--- a/src/HOL/Isar_Examples/Fibonacci.thy Sat May 14 19:49:10 2016 +0200
+++ b/src/HOL/Isar_Examples/Fibonacci.thy Sat May 14 19:59:43 2016 +0200
@@ -27,7 +27,8 @@
subsection \<open>Fibonacci numbers\<close>
-fun fib :: "nat \<Rightarrow> nat" where
+fun fib :: "nat \<Rightarrow> nat"
+where
"fib 0 = 0"
| "fib (Suc 0) = 1"
| "fib (Suc (Suc x)) = fib x + fib (Suc x)"
@@ -38,9 +39,8 @@
text \<open>Alternative induction rule.\<close>
-theorem fib_induct:
- fixes n :: nat
- shows "P 0 \<Longrightarrow> P 1 \<Longrightarrow> (\<And>n. P (n + 1) \<Longrightarrow> P n \<Longrightarrow> P (n + 2)) \<Longrightarrow> P n"
+theorem fib_induct: "P 0 \<Longrightarrow> P 1 \<Longrightarrow> (\<And>n. P (n + 1) \<Longrightarrow> P n \<Longrightarrow> P (n + 2)) \<Longrightarrow> P n"
+ for n :: nat
by (induct rule: fib.induct) simp_all
@@ -48,8 +48,7 @@
text \<open>A few laws taken from @{cite "Concrete-Math"}.\<close>
-lemma fib_add:
- "fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n"
+lemma fib_add: "fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n"
(is "?P n")
\<comment> \<open>see @{cite \<open>page 280\<close> "Concrete-Math"}\<close>
proof (induct n rule: fib_induct)
@@ -58,19 +57,16 @@
fix n
have "fib (n + 2 + k + 1)
= fib (n + k + 1) + fib (n + 1 + k + 1)" by simp
- also assume "fib (n + k + 1)
- = fib (k + 1) * fib (n + 1) + fib k * fib n"
- (is " _ = ?R1")
- also assume "fib (n + 1 + k + 1)
- = fib (k + 1) * fib (n + 1 + 1) + fib k * fib (n + 1)"
- (is " _ = ?R2")
- also have "?R1 + ?R2
- = fib (k + 1) * fib (n + 2 + 1) + fib k * fib (n + 2)"
+ also assume "fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n" (is " _ = ?R1")
+ also assume "fib (n + 1 + k + 1) = fib (k + 1) * fib (n + 1 + 1) + fib k * fib (n + 1)"
+ (is " _ = ?R2")
+ also have "?R1 + ?R2 = fib (k + 1) * fib (n + 2 + 1) + fib k * fib (n + 2)"
by (simp add: add_mult_distrib2)
finally show "?P (n + 2)" .
qed
-lemma gcd_fib_Suc_eq_1: "gcd (fib n) (fib (n + 1)) = 1" (is "?P n")
+lemma gcd_fib_Suc_eq_1: "gcd (fib n) (fib (n + 1)) = 1"
+ (is "?P n")
proof (induct n rule: fib_induct)
show "?P 0" by simp
show "?P 1" by simp
@@ -105,8 +101,7 @@
case (Suc k)
then have "gcd (fib m) (fib (n + m)) = gcd (fib (n + k + 1)) (fib (k + 1))"
by (simp add: gcd.commute)
- also have "fib (n + k + 1)
- = fib (k + 1) * fib (n + 1) + fib k * fib n"
+ also have "fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n"
by (rule fib_add)
also have "gcd \<dots> (fib (k + 1)) = gcd (fib k * fib n) (fib (k + 1))"
by (simp add: gcd_mult_add)
@@ -117,9 +112,7 @@
finally show ?thesis .
qed
-lemma gcd_fib_diff:
- assumes "m \<le> n"
- shows "gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
+lemma gcd_fib_diff: "gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)" if "m \<le> n"
proof -
have "gcd (fib m) (fib (n - m)) = gcd (fib m) (fib (n - m + m))"
by (simp add: gcd_fib_add)
@@ -128,11 +121,9 @@
finally show ?thesis .
qed
-lemma gcd_fib_mod:
- assumes "0 < m"
- shows "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
+lemma gcd_fib_mod: "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" if "0 < m"
proof (induct n rule: nat_less_induct)
- case (1 n) note hyp = this
+ case hyp: (1 n)
show ?case
proof -
have "n mod m = (if n < m then n else (n - m) mod m)"
@@ -158,12 +149,12 @@
qed
qed
-theorem fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)" (is "?P m n")
+theorem fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)"
+ (is "?P m n")
proof (induct m n rule: gcd_nat_induct)
- fix m
+ fix m n :: nat
show "fib (gcd m 0) = gcd (fib m) (fib 0)"
by simp
- fix n :: nat
assume n: "0 < n"
then have "gcd m n = gcd n (m mod n)"
by (simp add: gcd_non_0_nat)