moving AList theory to AList_Impl to make space for the association lists with invariant
authorbulwahn
Wed, 14 Dec 2011 16:30:29 +0100
changeset 45871 1fec5b365f9b
parent 45870 347c9383acd8
child 45872 3759fb8a02b8
moving AList theory to AList_Impl to make space for the association lists with invariant
src/HOL/Library/AList.thy
src/HOL/Library/AList_Impl.thy
--- a/src/HOL/Library/AList.thy	Wed Dec 14 16:30:09 2011 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,696 +0,0 @@
-(*  Title:      HOL/Library/AList.thy
-    Author:     Norbert Schirmer, Tobias Nipkow, Martin Wildmoser, TU Muenchen
-*)
-
-header {* Implementation of Association Lists *}
-
-theory AList
-imports Main More_List
-begin
-
-text {*
-  The operations preserve distinctness of keys and 
-  function @{term "clearjunk"} distributes over them. Since 
-  @{term clearjunk} enforces distinctness of keys it can be used
-  to establish the invariant, e.g. for inductive proofs.
-*}
-
-subsection {* @{text update} and @{text updates} *}
-
-primrec update :: "'key \<Rightarrow> 'val \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
-    "update k v [] = [(k, v)]"
-  | "update k v (p#ps) = (if fst p = k then (k, v) # ps else p # update k v ps)"
-
-lemma update_conv': "map_of (update k v al)  = (map_of al)(k\<mapsto>v)"
-  by (induct al) (auto simp add: fun_eq_iff)
-
-corollary update_conv: "map_of (update k v al) k' = ((map_of al)(k\<mapsto>v)) k'"
-  by (simp add: update_conv')
-
-lemma dom_update: "fst ` set (update k v al) = {k} \<union> fst ` set al"
-  by (induct al) auto
-
-lemma update_keys:
-  "map fst (update k v al) =
-    (if k \<in> set (map fst al) then map fst al else map fst al @ [k])"
-  by (induct al) simp_all
-
-lemma distinct_update:
-  assumes "distinct (map fst al)" 
-  shows "distinct (map fst (update k v al))"
-  using assms by (simp add: update_keys)
-
-lemma update_filter: 
-  "a\<noteq>k \<Longrightarrow> update k v [q\<leftarrow>ps . fst q \<noteq> a] = [q\<leftarrow>update k v ps . fst q \<noteq> a]"
-  by (induct ps) auto
-
-lemma update_triv: "map_of al k = Some v \<Longrightarrow> update k v al = al"
-  by (induct al) auto
-
-lemma update_nonempty [simp]: "update k v al \<noteq> []"
-  by (induct al) auto
-
-lemma update_eqD: "update k v al = update k v' al' \<Longrightarrow> v = v'"
-proof (induct al arbitrary: al') 
-  case Nil thus ?case 
-    by (cases al') (auto split: split_if_asm)
-next
-  case Cons thus ?case
-    by (cases al') (auto split: split_if_asm)
-qed
-
-lemma update_last [simp]: "update k v (update k v' al) = update k v al"
-  by (induct al) auto
-
-text {* Note that the lists are not necessarily the same:
-        @{term "update k v (update k' v' []) = [(k', v'), (k, v)]"} and 
-        @{term "update k' v' (update k v []) = [(k, v), (k', v')]"}.*}
-lemma update_swap: "k\<noteq>k' 
-  \<Longrightarrow> map_of (update k v (update k' v' al)) = map_of (update k' v' (update k v al))"
-  by (simp add: update_conv' fun_eq_iff)
-
-lemma update_Some_unfold: 
-  "map_of (update k v al) x = Some y \<longleftrightarrow>
-    x = k \<and> v = y \<or> x \<noteq> k \<and> map_of al x = Some y"
-  by (simp add: update_conv' map_upd_Some_unfold)
-
-lemma image_update [simp]:
-  "x \<notin> A \<Longrightarrow> map_of (update x y al) ` A = map_of al ` A"
-  by (simp add: update_conv' image_map_upd)
-
-definition updates :: "'key list \<Rightarrow> 'val list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
-  "updates ks vs = More_List.fold (prod_case update) (zip ks vs)"
-
-lemma updates_simps [simp]:
-  "updates [] vs ps = ps"
-  "updates ks [] ps = ps"
-  "updates (k#ks) (v#vs) ps = updates ks vs (update k v ps)"
-  by (simp_all add: updates_def)
-
-lemma updates_key_simp [simp]:
-  "updates (k # ks) vs ps =
-    (case vs of [] \<Rightarrow> ps | v # vs \<Rightarrow> updates ks vs (update k v ps))"
-  by (cases vs) simp_all
-
-lemma updates_conv': "map_of (updates ks vs al) = (map_of al)(ks[\<mapsto>]vs)"
-proof -
-  have "map_of \<circ> More_List.fold (prod_case update) (zip ks vs) =
-    More_List.fold (\<lambda>(k, v) f. f(k \<mapsto> v)) (zip ks vs) \<circ> map_of"
-    by (rule fold_commute) (auto simp add: fun_eq_iff update_conv')
-  then show ?thesis by (auto simp add: updates_def fun_eq_iff map_upds_fold_map_upd foldl_fold split_def)
-qed
-
-lemma updates_conv: "map_of (updates ks vs al) k = ((map_of al)(ks[\<mapsto>]vs)) k"
-  by (simp add: updates_conv')
-
-lemma distinct_updates:
-  assumes "distinct (map fst al)"
-  shows "distinct (map fst (updates ks vs al))"
-proof -
-  have "distinct (More_List.fold
-       (\<lambda>(k, v) al. if k \<in> set al then al else al @ [k])
-       (zip ks vs) (map fst al))"
-    by (rule fold_invariant [of "zip ks vs" "\<lambda>_. True"]) (auto intro: assms)
-  moreover have "map fst \<circ> More_List.fold (prod_case update) (zip ks vs) =
-    More_List.fold (\<lambda>(k, v) al. if k \<in> set al then al else al @ [k]) (zip ks vs) \<circ> map fst"
-    by (rule fold_commute) (simp add: update_keys split_def prod_case_beta comp_def)
-  ultimately show ?thesis by (simp add: updates_def fun_eq_iff)
-qed
-
-lemma updates_append1[simp]: "size ks < size vs \<Longrightarrow>
-  updates (ks@[k]) vs al = update k (vs!size ks) (updates ks vs al)"
-  by (induct ks arbitrary: vs al) (auto split: list.splits)
-
-lemma updates_list_update_drop[simp]:
- "\<lbrakk>size ks \<le> i; i < size vs\<rbrakk>
-   \<Longrightarrow> updates ks (vs[i:=v]) al = updates ks vs al"
-  by (induct ks arbitrary: al vs i) (auto split:list.splits nat.splits)
-
-lemma update_updates_conv_if: "
- map_of (updates xs ys (update x y al)) =
- map_of (if x \<in>  set(take (length ys) xs) then updates xs ys al
-                                  else (update x y (updates xs ys al)))"
-  by (simp add: updates_conv' update_conv' map_upd_upds_conv_if)
-
-lemma updates_twist [simp]:
- "k \<notin> set ks \<Longrightarrow> 
-  map_of (updates ks vs (update k v al)) = map_of (update k v (updates ks vs al))"
-  by (simp add: updates_conv' update_conv' map_upds_twist)
-
-lemma updates_apply_notin[simp]:
- "k \<notin> set ks ==> map_of (updates ks vs al) k = map_of al k"
-  by (simp add: updates_conv)
-
-lemma updates_append_drop[simp]:
-  "size xs = size ys \<Longrightarrow> updates (xs@zs) ys al = updates xs ys al"
-  by (induct xs arbitrary: ys al) (auto split: list.splits)
-
-lemma updates_append2_drop[simp]:
-  "size xs = size ys \<Longrightarrow> updates xs (ys@zs) al = updates xs ys al"
