3404,22 @@
   "concat xss = foldr append xss []"
   by (simp add: fold_append_concat_rev foldr_conv_fold)
 
+lemma foldl_inject:
+  assumes
+    "\<And>w x y z. f w x = f y z \<longleftrightarrow> w = y \<and> x = z" and
+    "\<And>x y. f x y \<noteq> a" and
+    "\<And>x y. f x y \<noteq> b"
+  shows "foldl f a xs = foldl f b ys \<longleftrightarrow> a = b \<and> xs = ys"
+by (induction xs ys rule: rev_induct2) (use assms(2,3,1) in auto)
+
+lemma foldr_inject:
+  assumes
+    "\<And>w x y z. f w x = f y z \<longleftrightarrow> w = y \<and> x = z" and
+    "\<And>x y. f x y \<noteq> a" and
+    "\<And>x y. f x y \<noteq> b"
+  shows "foldr f xs a = foldr f ys b \<longleftrightarrow> a = b \<and> xs = ys"
+by (induction xs ys rule: list_induct2') (use assms(2,3,1) in auto)
+
 
 subsubsection \<open>\<^const>\<open>upt\<close>\<close>