author | haftmann |
Sun, 18 Aug 2013 15:29:50 +0200 | |
changeset 53066 | 1f61a923c2d6 |
parent 53065 | de1816a7293e |
child 53067 | ee0b7c2315d2 |
--- a/src/HOL/Divides.thy Sun Aug 18 15:29:50 2013 +0200 +++ b/src/HOL/Divides.thy Sun Aug 18 15:29:50 2013 +0200 @@ -733,6 +733,17 @@ lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)" by simp +lemma div_positive: + fixes m n :: nat + assumes "n > 0" + assumes "m \<ge> n" + shows "m div n > 0" +proof - + from `m \<ge> n` obtain q where "m = n + q" + by (auto simp add: le_iff_add) + with `n > 0` show ?thesis by simp +qed + subsubsection {* Remainder *}