-  by (induct xs arbitrary: ys al) (auto split: list.splits)
-
-
-subsection {* @{text delete} *}
-
-definition delete :: "'key \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
-  delete_eq: "delete k = filter (\<lambda>(k', _). k \<noteq> k')"
-
-lemma delete_simps [simp]:
-  "delete k [] = []"
-  "delete k (p#ps) = (if fst p = k then delete k ps else p # delete k ps)"
-  by (auto simp add: delete_eq)
-
-lemma delete_conv': "map_of (delete k al) = (map_of al)(k := None)"
-  by (induct al) (auto simp add: fun_eq_iff)
-
-corollary delete_conv: "map_of (delete k al) k' = ((map_of al)(k := None)) k'"
-  by (simp add: delete_conv')
-
-lemma delete_keys:
-  "map fst (delete k al) = removeAll k (map fst al)"
-  by (simp add: delete_eq removeAll_filter_not_eq filter_map split_def comp_def)
-
-lemma distinct_delete:
-  assumes "distinct (map fst al)" 
-  shows "distinct (map fst (delete k al))"
-  using assms by (simp add: delete_keys distinct_removeAll)
-
-lemma delete_id [simp]: "k \<notin> fst ` set al \<Longrightarrow> delete k al = al"
-  by (auto simp add: image_iff delete_eq filter_id_conv)
-
-lemma delete_idem: "delete k (delete k al) = delete k al"
-  by (simp add: delete_eq)
-
-lemma map_of_delete [simp]:
-    "k' \<noteq> k \<Longrightarrow> map_of (delete k al) k' = map_of al k'"
-  by (simp add: delete_conv')
-
-lemma delete_notin_dom: "k \<notin> fst ` set (delete k al)"
-  by (auto simp add: delete_eq)
-
-lemma dom_delete_subset: "fst ` set (delete k al) \<subseteq> fst ` set al"
-  by (auto simp add: delete_eq)
-
-lemma delete_update_same:
-  "delete k (update k v al) = delete k al"
-  by (induct al) simp_all
-
-lemma delete_update:
-  "k \<noteq> l \<Longrightarrow> delete l (update k v al) = update k v (delete l al)"
-  by (induct al) simp_all
-
-lemma delete_twist: "delete x (delete y al) = delete y (delete x al)"
-  by (simp add: delete_eq conj_commute)
-
-lemma length_delete_le: "length (delete k al) \<le> length al"
-  by (simp add: delete_eq)
-
-
-subsection {* @{text restrict} *}
-
-definition restrict :: "'key set \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
-  restrict_eq: "restrict A = filter (\<lambda>(k, v). k \<in> A)"
-
-lemma restr_simps [simp]:
-  "restrict A [] = []"
-  "restrict A (p#ps) = (if fst p \<in> A then p # restrict A ps else restrict A ps)"
-  by (auto simp add: restrict_eq)
-
-lemma restr_conv': "map_of (restrict A al) = ((map_of al)|` A)"
-proof
-  fix k
-  show "map_of (restrict A al) k = ((map_of al)|` A) k"
-    by (induct al) (simp, cases "k \<in> A", auto)
-qed
-
-corollary restr_conv: "map_of (restrict A al) k = ((map_of al)|` A) k"
-  by (simp add: restr_conv')
-
-lemma distinct_restr:
-  "distinct (map fst al) \<Longrightarrow> distinct (map fst (restrict A al))"
-  by (induct al) (auto simp add: restrict_eq)
-
-lemma restr_empty [simp]: 
-  "restrict {} al = []" 
-  "restrict A [] = []"
-  by (induct al) (auto simp add: restrict_eq)
-
-lemma restr_in [simp]: "x \<in> A \<Longrightarrow> map_of (restrict A al) x = map_of al x"
-  by (simp add: restr_conv')
-
-lemma restr_out [simp]: "x \<notin> A \<Longrightarrow> map_of (restrict A al) x = None"
-  by (simp add: restr_conv')
-
-lemma dom_restr [simp]: "fst ` set (restrict A al) = fst ` set al \<inter> A"
-  by (induct al) (auto simp add: restrict_eq)
-
-lemma restr_upd_same [simp]: "restrict (-{x}) (update x y al) = restrict (-{x}) al"
-  by (induct al) (auto simp add: restrict_eq)
-
-lemma restr_restr [simp]: "restrict A (restrict B al) = restrict (A\<inter>B) al"
-  by (induct al) (auto simp add: restrict_eq)
-
-lemma restr_update[simp]:
- "map_of (restrict D (update x y al)) = 
-  map_of ((if x \<in> D then (update x y (restrict (D-{x}) al)) else restrict D al))"
-  by (simp add: restr_conv' update_conv')
-
-lemma restr_delete [simp]:
-  "(delete x (restrict D al)) = 
-    (if x \<in> D then restrict (D - {x}) al else restrict D al)"
-apply (simp add: delete_eq restrict_eq)
-apply (auto simp add: split_def)
-proof -
-  have "\<And>y. y \<noteq> x \<longleftrightarrow> x \<noteq> y" by auto
-  then show "[p \<leftarrow> al. fst p \<in> D \<and> x \<noteq> fst p] = [p \<leftarrow> al. fst p \<in> D \<and> fst p \<noteq> x]"
-    by simp
-  assume "x \<notin> D"
-  then have "\<And>y. y \<in> D \<longleftrightarrow> y \<in> D \<and> x \<noteq> y" by auto
-  then show "[p \<leftarrow> al . fst p \<in> D \<and> x \<noteq> fst p] = [p \<leftarrow> al . fst p \<in> D]"
-    by simp
-qed
-
-lemma update_restr:
- "map_of (update x y (restrict D al)) = map_of (update x y (restrict (D-{x}) al))"
-  by (simp add: update_conv' restr_conv') (rule fun_upd_restrict)
-
-lemma update_restr_conv [simp]:
- "x \<in> D \<Longrightarrow> 
- map_of (update x y (restrict D al)) = map_of (update x y (restrict (D-{x}) al))"
-  by (simp add: update_conv' restr_conv')
-
-lemma restr_updates [simp]: "
- \<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
- \<Longrightarrow> map_of (restrict D (updates xs ys al)) = 
-     map_of (updates xs ys (restrict (D - set xs) al))"
-  by (simp add: updates_conv' restr_conv')
-
-lemma restr_delete_twist: "(restrict A (delete a ps)) = delete a (restrict A ps)"
-  by (induct ps) auto
-
-
-subsection {* @{text clearjunk} *}
-
-function clearjunk  :: "('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
-    "clearjunk [] = []"  
-  | "clearjunk (p#ps) = p # clearjunk (delete (fst p) ps)"
-  by pat_completeness auto
-termination by (relation "measure length")
-  (simp_all add: less_Suc_eq_le length_delete_le)
-
-lemma map_of_clearjunk:
-  "map_of (clearjunk al) = map_of al"
-  by (induct al rule: clearjunk.induct)
-    (simp_all add: fun_eq_iff)
-
-lemma clearjunk_keys_set:
-  "set (map fst (clearjunk al)) = set (map fst al)"
-  by (induct al rule: clearjunk.induct)
-    (simp_all add: delete_keys)
-
-lemma dom_clearjunk:
-  "fst ` set (clearjunk al) = fst ` set al"
-  using clearjunk_keys_set by simp
-
-lemma distinct_clearjunk [simp]:
-  "distinct (map fst (clearjunk al))"
-  by (induct al rule: clearjunk.induct)
-    (simp_all del: set_map add: clearjunk_keys_set delete_keys)
-
-lemma ran_clearjunk:
-  "ran (map_of (clearjunk al)) = ran (map_of al)"
-  by (simp add: map_of_clearjunk)
-
-lemma ran_map_of:
-  "ran (map_of al) = snd ` set (clearjunk al)"
-proof -
-  have "ran (map_of al) = ran (map_of (clearjunk al))"
-    by (simp add: ran_clearjunk)
-  also have "\<dots> = snd ` set (clearjunk al)"
-    by (simp add: ran_distinct)
-  finally show ?thesis .
