--- a/src/HOL/Tools/inductive.ML Fri Sep 18 23:08:53 2009 +0200
+++ b/src/HOL/Tools/inductive.ML Sat Sep 19 07:35:27 2009 +0200
@@ -103,6 +103,7 @@
"(P & True) = P" "(True & P) = P"
by (fact simp_thms)+};
+val simp_thms'' = inf_fun_eq :: inf_bool_eq :: simp_thms';
(** context data **)
@@ -559,7 +560,7 @@
[rewrite_goals_tac [inductive_conj_def],
DETERM (rtac raw_fp_induct 1),
REPEAT (resolve_tac [le_funI, le_boolI] 1),
- rewrite_goals_tac (inf_fun_eq :: inf_bool_eq :: simp_thms'),
+ rewrite_goals_tac simp_thms'',
(*This disjE separates out the introduction rules*)
REPEAT (FIRSTGOAL (eresolve_tac [disjE, exE, FalseE])),
(*Now break down the individual cases. No disjE here in case
@@ -568,7 +569,7 @@
REPEAT (FIRSTGOAL
(resolve_tac [conjI, impI] ORELSE' (etac notE THEN' atac))),
EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [rewrite_rule
- (inductive_conj_def :: rec_preds_defs @ simp_thms') prem,
+ (inductive_conj_def :: rec_preds_defs @ simp_thms'') prem,
conjI, refl] 1)) prems)]);
val lemma = SkipProof.prove ctxt'' [] []