-qed
-
-lemma clearjunk_update:
-  "clearjunk (update k v al) = update k v (clearjunk al)"
-  by (induct al rule: clearjunk.induct)
-    (simp_all add: delete_update)
-
-lemma clearjunk_updates:
-  "clearjunk (updates ks vs al) = updates ks vs (clearjunk al)"
-proof -
-  have "clearjunk \<circ> More_List.fold (prod_case update) (zip ks vs) =
-    More_List.fold (prod_case update) (zip ks vs) \<circ> clearjunk"
-    by (rule fold_commute) (simp add: clearjunk_update prod_case_beta o_def)
-  then show ?thesis by (simp add: updates_def fun_eq_iff)
-qed
-
-lemma clearjunk_delete:
-  "clearjunk (delete x al) = delete x (clearjunk al)"
-  by (induct al rule: clearjunk.induct) (auto simp add: delete_idem delete_twist)
-
-lemma clearjunk_restrict:
- "clearjunk (restrict A al) = restrict A (clearjunk al)"
-  by (induct al rule: clearjunk.induct) (auto simp add: restr_delete_twist)
-
-lemma distinct_clearjunk_id [simp]:
-  "distinct (map fst al) \<Longrightarrow> clearjunk al = al"
-  by (induct al rule: clearjunk.induct) auto
-
-lemma clearjunk_idem:
-  "clearjunk (clearjunk al) = clearjunk al"
-  by simp
-
-lemma length_clearjunk:
-  "length (clearjunk al) \<le> length al"
-proof (induct al rule: clearjunk.induct [case_names Nil Cons])
-  case Nil then show ?case by simp
-next
-  case (Cons kv al)
-  moreover have "length (delete (fst kv) al) \<le> length al" by (fact length_delete_le)
-  ultimately have "length (clearjunk (delete (fst kv) al)) \<le> length al" by (rule order_trans)
-  then show ?case by simp
-qed
-
-lemma delete_map:
-  assumes "\<And>kv. fst (f kv) = fst kv"
-  shows "delete k (map f ps) = map f (delete k ps)"
-  by (simp add: delete_eq filter_map comp_def split_def assms)
-
-lemma clearjunk_map:
-  assumes "\<And>kv. fst (f kv) = fst kv"
-  shows "clearjunk (map f ps) = map f (clearjunk ps)"
-  by (induct ps rule: clearjunk.induct [case_names Nil Cons])
-    (simp_all add: clearjunk_delete delete_map assms)
-
-
-subsection {* @{text map_ran} *}
-
-definition map_ran :: "('key \<Rightarrow> 'val \<Rightarrow> 'val) \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
-  "map_ran f = map (\<lambda>(k, v). (k, f k v))"
-
-lemma map_ran_simps [simp]:
-  "map_ran f [] = []"
-  "map_ran f ((k, v) # ps) = (k, f k v) # map_ran f ps"
-  by (simp_all add: map_ran_def)
-
-lemma dom_map_ran:
-  "fst ` set (map_ran f al) = fst ` set al"
-  by (simp add: map_ran_def image_image split_def)
-  
-lemma map_ran_conv:
-  "map_of (map_ran f al) k = Option.map (f k) (map_of al k)"
-  by (induct al) auto
-
-lemma distinct_map_ran:
-  "distinct (map fst al) \<Longrightarrow> distinct (map fst (map_ran f al))"
-  by (simp add: map_ran_def split_def comp_def)
-
-lemma map_ran_filter:
-  "map_ran f [p\<leftarrow>ps. fst p \<noteq> a] = [p\<leftarrow>map_ran f ps. fst p \<noteq> a]"
-  by (simp add: map_ran_def filter_map split_def comp_def)
-
-lemma clearjunk_map_ran:
-  "clearjunk (map_ran f al) = map_ran f (clearjunk al)"
-  by (simp add: map_ran_def split_def clearjunk_map)
-
-
-subsection {* @{text merge} *}
-
-definition merge :: "('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
-  "merge qs ps = foldr (\<lambda>(k, v). update k v) ps qs"
-
-lemma merge_simps [simp]:
-  "merge qs [] = qs"
-  "merge qs (p#ps) = update (fst p) (snd p) (merge qs ps)"
-  by (simp_all add: merge_def split_def)
-
-lemma merge_updates:
-  "merge qs ps = updates (rev (map fst ps)) (rev (map snd ps)) qs"
-  by (simp add: merge_def updates_def foldr_fold_rev zip_rev zip_map_fst_snd)
-
-lemma dom_merge: "fst ` set (merge xs ys) = fst ` set xs \<union> fst ` set ys"
-  by (induct ys arbitrary: xs) (auto simp add: dom_update)
-
-lemma distinct_merge:
-  assumes "distinct (map fst xs)"
-  shows "distinct (map fst (merge xs ys))"
-using assms by (simp add: merge_updates distinct_updates)
-
-lemma clearjunk_merge:
-  "clearjunk (merge xs ys) = merge (clearjunk xs) ys"
-  by (simp add: merge_updates clearjunk_updates)
-
-lemma merge_conv':
-  "map_of (merge xs ys) = map_of xs ++ map_of ys"
-proof -
-  have "map_of \<circ> More_List.fold (prod_case update) (rev ys) =
-    More_List.fold (\<lambda>(k, v) m. m(k \<mapsto> v)) (rev ys) \<circ> map_of"
-    by (rule fold_commute) (simp add: update_conv' prod_case_beta split_def fun_eq_iff)
-  then show ?thesis
-    by (simp add: merge_def map_add_map_of_foldr foldr_fold_rev fun_eq_iff)
-qed
-
-corollary merge_conv:
-  "map_of (merge xs ys) k = (map_of xs ++ map_of ys) k"
-  by (simp add: merge_conv')
-
-lemma merge_empty: "map_of (merge [] ys) = map_of ys"
-  by (simp add: merge_conv')
-
-lemma merge_assoc[simp]: "map_of (merge m1 (merge m2 m3)) = 
-                           map_of (merge (merge m1 m2) m3)"
-  by (simp add: merge_conv')
-
-lemma merge_Some_iff: 
- "(map_of (merge m n) k = Some x) = 
-  (map_of n k = Some x \<or> map_of n k = None \<and> map_of m k = Some x)"
-  by (simp add: merge_conv' map_add_Some_iff)
-
-lemmas merge_SomeD [dest!] = merge_Some_iff [THEN iffD1]
-
-lemma merge_find_right[simp]: "map_of n k = Some v \<Longrightarrow> map_of (merge m n) k = Some v"
-  by (simp add: merge_conv')
-
-lemma merge_None [iff]: 
-  "(map_of (merge m n) k = None) = (map_of n k = None \<and> map_of m k = None)"
-  by (simp add: merge_conv')
-
-lemma merge_upd[simp]: 
-  "map_of (merge m (update k v n)) = map_of (update k v (merge m n))"
-  by (simp add: update_conv' merge_conv')
-
-lemma merge_updatess[simp]: 
-  "map_of (merge m (updates xs ys n)) = map_of (updates xs ys (merge m n))"
-  by (simp add: updates_conv' merge_conv')
-
-lemma merge_append: "map_of (xs@ys) = map_of (merge ys xs)"
-  by (simp add: merge_conv')
-
-
-subsection {* @{text compose} *}
-
-function compose :: "('key \<times> 'a) list \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('key \<times> 'b) list" where
-    "compose [] ys = []"
-  | "compose (x#xs) ys = (case map_of ys (snd x)
-       of None \<Rightarrow> compose (delete (fst x) xs) ys
-        | Some v \<Rightarrow> (fst x, v) # compose xs ys)"
-  by pat_completeness auto
-termination by (relation "measure (length \<circ> fst)")
-  (simp_all add: less_Suc_eq_le length_delete_le)
-
-lemma compose_first_None [simp]: 
-  assumes "map_of xs k = None" 
-  shows "map_of (compose xs ys) k = None"
-using assms by (induct xs ys rule: compose.induct)
-  (auto split: option.splits split_if_asm)
-
-lemma compose_conv: 
-  shows "map_of (compose xs ys) k = (map_of ys \<circ>\<^sub>m map_of xs) k"
-proof (induct xs ys rule: compose.induct)
-  case 1 then show ?case by simp
-next
-  case (2 x xs ys) show ?case
-  proof (cases "map_of ys (snd x)")
-    case None with 2
-    have hyp: "map_of (compose (delete (fst x) xs) ys) k =
-               (map_of ys \<circ>\<^sub>m map_of (delete (fst x) xs)) k"
-      by simp
-    show ?thesis
-    proof (cases "fst x = k")
-      case True
-      from True delete_notin_dom [of k xs]
-      have "map_of (delete (fst x) xs) k = None"
-        by (simp add: map_of_eq_None_iff)
-      with hyp show ?thesis
-        using True None
-        by simp
-    next
-      case False
-      from False have "map_of (delete (fst x) xs) k = map_of xs k"
-        by simp
-      with hyp show ?thesis
-        using False None
-        by (simp add: map_comp_def)
-    qed
-  next
-    case (Some v)
-    with 2
-    have "map_of (compose xs ys) k = (map_of ys \<circ>\<^sub>m map_of xs) k"
-      by simp
-    with Some show ?thesis
-      by (auto simp add: map_comp_def)
-  qed
-qed
-   
-lemma compose_conv': 
-  shows "map_of (compose xs ys) = (map_of ys \<circ>\<^sub>m map_of xs)"
-  by (rule ext) (rule compose_conv)
-
-lemma compose_first_Some [simp]:
-  assumes "map_of xs k = Some v" 
-  shows "map_of (compose xs ys) k = map_of ys v"
-using assms by (simp add: compose_conv)
-
-lemma dom_compose: "fst ` set (compose xs ys) \<subseteq> fst ` set xs"
-proof (induct xs ys rule: compose.induct)
-  case 1 thus ?case by simp
-next
-  case (2 x xs ys)
-  show ?case
-  proof (cases "map_of ys (snd x)")
-    case None
-    with "2.hyps"
-    have "fst ` set (compose (delete (fst x) xs) ys) \<subseteq> fst ` set (delete (fst x) xs)"
-      by simp
-    also
-    have "\<dots> \<subseteq> fst ` set xs"
-      by (rule dom_delete_subset)
-    finally show ?thesis
-      using None
-      by auto
-  next
-    case (Some v)
-    with "2.hyps"
-    have "fst ` set (compose xs ys) \<subseteq> fst ` set xs"
-      by simp
-    with Some show ?thesis
-      by auto
-  qed
-qed
-
-lemma distinct_compose:
- assumes "distinct (map fst xs)"
- shows "distinct (map fst (compose xs ys))"
-using assms
-proof (induct xs ys rule: compose.induct)
-  case 1 thus ?case by simp
-next
-  case (2 x xs ys)
-  show ?case
-  proof (cases "map_of ys (snd x)")
-    case None
-    with 2 show ?thesis by simp
-  next
-    case (Some v)
-    with 2 dom_compose [of xs ys] show ?thesis 
-      by (auto)
-  qed
-qed
-
-lemma compose_delete_twist: "(compose (delete k xs) ys) = delete k (compose xs ys)"
-proof (induct xs ys rule: compose.induct)
-  case 1 thus ?case by simp
-next
-  case (2 x xs ys)
-  show ?case
-  proof (cases "map_of ys (snd x)")
-    case None
-    with 2 have 
-      hyp: "compose (delete k (delete (fst x) xs)) ys =
-            delete k (compose (delete (fst x) xs) ys)"
-      by simp
-    show ?thesis
-    proof (cases "fst x = k")
-      case True
-      with None hyp
-      show ?thesis
-        by (simp add: delete_idem)
-    next
-      case False
-      from None False hyp
-      show ?thesis
-        by (simp add: delete_twist)
-    qed
-  next
-    case (Some v)
-    with 2 have hyp: "compose (delete k xs) ys = delete k (compose xs ys)" by simp
-    with Some show ?thesis
-      by simp
-  qed
-qed
-
-lemma compose_clearjunk: "compose xs (clearjunk ys) = compose xs ys"
-  by (induct xs ys rule: compose.induct) 
-     (auto simp add: map_of_clearjunk split: option.splits)
-   
-lemma clearjunk_compose: "clearjunk (compose xs ys) = compose (clearjunk xs) ys"
-  by (induct xs rule: clearjunk.induct)
-     (auto split: option.splits simp add: clearjunk_delete delete_idem
-               compose_delete_twist)
-   
-lemma compose_empty [simp]:
- "compose xs [] = []"
-  by (induct xs) (auto simp add: compose_delete_twist)
-
-lemma compose_Some_iff:
-  "(map_of (compose xs ys) k = Some v) = 
-     (\<exists>k'. map_of xs k = Some k' \<and> map_of ys k' = Some v)" 
-  by (simp add: compose_conv map_comp_Some_iff)
-
-lemma map_comp_None_iff:
-  "(map_of (compose xs ys) k = None) = 
-    (map_of xs k = None \<or> (\<exists>k'. map_of xs k = Some k' \<and> map_of ys k' = None)) " 
-  by (simp add: compose_conv map_comp_None_iff)
-
-subsection {* @{text map_entry} *}
-
-fun map_entry :: "'key \<Rightarrow> ('val \<Rightarrow> 'val) \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
-where
-  "map_entry k f [] = []"
-| "map_entry k f (p # ps) = (if fst p = k then (k, f (snd p)) # ps else p # map_entry k f ps)"
-
-lemma map_of_map_entry:
-  "map_of (map_entry k f xs) = (map_of xs)(k := case map_of xs k of None => None | Some v' => Some (f v'))"
-by (induct xs) auto
-
-lemma dom_map_entry:
-  "fst ` set (map_entry k f xs) = fst ` set xs"
-by (induct xs) auto
-
-lemma distinct_map_entry:
-  assumes "distinct (map fst xs)"
-  shows "distinct (map fst (map_entry k f xs))"
-using assms by (induct xs) (auto simp add: dom_map_entry)
-
-subsection {* @{text map_default} *}
-
-fun map_default :: "'key \<Rightarrow> 'val \<Rightarrow> ('val \<Rightarrow> 'val) \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
-where
-  "map_default k v f [] = [(k, v)]"
-| "map_default k v f (p # ps) = (if fst p = k then (k, f (snd p)) # ps else p # map_default k v f ps)"
-
-lemma map_of_map_default:
-  "map_of (map_default k v f xs) = (map_of xs)(k := case map_of xs k of None => Some v | Some v' => Some (f v'))"
-by (induct xs) auto
-
-lemma dom_map_default:
-  "fst ` set (map_default k v f xs) = insert k (fst ` set xs)" 
-by (induct xs) auto
-
-lemma distinct_map_default:
-  assumes "distinct (map fst xs)"
-  shows "distinct (map fst (map_default k v f xs))"
-using assms by (induct xs) (auto simp add: dom_map_default)
-
-end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/AList_Impl.thy	Wed Dec 14 16:30:29 2011 +0100
@@ -0,0 +1,696 @@
+(*  Title:      HOL/Library/AList.thy
+    Author:     Norbert Schirmer, Tobias Nipkow, Martin Wildmoser, TU Muenchen
+*)
+
+header {* Implementation of Association Lists *}
+
+theory AList
+imports Main More_List
+begin
+
+text {*
+  The operations preserve distinctness of keys and 
+  function @{term "clearjunk"} distributes over them. Since 
+  @{term clearjunk} enforces distinctness of keys it can be used
+  to establish the invariant, e.g. for inductive proofs.
+*}
+
+subsection {* @{text update} and @{text updates} *}
+
+primrec update :: "'key \<Rightarrow> 'val \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
+    "update k v [] = [(k, v)]"
+  | "update k v (p#ps) = (if fst p = k then (k, v) # ps else p # update k v ps)"
+
+lemma update_conv': "map_of (update k v al)  = (map_of al)(k\<mapsto>v)"
+  by (induct al) (auto simp add: fun_eq_iff)
+
+corollary update_conv: "map_of (update k v al) k' = ((map_of al)(k\<mapsto>v)) k'"
+  by (simp add: update_conv')
+
+lemma dom_update: "fst ` set (update k v al) = {k} \<union> fst ` set al"
+  by (induct al) auto
+
+lemma update_keys:
+  "map fst (update k v al) =
+    (if k \<in> set (map fst al) then map fst al else map fst al @ [k])"
+  by (induct al) simp_all
+
+lemma distinct_update:
+  assumes "distinct (map fst al)" 
+  shows "distinct (map fst (update k v al))"
+  using assms by (simp add: update_keys)
+
+lemma update_filter: 
+  "a\<noteq>k \<Longrightarrow> update k v [q\<leftarrow>ps . fst q \<noteq> a] = [q\<leftarrow>update k v ps . fst q \<noteq> a]"
+  by (induct ps) auto
+
+lemma update_triv: "map_of al k = Some v \<Longrightarrow> update k v al = al"
+  by (induct al) auto
+
+lemma update_nonempty [simp]: "update k v al \<noteq> []"
+  by (induct al) auto
+
+lemma update_eqD: "update k v al = update k v' al' \<Longrightarrow> v = v'"
+proof (induct al arbitrary: al') 
+  case Nil thus ?case 
+    by (cases al') (auto split: split_if_asm)
+next
+  case Cons thus ?case
+    by (cases al') (auto split: split_if_asm)
+qed
+
+lemma update_last [simp]: "update k v (update k v' al) = update k v al"
+  by (induct al) auto
+
+text {* Note that the lists are not necessarily the same:
+        @{term "update k v (update k' v' []) = [(k', v'), (k, v)]"} and 
+        @{term "update k' v' (update k v []) = [(k, v), (k', v')]"}.*}
+lemma update_swap: "k\<noteq>k' 
+  \<Longrightarrow> map_of (update k v (update k' v' al)) = map_of (update k' v' (update k v al))"
+  by (simp add: update_conv' fun_eq_iff)
+
+lemma update_Some_unfold: 
+  "map_of (update k v al) x = Some y \<longleftrightarrow>
+    x = k \<and> v = y \<or> x \<noteq> k \<and> map_of al x = Some y"
+  by (simp add: update_conv' map_upd_Some_unfold)
+
+lemma image_update [simp]:
+  "x \<notin> A \<Longrightarrow> map_of (update x y al) ` A = map_of al ` A"
+  by (simp add: update_conv' image_map_upd)
+
+definition updates :: "'key list \<Rightarrow> 'val list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
+  "updates ks vs = More_List.fold (prod_case update) (zip ks vs)"
+
+lemma updates_simps [simp]:
+  "updates [] vs ps = ps"
+  "updates ks [] ps = ps"
+  "updates (k#ks) (v#vs) ps = updates ks vs (update k v ps)"
+  by (simp_all add: updates_def)
+
+lemma updates_key_simp [simp]:
+  "updates (k # ks) vs ps =
+    (case vs of [] \<Rightarrow> ps | v # vs \<Rightarrow> updates ks vs (update k v ps))"
+  by (cases vs) simp_all
+
+lemma updates_conv': "map_of (updates ks vs al) = (map_of al)(ks[\<mapsto>]vs)"
+proof -
+  have "map_of \<circ> More_List.fold (prod_case update) (zip ks vs) =
+    More_List.fold (\<lambda>(k, v) f. f(k \<mapsto> v)) (zip ks vs) \<circ> map_of"
+    by (rule fold_commute) (auto simp add: fun_eq_iff update_conv')
+  then show ?thesis by (auto simp add: updates_def fun_eq_iff map_upds_fold_map_upd foldl_fold split_def)
+qed
+
+lemma updates_conv: "map_of (updates ks vs al) k = ((map_of al)(ks[\<mapsto>]vs)) k"
+  by (simp add: updates_conv')
+
+lemma distinct_updates:
+  assumes "distinct (map fst al)"
+  shows "distinct (map fst (updates ks vs al))"
+proof -
+  have "distinct (More_List.fold
+       (\<lambda>(k, v) al. if k \<in> set al then al else al @ [k])
+       (zip ks vs) (map fst al))"
+    by (rule fold_invariant [of "zip ks vs" "\<lambda>_. True"]) (auto intro: assms)
+  moreover have "map fst \<circ> More_List.fold (prod_case update) (zip ks vs) =
+    More_List.fold (\<lambda>(k, v) al. if k \<in> set al then al else al @ [k]) (zip ks vs) \<circ> map fst"
+    by (rule fold_commute) (simp add: update_keys split_def prod_case_beta comp_def)
+  ultimately show ?thesis by (simp add: updates_def fun_eq_iff)
+qed
+
+lemma updates_append1[simp]: "size ks < size vs \<Longrightarrow>
+  updates (ks@[k]) vs al = update k (vs!size ks) (updates ks vs al)"
+  by (induct ks arbitrary: vs al) (auto split: list.splits)
+
+lemma updates_list_update_drop[simp]:
+ "\<lbrakk>size ks \<le> i; i < size vs\<rbrakk>
+   \<Longrightarrow> updates ks (vs[i:=v]) al = updates ks vs al"
+  by (induct ks arbitrary: al vs i) (auto split:list.splits nat.splits)
+
+lemma update_updates_conv_if: "
+ map_of (updates xs ys (update x y al)) =
+ map_of (if x \<in>  set(take (length ys) xs) then updates xs ys al
+                                  else (update x y (updates xs ys al)))"
+  by (simp add: updates_conv' update_conv' map_upd_upds_conv_if)
+
+lemma updates_twist [simp]:
+ "k \<notin> set ks \<Longrightarrow> 
+  map_of (updates ks vs (update k v al)) = map_of (update k v (updates ks vs al))"
+  by (simp add: updates_conv' update_conv' map_upds_twist)
+
+lemma updates_apply_notin[simp]:
+ "k \<notin> set ks ==> map_of (updates ks vs al) k = map_of al k"
+  by (simp add: updates_conv)
+
+lemma updates_append_drop[simp]:
+  "size xs = size ys \<Longrightarrow> updates (xs@zs) ys al = updates xs ys al"
+  by (induct xs arbitrary: ys al) (auto split: list.splits)
+
+lemma updates_append2_drop[simp]:
+  "size xs = size ys \<Longrightarrow> updates xs (ys@zs) al = updates xs ys al"
+  by (induct xs arbitrary: ys al) (auto split: list.splits)
+
+
+subsection {* @{text delete} *}
+
+definition delete :: "'key \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
+  delete_eq: "delete k = filter (\<lambda>(k', _). k \<noteq> k')"
+
+lemma delete_simps [simp]:
+  "delete k [] = []"
+  "delete k (p#ps) = (if fst p = k then delete k ps else p # delete k ps)"
+  by (auto simp add: delete_eq)
+
+lemma delete_conv': "map_of (delete k al) = (map_of al)(k := None)"
+  by (induct al) (auto simp add: fun_eq_iff)
+
+corollary delete_conv: "map_of (delete k al) k' = ((map_of al)(k := None)) k'"
+  by (simp add: delete_conv')
+
+lemma delete_keys:
+  "map fst (delete k al) = removeAll k (map fst al)"
+  by (simp add: delete_eq removeAll_filter_not_eq filter_map split_def comp_def)
+
+lemma distinct_delete:
+  assumes "distinct (map fst al)" 
+  shows "distinct (map fst (delete k al))"
+  using assms by (simp add: delete_keys distinct_removeAll)
+
+lemma delete_id [simp]: "k \<notin> fst ` set al \<Longrightarrow> delete k al = al"
+  by (auto simp add: image_iff delete_eq filter_id_conv)
+
+lemma delete_idem: "delete k (delete k al) = delete k al"
+  by (simp add: delete_eq)
+
+lemma map_of_delete [simp]:
+    "k' \<noteq> k \<Longrightarrow> map_of (delete k al) k' = map_of al k'"
+  by (simp add: delete_conv')
+
+lemma delete_notin_dom: "k \<notin> fst ` set (delete k al)"
+  by (auto simp add: delete_eq)
+
+lemma dom_delete_subset: "fst ` set (delete k al) \<subseteq> fst ` set al"
+  by (auto simp add: delete_eq)
+
+lemma delete_update_same:
+  "delete k (update k v al) = delete k al"
+  by (induct al) simp_all
+
+lemma delete_update:
+  "k \<noteq> l \<Longrightarrow> delete l (update k v al) = update k v (delete l al)"
+  by (induct al) simp_all
+
+lemma delete_twist: "delete x (delete y al) = delete y (delete x al)"
+  by (simp add: delete_eq conj_commute)
+
+lemma length_delete_le: "length (delete k al) \<le> length al"
+  by (simp add: delete_eq)
+
+
+subsection {* @{text restrict} *}
+
+definition restrict :: "'key set \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
+  restrict_eq: "restrict A = filter (\<lambda>(k, v). k \<in> A)"
+
+lemma restr_simps [simp]:
+  "restrict A [] = []"
+  "restrict A (p#ps) = (if fst p \<in> A then p # restrict A ps else restrict A ps)"
+  by (auto simp add: restrict_eq)
+
+lemma restr_conv': "map_of (restrict A al) = ((map_of al)|` A)"
+proof
+  fix k
+  show "map_of (restrict A al) k = ((map_of al)|` A) k"
+    by (induct al) (simp, cases "k \<in> A", auto)
+qed
+
+corollary restr_conv: "map_of (restrict A al) k = ((map_of al)|` A) k"
+  by (simp add: restr_conv')
+
+lemma distinct_restr:
+  "distinct (map fst al) \<Longrightarrow> distinct (map fst (restrict A al))"
+  by (induct al) (auto simp add: restrict_eq)
+
+lemma restr_empty [simp]: 
+  "restrict {} al = []" 
+  "restrict A [] = []"
+  by (induct al) (auto simp add: restrict_eq)
+
+lemma restr_in [simp]: "x \<in> A \<Longrightarrow> map_of (restrict A al) x = map_of al x"
+  by (simp add: restr_conv')
+
+lemma restr_out [simp]: "x \<notin> A \<Longrightarrow> map_of (restrict A al) x = None"
+  by (simp add: restr_conv')
+
+lemma dom_restr [simp]: "fst ` set (restrict A al) = fst ` set al \<inter> A"
+  by (induct al) (auto simp add: restrict_eq)
+
+lemma restr_upd_same [simp]: "restrict (-{x}) (update x y al) = restrict (-{x}) al"
+  by (induct al) (auto simp add: restrict_eq)
+
+lemma restr_restr [simp]: "restrict A (restrict B al) = restrict (A\<inter>B) al"
+  by (induct al) (auto simp add: restrict_eq)
+
+lemma restr_update[simp]:
+ "map_of (restrict D (update x y al)) = 
+  map_of ((if x \<in> D then (update x y (restrict (D-{x}) al)) else restrict D al))"
+  by (simp add: restr_conv' update_conv')
+
+lemma restr_delete [simp]:
+  "(delete x (restrict D al)) = 
+    (if x \<in> D then restrict (D - {x}) al else restrict D al)"
+apply (simp add: delete_eq restrict_eq)
+apply (auto simp add: split_def)
+proof -
+  have "\<And>y. y \<noteq> x \<longleftrightarrow> x \<noteq> y" by auto
+  then show "[p \<leftarrow> al. fst p \<in> D \<and> x \<noteq> fst p] = [p \<leftarrow> al. fst p \<in> D \<and> fst p \<noteq> x]"
+    by simp
+  assume "x \<notin> D"
+  then have "\<And>y. y \<in> D \<longleftrightarrow> y \<in> D \<and> x \<noteq> y" by auto
+  then show "[p \<leftarrow> al . fst p \<in> D \<and> x \<noteq> fst p] = [p \<leftarrow> al . fst p \<in> D]"
+    by simp
+qed
+
+lemma update_restr:
+ "map_of (update x y (restrict D al)) = map_of (update x y (restrict (D-{x}) al))"
+  by (simp add: update_conv' restr_conv') (rule fun_upd_restrict)
+
+lemma update_restr_conv [simp]:
+ "x \<in> D \<Longrightarrow> 
+ map_of (update x y (restrict D al)) = map_of (update x y (restrict (D-{x}) al))"
+  by (simp add: update_conv' restr_conv')
+
+lemma restr_updates [simp]: "
+ \<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
+ \<Longrightarrow> map_of (restrict D (updates xs ys al)) = 
+     map_of (updates xs ys (restrict (D - set xs) al))"
+  by (simp add: updates_conv' restr_conv')
+
+lemma restr_delete_twist: "(restrict A (delete a ps)) = delete a (restrict A ps)"
+  by (induct ps) auto
+
+
+subsection {* @{text clearjunk} *}
+
+function clearjunk  :: "('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
+    "clearjunk [] = []"  
+  | "clearjunk (p#ps) = p # clearjunk (delete (fst p) ps)"
+  by pat_completeness auto
+termination by (relation "measure length")
+  (simp_all add: less_Suc_eq_le length_delete_le)
+
+lemma map_of_clearjunk:
+  "map_of (clearjunk al) = map_of al"
+  by (induct al rule: clearjunk.induct)
+    (simp_all add: fun_eq_iff)
+
+lemma clearjunk_keys_set:
+  "set (map fst (clearjunk al)) = set (map fst al)"
+  by (induct al rule: clearjunk.induct)
+    (simp_all add: delete_keys)
+
+lemma dom_clearjunk:
+  "fst ` set (clearjunk al) = fst ` set al"
+  using clearjunk_keys_set by simp
+
+lemma distinct_clearjunk [simp]:
+  "distinct (map fst (clearjunk al))"
+  by (induct al rule: clearjunk.induct)
+    (simp_all del: set_map add: clearjunk_keys_set delete_keys)
+
+lemma ran_clearjunk:
+  "ran (map_of (clearjunk al)) = ran (map_of al)"
+  by (simp add: map_of_clearjunk)
+
+lemma ran_map_of:
+  "ran (map_of al) = snd ` set (clearjunk al)"
+proof -
+  have "ran (map_of al) = ran (map_of (clearjunk al))"
+    by (simp add: ran_clearjunk)
+  also have "\<dots> = snd ` set (clearjunk al)"
+    by (simp add: ran_distinct)
+  finally show ?thesis .
+qed
+
+lemma clearjunk_update:
+  "clearjunk (update k v al) = update k v (clearjunk al)"
+  by (induct al rule: clearjunk.induct)
+    (simp_all add: delete_update)
+
+lemma clearjunk_updates:
+  "clearjunk (updates ks vs al) = updates ks vs (clearjunk al)"
+proof -
+  have "clearjunk \<circ> More_List.fold (prod_case update) (zip ks vs) =
+    More_List.fold (prod_case update) (zip ks vs) \<circ> clearjunk"
+    by (rule fold_commute) (simp add: clearjunk_update prod_case_beta o_def)
+  then show ?thesis by (simp add: updates_def fun_eq_iff)
+qed
+
+lemma clearjunk_delete:
+  "clearjunk (delete x al) = delete x (clearjunk al)"
+  by (induct al rule: clearjunk.induct) (auto simp add: delete_idem delete_twist)
+
+lemma clearjunk_restrict:
+ "clearjunk (restrict A al) = restrict A (clearjunk al)"
+  by (induct al rule: clearjunk.induct) (auto simp add: restr_delete_twist)
+
+lemma distinct_clearjunk_id [simp]:
+  "distinct (map fst al) \<Longrightarrow> clearjunk al = al"
+  by (induct al rule: clearjunk.induct) auto
+
+lemma clearjunk_idem:
+  "clearjunk (clearjunk al) = clearjunk al"
+  by simp
+
+lemma length_clearjunk:
+  "length (clearjunk al) \<le> length al"
+proof (induct al rule: clearjunk.induct [case_names Nil Cons])
+  case Nil then show ?case by simp
+next
+  case (Cons kv al)
+  moreover have "length (delete (fst kv) al) \<le> length al" by (fact length_delete_le)
+  ultimately have "length (clearjunk (delete (fst kv) al)) \<le> length al" by (rule order_trans)
+  then show ?case by simp
+qed
+
+lemma delete_map:
+  assumes "\<And>kv. fst (f kv) = fst kv"
+  shows "delete k (map f ps) = map f (delete k ps)"
+  by (simp add: delete_eq filter_map comp_def split_def assms)
+
+lemma clearjunk_map:
+  assumes "\<And>kv. fst (f kv) = fst kv"
+  shows "clearjunk (map f ps) = map f (clearjunk ps)"
+  by (induct ps rule: clearjunk.induct [case_names Nil Cons])
+    (simp_all add: clearjunk_delete delete_map assms)
+
+
+subsection {* @{text map_ran} *}
+
+definition map_ran :: "('key \<Rightarrow> 'val \<Rightarrow> 'val) \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
+  "map_ran f = map (\<lambda>(k, v). (k, f k v))"
+
+lemma map_ran_simps [simp]:
+  "map_ran f [] = []"
+  "map_ran f ((k, v) # ps) = (k, f k v) # map_ran f ps"
+  by (simp_all add: map_ran_def)
+
+lemma dom_map_ran:
+  "fst ` set (map_ran f al) = fst ` set al"
+  by (simp add: map_ran_def image_image split_def)
+  
+lemma map_ran_conv:
+  "map_of (map_ran f al) k = Option.map (f k) (map_of al k)"
+  by (induct al) auto
+
+lemma distinct_map_ran:
+  "distinct (map fst al) \<Longrightarrow> distinct (map fst (map_ran f al))"
+  by (simp add: map_ran_def split_def comp_def)
+
+lemma map_ran_filter:
+  "map_ran f [p\<leftarrow>ps. fst p \<noteq> a] = [p\<leftarrow>map_ran f ps. fst p \<noteq> a]"
+  by (simp add: map_ran_def filter_map split_def comp_def)
+
+lemma clearjunk_map_ran:
+  "clearjunk (map_ran f al) = map_ran f (clearjunk al)"
+  by (simp add: map_ran_def split_def clearjunk_map)
+
+
+subsection {* @{text merge} *}
+
+definition merge :: "('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where
+  "merge qs ps = foldr (\<lambda>(k, v). update k v) ps qs"
+
+lemma merge_simps [simp]:
+  "merge qs [] = qs"
+  "merge qs (p#ps) = update (fst p) (snd p) (merge qs ps)"
+  by (simp_all add: merge_def split_def)
+
+lemma merge_updates:
+  "merge qs ps = updates (rev (map fst ps)) (rev (map snd ps)) qs"
+  by (simp add: merge_def updates_def foldr_fold_rev zip_rev zip_map_fst_snd)
+
+lemma dom_merge: "fst ` set (merge xs ys) = fst ` set xs \<union> fst ` set ys"
+  by (induct ys arbitrary: xs) (auto simp add: dom_update)
+
+lemma distinct_merge:
+  assumes "distinct (map fst xs)"
+  shows "distinct (map fst (merge xs ys))"
+using assms by (simp add: merge_updates distinct_updates)
+
+lemma clearjunk_merge:
+  "clearjunk (merge xs ys) = merge (clearjunk xs) ys"
+  by (simp add: merge_updates clearjunk_updates)
+
+lemma merge_conv':
+  "map_of (merge xs ys) = map_of xs ++ map_of ys"
+proof -
+  have "map_of \<circ> More_List.fold (prod_case update) (rev ys) =
+    More_List.fold (\<lambda>(k, v) m. m(k \<mapsto> v)) (rev ys) \<circ> map_of"
+    by (rule fold_commute) (simp add: update_conv' prod_case_beta split_def fun_eq_iff)
+  then show ?thesis
+    by (simp add: merge_def map_add_map_of_foldr foldr_fold_rev fun_eq_iff)
+qed
+
+corollary merge_conv:
+  "map_of (merge xs ys) k = (map_of xs ++ map_of ys) k"
+  by (simp add: merge_conv')
+
+lemma merge_empty: "map_of (merge [] ys) = map_of ys"
+  by (simp add: merge_conv')
+
+lemma merge_assoc[simp]: "map_of (merge m1 (merge m2 m3)) = 
+                           map_of (merge (merge m1 m2) m3)"
+  by (simp add: merge_conv')
+
+lemma merge_Some_iff: 
+ "(map_of (merge m n) k = Some x) = 
+  (map_of n k = Some x \<or> map_of n k = None \<and> map_of m k = Some x)"
+  by (simp add: merge_conv' map_add_Some_iff)
+
+lemmas merge_SomeD [dest!] = merge_Some_iff [THEN iffD1]
+
+lemma merge_find_right[simp]: "map_of n k = Some v \<Longrightarrow> map_of (merge m n) k = Some v"
+  by (simp add: merge_conv')
+
+lemma merge_None [iff]: 
+  "(map_of (merge m n) k = None) = (map_of n k = None \<and> map_of m k = None)"
+  by (simp add: merge_conv')
+
+lemma merge_upd[simp]: 
+  "map_of (merge m (update k v n)) = map_of (update k v (merge m n))"
+  by (simp add: update_conv' merge_conv')
+
+lemma merge_updatess[simp]: 
+  "map_of (merge m (updates xs ys n)) = map_of (updates xs ys (merge m n))"
+  by (simp add: updates_conv' merge_conv')
+
+lemma merge_append: "map_of (xs@ys) = map_of (merge ys xs)"
+  by (simp add: merge_conv')
+
+
+subsection {* @{text compose} *}
+
+function compose :: "('key \<times> 'a) list \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('key \<times> 'b) list" where
+    "compose [] ys = []"
+  | "compose (x#xs) ys = (case map_of ys (snd x)
+       of None \<Rightarrow> compose (delete (fst x) xs) ys
+        | Some v \<Rightarrow> (fst x, v) # compose xs ys)"
+  by pat_completeness auto
+termination by (relation "measure (length \<circ> fst)")
+  (simp_all add: less_Suc_eq_le length_delete_le)
+
+lemma compose_first_None [simp]: 
+  assumes "map_of xs k = None" 
+  shows "map_of (compose xs ys) k = None"
+using assms by (induct xs ys rule: compose.induct)
+  (auto split: option.splits split_if_asm)
+
+lemma compose_conv: 
+  shows "map_of (compose xs ys) k = (map_of ys \<circ>\<^sub>m map_of xs) k"
+proof (induct xs ys rule: compose.induct)
+  case 1 then show ?case by simp
+next
+  case (2 x xs ys) show ?case
+  proof (cases "map_of ys (snd x)")
+    case None with 2
+    have hyp: "map_of (compose (delete (fst x) xs) ys) k =
+               (map_of ys \<circ>\<^sub>m map_of (delete (fst x) xs)) k"
+      by simp
+    show ?thesis
+    proof (cases "fst x = k")
+      case True
+      from True delete_notin_dom [of k xs]
+      have "map_of (delete (fst x) xs) k = None"
+        by (simp add: map_of_eq_None_iff)
+      with hyp show ?thesis
+        using True None
+        by simp
+    next
+      case False
+      from False have "map_of (delete (fst x) xs) k = map_of xs k"
+        by simp
+      with hyp show ?thesis
+        using False None
+        by (simp add: map_comp_def)
+    qed
+  next
+    case (Some v)
+    with 2
+    have "map_of (compose xs ys) k = (map_of ys \<circ>\<^sub>m map_of xs) k"
+      by simp
+    with Some show ?thesis
+      by (auto simp add: map_comp_def)
+  qed
+qed
+   
+lemma compose_conv': 
+  shows "map_of (compose xs ys) = (map_of ys \<circ>\<^sub>m map_of xs)"
+  by (rule ext) (rule compose_conv)
+
+lemma compose_first_Some [simp]:
+  assumes "map_of xs k = Some v" 
+  shows "map_of (compose xs ys) k = map_of ys v"
+using assms by (simp add: compose_conv)
+
+lemma dom_compose: "fst ` set (compose xs ys) \<subseteq> fst ` set xs"
+proof (induct xs ys rule: compose.induct)
+  case 1 thus ?case by simp
+next
+  case (2 x xs ys)
+  show ?case
+  proof (cases "map_of ys (snd x)")
+    case None
+    with "2.hyps"
+    have "fst ` set (compose (delete (fst x) xs) ys) \<subseteq> fst ` set (delete (fst x) xs)"
+      by simp
+    also
+    have "\<dots> \<subseteq> fst ` set xs"
+      by (rule dom_delete_subset)
+    finally show ?thesis
+      using None
+      by auto
+  next
+    case (Some v)
+    with "2.hyps"
+    have "fst ` set (compose xs ys) \<subseteq> fst ` set xs"
+      by simp
+    with Some show ?thesis
+      by auto
+  qed
+qed
+
+lemma distinct_compose:
+ assumes "distinct (map fst xs)"
+ shows "distinct (map fst (compose xs ys))"
+using assms
+proof (induct xs ys rule: compose.induct)
+  case 1 thus ?case by simp
+next
+  case (2 x xs ys)
+  show ?case
+  proof (cases "map_of ys (snd x)")
+    case None
+    with 2 show ?thesis by simp
+  next
+    case (Some v)
+    with 2 dom_compose [of xs ys] show ?thesis 
+      by (auto)
+  qed
+qed
+
+lemma compose_delete_twist: "(compose (delete k xs) ys) = delete k (compose xs ys)"
+proof (induct xs ys rule: compose.induct)
+  case 1 thus ?case by simp
+next
+  case (2 x xs ys)
+  show ?case
+  proof (cases "map_of ys (snd x)")
+    case None
+    with 2 have 
+      hyp: "compose (delete k (delete (fst x) xs)) ys =
+            delete k (compose (delete (fst x) xs) ys)"
+      by simp
+    show ?thesis
+    proof (cases "fst x = k")
+      case True
+      with None hyp
+      show ?thesis
+        by (simp add: delete_idem)
+    next
+      case False
+      from None False hyp
+      show ?thesis
+        by (simp add: delete_twist)
+    qed
+  next
+    case (Some v)
+    with 2 have hyp: "compose (delete k xs) ys = delete k (compose xs ys)" by simp
+    with Some show ?thesis
+      by simp
+  qed
+qed
+
+lemma compose_clearjunk: "compose xs (clearjunk ys) = compose xs ys"
+  by (induct xs ys rule: compose.induct) 
+     (auto simp add: map_of_clearjunk split: option.splits)
+   
+lemma clearjunk_compose: "clearjunk (compose xs ys) = compose (clearjunk xs) ys"
+  by (induct xs rule: clearjunk.induct)
+     (auto split: option.splits simp add: clearjunk_delete delete_idem
+               compose_delete_twist)
+   
+lemma compose_empty [simp]:
+ "compose xs [] = []"
+  by (induct xs) (auto simp add: compose_delete_twist)
+
+lemma compose_Some_iff:
+  "(map_of (compose xs ys) k = Some v) = 
+     (\<exists>k'. map_of xs k = Some k' \<and> map_of ys k' = Some v)" 
+  by (simp add: compose_conv map_comp_Some_iff)
+
+lemma map_comp_None_iff:
+  "(map_of (compose xs ys) k = None) = 
+    (map_of xs k = None \<or> (\<exists>k'. map_of xs k = Some k' \<and> map_of ys k' = None)) " 
+  by (simp add: compose_conv map_comp_None_iff)
+
+subsection {* @{text map_entry} *}
+
+fun map_entry :: "'key \<Rightarrow> ('val \<Rightarrow> 'val) \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
+where
+  "map_entry k f [] = []"
+| "map_entry k f (p # ps) = (if fst p = k then (k, f (snd p)) # ps else p # map_entry k f ps)"
+
+lemma map_of_map_entry:
+  "map_of (map_entry k f xs) = (map_of xs)(k := case map_of xs k of None => None | Some v' => Some (f v'))"
+by (induct xs) auto
+
+lemma dom_map_entry:
+  "fst ` set (map_entry k f xs) = fst ` set xs"
+by (induct xs) auto
+
+lemma distinct_map_entry:
+  assumes "distinct (map fst xs)"
+  shows "distinct (map fst (map_entry k f xs))"
+using assms by (induct xs) (auto simp add: dom_map_entry)
+
+subsection {* @{text map_default} *}
+
+fun map_default :: "'key \<Rightarrow> 'val \<Rightarrow> ('val \<Rightarrow> 'val) \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
+where
+  "map_default k v f [] = [(k, v)]"
+| "map_default k v f (p # ps) = (if fst p = k then (k, f (snd p)) # ps else p # map_default k v f ps)"
+
+lemma map_of_map_default:
+  "map_of (map_default k v f xs) = (map_of xs)(k := case map_of xs k of None => Some v | Some v' => Some (f v'))"
+by (induct xs) auto
+
+lemma dom_map_default:
+  "fst ` set (map_default k v f xs) = insert k (fst ` set xs)" 
+by (induct xs) auto
+
+lemma distinct_map_default:
+  assumes "distinct (map fst xs)"
+  shows "distinct (map fst (map_default k v f xs))"
+using assms by (induct xs) (auto simp add: dom_map_default)
+
+end